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Abstract—In this paper, we propose some heuristic probabilistic polynomial time algorithms with one-sided
error for recognition of cubic hypersurfaces the singular loci of which do not contain any linear subspace of
sufficiently large dimension. These algorithms are easy to implement in computer algebra systems. The algo-
rithms are based on checking the condition that the Hessian determinant of a cubic form does not vanish
identically or does not determine any cone in the projective space. In turn, the properties of the Hessian can
be verified with one-sided-error probabilistic algorithms based on the Schwartz—Zippel lemma.
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1. INTRODUCTION

A hypersurface is a projective variety defined by
one form (homogeneous polynomial). A curve on a
plane and a surface in a 3D space are hypersurfaces. It
is assumed that the hypersurface is defined by a
square-free form over a field of characteristic zero in
which arithmetic operations are computable in a poly-
nomial number of bit operations, e.g., over the field of
rational numbers [1]. A point is called singular if all
first partial derivatives of this form vanish. Finding a
singular point reduces to finding a nontrivial solution
to a system of homogeneous algebraic equations.
In small dimensions, this problem is easy to solve by
symbolic computations, e.g., in Maple or MathPart-
ner [2]. However, in high dimensions, the problems of
smoothness recognition and finding a singular point
on a cubic hypersurface are algorithmically complex.

When discussing computational complexity, we
consider symbolic computations with no rounding of
numerical values and no rational approximation of
meromorphic functions. When expanding the field of
rational numbers, computer algebra methods cannot
be replaced by numerical methods. Unless otherwise
stated, the runtime of an algorithm is determined by
the number of arithmetic operations in a field, the
number of comparison and copying operations, as well
as the number of operations on indices. More for-
mally, we consider computations on generalized regis-
ter machines over a certain field [3]. When each arith-
metic operation on a field is computable in a polyno-
mial number of bit operations, the polynomial time
computability on a generalized register machine over
this field, generally speaking, does not imply the com-
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putability in a polynomial number of bit operations
because the solution can have exponential length. For
instance, this effect occurs with multiple exponentia-

tion (... (x°)"...)".

In the worst case, the problem is complex; in the
typical case, it can be easier to solve [4]. In this con-
nection, the so-called generic algorithms are of inter-
est: these algorithms quickly find a correct solution for
almost all inputs (for a large number of inputs of a
given length); however, for a small number of inputs,
they only issue a warning about infeasibility of compu-
tations [ 5, 6]. A generic algorithm always yields correct
solutions in contrast to a heuristic algorithm, which
yields correct solutions for almost all inputs, however,
for some inputs, it can yield false solutions. An algo-
rithm with a one-sided error can make errors of only
one kind. A trivial algorithm that accepts all inputs is
an example of a heuristic algorithm with one-sided
error for the problem of recognizing the smoothness of
a cubic hypersurface because a smooth hypersurface is
defined by a general form. For this problem, it is diffi-
cult to propose a heuristic algorithm with one-sided
error of another kind that recognizes singular cubic
hypersurfaces without errors.

Probabilistic algorithms use random bits [4].
An example is the probabilistic reduction of finding a
binary solution to a system of algebraic equations to
finding a binary solution of one equation [7]. Replac-
ing random bits by a pseudo-random sequence turns a
probabilistic algorithm to a heuristic one (but, gener-
ally speaking, not to a generic one).

There are several methods for finding singular
points. The operation of finding a solution to a system
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of algebraic equations by computing the Grobner basis
is implemented in many computer algebra systems;
however, it requires a lot of time and memory [8, 9].
Investigating the properties of a singular point involves
the Newton polytope [10]. This polytope was first used
by A.D. Bryuno to find asymptotics of solutions to sys-
tems of differential equations [11]; he also used its gen-
eralization—the Hadamard polytope—for parameter-
ization [12, 13]. For a general hypersurface with only
one singular point, which acts as an ordinary double
point, the coordinates of this singular point are
expressed in terms of rational functions of the coeffi-
cients of a form that defines this hypersurface [14].

