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Abstract: It was established by Jensen in 1970 that there is a generic extension L[a] of the constructible
universe L by a non-constructible real a /∈ L , minimal over L , such that a is ∆1

3 in L[a] . Our first
main theorem generalizes Jensen’s result by constructing, for each n ≥ 2, a generic extension L[a] by
a non-constructible real a /∈ L , still minimal over L , such that a is ∆1

n+1 in L[a] but all Σ1
n reals are

constructible in L[a] . Jensen’s forcing construction has found a number of applications in modern set
theory. A problem was recently discussed as to whether Jensen’s construction can be reproduced
entirely by means of second-order Peano arithmetic PA2 , or, equivalently, ZFC− (minus the power
set axiom). The obstacle is that the proof of the key CCC property (whether by Jensen’s original
argument or the later proof using the diamond technique) essentially involves countable elementary
submodels of Lω2 , which is way beyond ZFC− . We demonstrate how to circumvent this difficulty
by means of killing only definable antichains in the course of a Jensen-like transfinite construction
of the forcing notion, and then use this modification to define a model with a minimal ∆1

n+1 real as
required as a class-forcing extension of a model of ZFC− plus V = L .

Keywords: forcing; projective well-orderings; projective classes; Peano arithmetic

MSC: 03E15; 03E35

1. Introduction

This paper contains two main results. The following theorem is the first main re-
sult. Theorem 2 below is the second main result, along with the associated technique of
consistency proofs by class forcing over the power-less set theory ZFC−, or, equivalently,
the second-order Peano arithmetic PA2 .

Studies of the relationship between Gödel’s constructibility and the analytic definabil-
ity of the reals (here: points of the Cantor discontinuum 2ω or the Baire space ωω ) began
with a profound study by Shoenfield [1], in which it was established that all Σ1

2 reals are
constructible. With the development of the forcing method in the 1960s, various models of
Zermelo–Fraenkel set theory ZFC were proposed, in which there exists a non-constructible
real analytically definable above the Shoenfield level Σ1

2 ; see a survey [2] by Mathias.
Of those, the strongest result was obtained by Jensen [3], and it corresponds to the case
n = 2 of Theorem 1. A similar result for n = 2, but in the absence of (ii) and (iii), was
obtained by Jensen and Solovay [4] using a different technique. Further research in this
direction included, in particular, studies of Solovay [5] on ∆1

3 reals under large cardinal

assumptions, Abraham [6] on definable reals coding minimal collapse functions ω
onto−→ ℵL

1 ,
Harrington [7] on definable well-orderings of the reals in the absence of the continuum
hypothesis, David [8] on non-constructible ∆1

3 reals, Jensen and Johnsbraten [9] on ∆1
3 reals,

any pair of which entails a collapse function ω
onto−→ ℵL

1 , and many more.

Theorem 1. If n ≥ 2 , then there exists a generic extension of the universe L in which it holds that :
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(i) There is a nonconstructible ∆1
n+1 real a ∈ 2ω , such that :

(ii) V = L[a] holds ;
(iii) a is minimal over L , in the sense that a /∈ L but any real x ∈ L[a] either belongs to L or

satisfies a ∈ L[x] ;
(iv) But all Σ1

n sets x ⊆ ω are constructible and Σ1
n in L .

We have recently succeeded in proving a weaker version of Theorem 1, again without
(ii) and (iii), but for all n ≥ 2, in [10], using essentially the same technique of forcing
by almost disjoined sets as in [4], but modified by the method of the definable generic
construction of the notion of forcing. This led us to the problem of incorporating (ii) and
(iii) into this general result, and Theorem 1 solves this problem. The first part of this
paper (Sections 2–13) contains the full proof of Theorem 1, using a similar definable generic
modification of the forcing notion originally developed in [3], so that the level of definability
is determined by the value of the parameter n in Theorem 1. This innovation, on top of
Jensen’s forcing, is the sine qua non of our proof of Theorem 1. See Section 9 for a sketch of
the construction.

The second main result of the paper concerns an important aspect of the result above
in the context somewhat similar to the “reverse mathematics” approach. Indeed, Theorem 1
essentially asserts, for any given n ≥ 2, the consistency of the conjunction

(i) ∧ (ii) ∧ (iii) ∧ (iv) (∗)

with the axioms of ZFC . We may note here that the conjunction (∗) can be adequately
and rather straightforwardly represented by means of a suitable formula of the language
L (PA2) of PA2 , second-order Peano arithmetic.

We recall that, following [11–13], second-order Peano arithmetic PA2 is a theory in
the language L(PA2) with two sorts of variables: for natural numbers and for sets of them.
We use j, k, m, n for variables over ω and x, y, z for variables over P (ω) , reserving capital
letters for subsets of P (ω) and other sets. The axioms are as follows in (1)–(5):

(1) Peano’s axioms for numbers.
(2) Induction as one sentence: ∀ x

(
0 ∈ x ∧ ∀ n (n ∈ x =⇒ n + 1 ∈ x) =⇒ ∀ n (n ∈ x)

)
.