A hypersurface of degree d in P" corresponds to a
hyperplane section of a Veronese variety. A hypersurface
is singular if the secant hyperplane touches the Veronese
variety, i.e., acts as a point of a dual variety. The degree of

this dual variety is (n + 1)(d —1)". It is the degree of the
discriminant of a d-degree form in n + 1 variables [15].
For instance, the discriminant of a quadratic form is
proportional to the determinant of a Hessian matrix,
and its degree is equal to the number of variables # + 1.
If a binary form acts as a homogenization of an inho-
mogeneous polynomial in one variable, then the dis-
criminant of the form vanishes when this polynomial
has a multiple root.

Smoothness of plane curves can be checked using
special methods [16]. A cubic curve is projectively equiv-
alent to a curve in the Weierstrass form. Its affine part is

given by the equation y2 =x + px + q. This curve is
singular when the discriminant of the polynomial on its

right-hand side, which is equal to —4 p3 - 27q2 , vanishes.
Reduction to the Weierstrass form comes down to find-
ing an inflection point, which exists on every irreducible
plane cubic curve [17]. An algorithm for reduction to the
Weierstrass form was implemented in the algcurves
package for Maple [18].

Smoothness check or computation of a singular
locus for a cubic surface can be used to model and ren-

der complex surfaces [19]. A cubic surface in P’ that is
defined over a field K and contains a certain K-point is
unirational over K| i.e., a set of K-points on this sur-
face that is everywhere dense in the Zariski topology
admits rational parameterization [20, 21]. Therefore,
as compared to surfaces of higher degrees, cubic sur-
faces are more convenient to model [22, 23]. On the
other hand, smooth real cubic surfaces with two con-
nected components are unirational; however, they are
irrational over the field of real numbers.

2. PRELIMINARY RESULTS

We assume that the projective space P with homo-
geneous coordinates (x, :---:x,) is fixed in each
dimension. The values of the homogeneous coordi-
nates do not vanish simultaneously, and two sets of
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coordinates that differ in their common nonzero multi-

pliers define the same point in P". A square-free form
f(xo,-.., x,) defines a hypersurface at the points of which
the form f'vanishes. If, after some linear change of coor-
dinates, the form depends on fewer variables, then it

defines a cone in P”.

The Hessian matrix of a polynomial is a symmetric
matrix of second-order partial derivatives. The entries of
the Hessian matrix of a third-degree polynomial are lin-
ear functions. The determinant of the Hessian matrix is
called the Hessian determinant (or simply the Hessian).
The Hessian is defined by a hypersurface up to its non-
zero multiplier, which allows us to speak of a Hessian of a
hypersurface. The trace of the Hessian matrix is called
the Laplacian. In Maple, the Hessian matrix, Hessian,
and Laplacian are computed in the VectorCalculus
package by using the Hessian command with the
determinant option (for the Hessian) and Laplacian
command (for the Laplacian).

The computational complexity of a matrix deter-
minant has the same order of growth as matrix multi-
plication. There are algorithms that are asymptotically
more efficient than the Gaussian method [24, 25].
The determinant is easy to compute, e.g., over the field
of rational numbers or the field of rational functions in
one variable with rational coefficients. However, for
matrices over a ring of polynomials in many variables,
generally speaking, the determinant cannot be com-
puted in a time bounded by a polynomial expression in
the number of variables. In this case, to check that the
determinant does not vanish identically, the
Schwartz—Zippel lemma [26] is usually employed.

Lemma 1 (Schwartz—Zippel). Suppose that we have a
polynomial f(x,,..., x,) of a positive degree d > 0 over a cer-
tain field. For any finite set S of elements of this field and for
independent random variables &, ..., &, uniformly distrib-
uted on the set S, the probability for the polynomial to vanish

f&p,...,E,) =0 doesnotexceedﬁ.