(3) Extensionality for sets of natural numbers.
(4) The Comprehension schema CA : ∃ x ∀ k (k ∈ x ⇐⇒ Φ(k)) , for every formula Φ in

which x does not occur, and, in Φ , we allow for parameter-free variables other than k .
(5) The schema ACω of Countable Choice: ∀ k ∃ x Φ(k, x) =⇒ ∃ x ∀ k Φ(k, (x)k)) , for every

formula Φ with parameters allowed, where (x)k = { j : 2k(2j + 1)− 1 ∈ x} .

The theory PA2 is also known as A2 (see, e.g., an early survey [11]), az Z2 (in [14] or
elsewhere). See also [15].

The analytical representation of Gödel’s constructibility is well known since the 1950s;
see, e.g., Addison [16], Apt and Marek [11], and Simpson’s book [13]. This raises the
problem of the consistency of (the analytical form of) (∗) under the assumption that only the
consistency of PA2 as a premise is available, rather than the (much stronger) consistency of
ZFC . This is why we consider and solve this problem in our paper.

The working technique of such a transformation of the consistency results related
to ZFC to the basis of PA2 is also rather well known since some time ago. (See, e.g.,
Guzicki [17].) It makes use of ZFC− as a proxy theory.

We recall that the power-less set theory ZFC− is a subtheory of ZFC obtained so that:

(a) The power set axiom PS is excluded;
(b) The well-orderability axiom WA, which claims that every set can be well ordered, is

substituted for the usual set-theoretic axiom of choice AC of ZFC ;
(c) the separation schema is preserved, but the replacement schema (which is not suffi-

ciently strong in the absence of PS) is substituted with the collection schema: ∀ X ∃Y ∀ x
∈ X

(
∃ y Φ(x, y) =⇒ ∃ y ∈ Y Φ(x, y)

)
.
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A comprehensive account of main features of ZFC− is given in, e.g., [18–20].
Theories PA2 and ZFC− are known to be equiconsistent (Kreisel [12], Apt and

Marek [11]; see Section 18 for more details on this equiconsistency claim), so we can
make use of ZFC− as the background theory instead of PA2 . If now we have established
the consistency of a L (PA2) -sentence S by means of a generic extension of L , the con-
structible universe, via a forcing notion P ∈ L , then we check if P can be defined in
ZFC− as a set or class in L and whether ZFC− is strong enough to prove that P -generic
extensions of L model S . And, if yes, then we have a proof of the consistency of S with
PA2 on the basis of the consistency of PA2 alone.

Such a method (sketched, e.g., in [17]), however, does not seem to immediately work
even for the result in [3] (n = 2 of Theorem 1). Indeed, the construction of Jensen’s
forcing notion P (either using Jensen’s [3] original method or via the diamond principle
3ω1 as in ([21] 28.A) in L does not directly work in ZFC− because the proof of the key
CCC property (the countable chain condition) and some other involved properties of P ,
using either method, heavily depends on countable elementary submodels of Lω2 , hence
transitive models of ZFC− itself, which is way beyond ZFC− . In the second part of this
paper (Sections 14–18), we circumvent this difficulty by means of the method of killing only
antichains that belong to a certain transitive model of the bounded separation axiom instead
of the full separation as in ZFC− , in the course of a Jensen-like transfinite construction of
the forcing notion. This innovation is not a trivial and easily seen modification, and we
may observe that not all mathematically meaningful results about hereditarily countable
sets, and countable ordinals in particular, can be rendered on the ZFC− basis; see, e.g., [22].
The relevant changes are concentrated in Definition 10 and Condition 4+ in Section 15.

Thereby, the following theorem is the second main result of this paper.

Theorem 2. If n ≥ 2 , then the conjunction (i) ∧ (ii) ∧ (iii) ∧ (iv) of items of Theorem 1 is
consistent with PA2 provided that PA2 itself is consistent.

2. Preliminaries

Let ω<ω be the set of all strings (finite sequences) of natural numbers. Accordingly,
2<ω ⊆ ω<ω is the set of all dyadic strings. If t ∈ ω<ω and k < ω , then t⌢k is the extension
of t by k as the rightmost term. If s, t ∈ ω<ω , then s ⊆ t means that t extends s , while
s ⊂ t means a proper extension of strings.

If s ∈ ω<ω , then lh s is the length of s , and ωn = {s ∈ ω<ω : lh s = n} (strings of
length n ), and, accordingly, 2n = ωn ∩ 2<ω = {s ∈ 2<ω : lh s = n} .