For a cone in P”, the Hessian vanishes because the
rows of the Hessian matrix are linearly dependent over
a field of coefficients. However, the Hessian can also
vanish when the rows of the Hessian matrix are linearly
dependent only over a field of rational functions [27]. In
1876, P. Gordan and M. Noether showed that this con-

dition holds for a cubic form x,x; + x,x5x, + x,x; that
defines a non-conical hypersurface in P

Ternary forms with identically zero Hessians were
considered by P.V. Bibikov [28]. In this paper, we con-
fine ourselves to cubic forms in many variables.

If a hypersurface Xis singular, then a set of singular
points on X constitutes a subvariety called the singular
locus. We consider hypersurfaces the singular loci of
which contain sufficiently large linear subspaces.
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By E,, ..., E,, we denote the points in [P" at which
the homogeneous coordinates of a point E,, except for
the kth coordinate, are zero.

Theorem 1. Suppose that we have a cubic form
f(xo,...,X,) that defines a singular projective hypersur-

face X € P". If the linear coordinate subspace given by

the equations x,., =0, ..., x, =0 is embedded in the
singular locus on X, then

m
f= Z X G (Xppts ves X)) F C(Xppi1seees X,
k=0

where q, are certain quadratic forms and c is a cubic
form.

Proof. Suppose that the form f contains a monomial

x,fx ;for k < m and a certain,j is possibly equal to k. Then,

the partial derivative aal is nonzero at the point £, which
X
J

contradicts the condition that E, is a singular point.
Therefore, for each k < m, the form f does not contain

. 2 . . . 3
monomials x; x; and, in particular, monomials x; .
Suppose that the form f contains a monomial

X, x,x; for some subscripts that satisfy the conditions
k</?<m,j+#k,and j # /. Then, the partial deriva-

tive aa—f is nonzero at the point where only the kth and
X
J
/th homogeneous coordinates are nonzero. However,
by condition, this point is singular. This contradiction
proves that there is no such monomial.
The existence of a low-dimensional singular locus
does not imply that the Hessian vanishes. For instance, a

Whitney umbrella defined by the form xox22 + X x32 rep-
resents a surface whose singular locus contains a straight
line. This line is defined by two equations x, = 0 and x; =

0. However, the Hessian of this form is 16x22 x32 . Another

form x,x; + x,x; + X,x. defines a hypersurface in [P’ the
singular locus of which contains a plane. The Hessian of
this form is —64x; x; x..

Generally [29], for a set of forms whose coefficients
depend on parameters &, ..., ,, a certain property
DE,,...,E,,) holds for almost every form from this set
if there is a polynomial p(§,,...,&,,) that does not van-
ish identically but vanishes (p(&,,...,&,) = 0) for each
admissible set of its parameter values &, ..., §,, if the

property ®(&,, ...,&,,) does not hold. The property that
holds for almost every set of parameter values does not
hold only on a nowhere dense set of measure zero.
However, in the general case, the set of the subsets of
the parameter values on which the property ® does
not hold can be a proper subset of the set of zeros of
the polynomial p.
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For a matrix A, we denote its transpose by A”.

Theorem 2. Suppose that we have an odd number
n=2m+1. For almost every cubic form f(x,,...,x,)
that defines a projective hypersurface in P" the singular
locus of which contains a linear subspace given by the
equations x,,,, =0, ..., x, = 0, the Hessian of the form f
is a polynomial of degree n + 1 that does not depend on
the variables x,, ..., x,,.

Proof. Theorem 1 implies that the Hessian matrix
of the form fis a block matrix

p 0 A
A" B)

where A and B are square matrices of order m + 1 with
the entries of A being linear forms that do not depend
on x, ..., x,,. 'he Hessian of the form f, which is equal
to detH, does not depend on the block B and depends
only on A.

The form xox,f, b et xmx,2, satisfies the conditions

of the theorem and its Hessian is (—4)m+1x,2n + x,z, .

According to Theorem 1, all cubic forms under consider-
ation are parameterized by sets of coefficients of qua-
dratic forms ¢, and cubic form c. Therefore, there is a
polynomial p in these coefficients the value of which is

equal to the coefficient at the monomial x,i + x,f of
the Hessian of the corresponding form f with the
degree of the polynomial p being positive. Hence, for
almost every form funder consideration, the Hessian

. L2 2
contains the monomial x,,,,, - x, of degree n + 1. How-

ever, it does not contain monomials of higher degrees.

Recall the following sufficient condition for the
Hessian of a cubic form to vanish [27].

Theorem 3 [27]. Suppose that we have a cubic form
f(xp,...,X,) that defines a projective hypersurface

X e P". If, for certain m > %(n — 1), the linear subspace

defined by the equations x,,., =0, ..., x, = 0 is embed-
ded in the singular locus on X, then the Hessian of the
Jform fvanishes identically.

Proof. According to Theorem 1, the first rows and
columns of the Hessian matrix of fcontains a zero sub-
matrix of order m + 1. The order of the Hessian matrix

isn + 1. Under the conditionm +1 > %(n + 1), the deter-
minant of the Hessian matrix vanishes identically.

3. MAIN RESULTS
Theorem 4. There is a probabilistic polynomial time
algorithm that, as input, receives a rational number
€ > 0, integer n, and cubic form f(x,,...,x,) given by a
list of coefficients. If the form f defines a hypersurface in

P the singular locus of which contains a linear subspace
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of a dimension higher than ln, then the input is always

rejected. However, for almost every cubic form f, the input
is accepted with a probability exceeding 1 — €.

Proof. At the first step, the Hessian matrix of the
form fis computed. At the second step, the probabilis-
tic algorithm based on the Schwartz—Zippel lemma
[26] checks that the Hessian of the form f does not
vanish identically. If the singular locus of the hypersur-
face is sufficiently large, then, by virtue of Theorem 3, the
Hessian vanishes for any estimate of the variables. The
algorithm evaluates the Hessian on randomly and
independently selected (on the interval from zero to

[ (n +1)/€]) integer estimates of the variables x,, ..., X,,.
If the resulting value is zero, then the input is rejected;
otherwise, the input is accepted.

Remark. A matrix of order n + 1 the entries of
which are linear forms in variables x,, ..., X, contains

at most (n + 1)3 numerical coefficients. Using the sym-
metry of the Hessian matrix, we can store fewer num-
bers in memory. That is why the algorithm from The-

orem 4 performs 0(n3) operations on the field of coef-
ficients. The algorithm is based on evaluating the
determinant of the matrix over this field. If the cubic
form fis defined over the field of rational numbers or
over a finite extension of this field, then this probabi-
listic algorithm has polynomial bit complexity.

Theorem 5. There is a probabilistic polynomial time
algorithm that, as input, receives a rational number € > 0,
odd integer n=2m+1, and cubic form f(x,,...,x,)
given by a list of coefficients. If the form f defines a hyper-
surface in P" the singular locus of which contains a cer-
tain m-dimensional linear subspace, then the input is
always rejected. However, for almost every cubic form f,
the input is accepted with a probability exceeding 1 — €.

Proof. First, the Hessian matrix of the form f is
computed. Then, the probabilistic algorithm based on
the Schwartz—Zippel lemma [26] checks the linear
independence of the gradient of the Hessian of f at
randomly selected points.

Suppose that &, = 1. The algorithm selects random
estimates &, ..., §, for the variables x;, ..., x,, which, in
turn, are uniformly and independently selected from a
set of integers on the interval from zero to | n(n + 1)/€ |.
For &, =1, these are homogeneous coordinates of a

certain point in P”. To compute a partial derivative

with respect to x, at a selected point, we perform the
substitution

{§j9 .]ik’
ik +ys J:k,

and evaluate the Hessian over a field of rational func-
tions in one variable y. The first partial derivative of
the Hessian with respect to the variable x;, is equal to

J
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the coefficient at the linear term in the variable y.
Thus, the gradient at the selected point is computed.
All computations are repeated for » + 1 independently
selected points. The computations of the partial deriv-
atives with respect to different variables at different
points can be carried out in parallel.

Then, the determinant of the matrix of ordern + 1,
which consists of the first partial derivatives of the
Hessian at n + 1 points, is computed. If the Hessian
does not depend on any variable, then this determi-
nant vanishes identically. Thus, if it vanishes in the
process of computation, then the input is rejected;
otherwise, the input is accepted.

The Hessian of the form fis a polynomial in vari-

ables x,, ..., x, the degree of which does not exceed n + 1.
The first partial derivative of the Hessian is a homoge-
neous polynomial of a degree not exceeding n. The
determinant composed of these derivatives at n + 1
points has a degree not exceeding n(n + 1). According
to the Schwartz—Zippel lemma, the probability for
this polynomial to vanish (if it does not vanish identi-
cally) is less than €.

Having confined ourselves to orthogonal transfor-
mations of coordinates, we can use both the Hessian

and the Laplacian. Let us consider a hypersurface in P”
the singular locus of which can be zero-dimensional but

contains points £, ..., E, at which the homogeneous

coordinates of the point E, (except for the kth coordi-
nate) are zero. An example is the Cayley surface defined

by the form x,x,x, + Xyx,%; + XpX,%3 + X,.2%3.
Theorem 6. There is a polynomial time algorithm
that, as input, receives an integer n and cubic form

f(xy,...,x,) given by a list of coefficients. If the form f

defines a singular hypersurface in P" the singular locus of

which contains an image of points E, ..., E, under a cer-
tain orthogonal transformation, then the input is always
rejected. However, for almost every cubic form f, the input
is accepted.

Proof. The Laplacian (the trace of a Hessian
matrix) is invariant to orthogonal transformations of
coordinates. Therefore, without loss of generality, we
can assume that the form fdefines a hypersurface with
singular points £y, ..., E,. Following the proof of The-
orem 1, we find that the form fis multilinear, i.e., no
variable occurs in the second or third degree. Hence,
the Laplacian vanishes identically. In contrast, for
almost every cubic form, the Laplacian is equal to the
linear form.

The algorithm rejects the input if the Laplacian
vanishes identically; otherwise, the input is accepted.

4. DISCUSSION AND CONCLUSIONS
We have considered a sufficient condition for the
absence of a sufficiently large singular locus on a cubic
hypersurface, which can be checked in polynomial
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time by a probabilistic algorithm. In the general case,
it does not allow us to conclude about the smoothness
of this hypersurface. Moreover, with the smoothness
being equivalent to the nonzero discriminant (irreduc-

ible polynomial of degree (n +1)2" in the coefficients
of a cubic form in » + 1 variables), this property gen-
erally cannot be expressed in terms of a polynomial of
a lower degree. The degree of the Hessian of this cubic
form does not exceed n + 1. Thus, the method consid-
ered in this paper does not recognize singular loci of
small dimensions. In addition, no deterministic algo-
rithm for checking whether the Hessian vanishes has
yet been reported.

In the probabilistic algorithms from Theorems 4
and 5, the boundaries of the segment from which the
estimates of the variables are selected can be expanded
in such a way that random numbers are in one-to-one
correspondence to sets of random bits. In this case, the
probability of error does not increase.

The algorithms from Theorems 4—6 are easy to
transform into generic algorithms that either accept
the input or issue a warning about impossibility of
exact solution; however, they never reject the input or
make errors. Indeed, the general hypersurface is
smooth, while hypersurfaces with singular points are
defined by forms with vanishing discriminants. On the
other hand, when using a pseudo-random sequence
instead of random bits, the number of inputs that are
not accepted but result in a warning about infeasibility
of computations by the generic algorithm can be sig-
nificantly reduced by increasing the length of the seg-
ment on which random numbers are selected or by
rerunning the test.
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