A set T ⊆ ω<ω is a tree iff, for any strings s ⊂ t in ω<ω , if t ∈ T then s ∈ T . Thus,
every non-empty tree T ⊆ ω<ω contains the empty string Λ . If T ⊆ ω<ω is a tree and
s ∈ T , then put T↾ s = {t ∈ T : s ⊆ t ∨ t ⊆ s} ; this is a tree as well.

Let PT be the set of all perfect trees ∅ ̸= T ⊆ 2<ω . Thus, a non-empty tree T ⊆ 2<ω

belongs to PT iff it has no endpoints and no isolated branches. In this case, there is a largest
string s ∈ T such that T = T↾ s ; it is denoted by s = root(T) (the root of a perfect tree T ).
If s = root(T) , then s is a branching node of T ; that is, s⌢1 ∈ T and s⌢0 ∈ T .

Each perfect tree T ∈ PT defines a perfect set [T] = {a ∈ 2ω : ∀ n (a↾n ∈ T)} ⊆ 2ω of
all paths through T ; then, accordingly, T = tree ([T]) , where

tree (X) = {a↾n : a ∈ X ∧ n ∈ ω} ⊆ 2<ω for any set X ⊆ 2ω.

If S ⊆ T are trees in PT and there is a finite set A ⊆ T such that S =
⋃

s∈A T↾ s , then
we say that S is clopen in T ; then, [S] is a relatively clopen subset of [T] . Trees clopen in
2<ω itself will be called simply clopen; thus, clopen trees are those of the form S =

⋃
s∈A[s] ,

where A ⊆ 2<ω is a finite set and [s] = {t ∈ 2<ω : s ⊆ t ∨ t ⊆ s} for each s ∈ 2<ω .
A set A ⊆ PT is a true antichain iff [T] ∩ [S] = ∅ (or, equivalently, S ∩ T is finite) for

all S ̸= T in A . If X ⊆ PT , then a set D ⊆ X is:

− Dense in X , iff, for every tree T ∈ X , there is a subtree S ∈ D , S ⊆ T ;
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− Open dense in X , iff it is dense in X and T ∈ D holds whenever T ∈ X , S ∈ D ,
and T ⊆ S ;

− Pre-dense in X , iff the set D+ = {T ∈ X : ∃ S ∈ D (T ⊆ S)} is dense in X .

As usual, if T ∈ PT , D ⊆ PT , and there is a finite set A ⊆ D such that T ⊆ ⋃
A (or,

equivalently, [T] ⊆ ⋃
S∈A[S] ) then we write T ⊆fin ⋃

D , and if, in addition, A is a true
antichain, then we write T ⊆fd ⋃

D .
Thus, perfect sets in the Cantor space C = 2ω are straightforwardly coded by perfect

trees in PT . It takes more effort to introduce a reasonable coding system for continu-
ous functions F : 2ω → ωω . Let FPT (functional perfect trees) be the set of all sets
c ⊆ 2<ω × ω<ω such that

(a) If ⟨s, u⟩ ∈ c , then lh s = lh u ;
(b) c is a tree; that is, if ⟨s, u⟩ ∈ c and n < lh s = lh u , then ⟨s↾n, u↾n⟩ ∈ c ;
(c) dom c = 2<ω ; that is, ∀ s ∈ 2<ω ∃ u ∈ ω<ω (⟨s, u⟩ ∈ c) ;
(d) c has no endpoints; that is, if ⟨s, u⟩ ∈ c and ℓ ∈ {0, 1} , then there is k < ω such that

⟨s⌢ℓ, u⌢k⟩ ∈ c ;
(e) For every m , there exists k ≥ m such that if s ∈ 2k , then there is a string us ∈ ωm

satisfying ∀ u ∈ ω<ω (⟨s, u⟩ ∈ c =⇒ us ⊆ u) .

If F : 2ω → ωω is continuous, then the set c = cod(F) , where

cod(F) = {⟨a↾n, F(a)↾n⟩ : a ∈ 2ω ∧ n < ω} for any map F : 2ω → ωω,

belongs to FPT (condition (e) represents the uniform continuity of F defined on a compact
space), and fcod(F) = F , where

fc = {⟨a, b⟩ ∈ 2ω × ωω : ∀m ⟨a↾m, b↾m⟩ ∈ c)}, for every c ∈ FPT .

(a function coded by c ). Conversely, if c ∈ FPT , then cod(fc) = c .

Lemma 1 (well known). If T ∈ PT and c ∈ FPT , then either there is a string s ∈ T such
that the restriction fc↾ [T↾ s] is a constant, or there is a subtree S ∈ PT , S ⊆ T , such that the
restriction fc↾ [S] is an injection.

3. Splitting Systems of Trees

If T ∈ PT and i = 0, 1, then let T[→i] = T↾ r⌢i , where r = root(T) ; obviously, T[→i]
are trees in PT as well. Define T[→s] for s ∈ 2<ω by induction on lh s so that T[→Λ] = T
and T[→s⌢i] = T[→s][→i] .

A splitting system is any indexed set ⟨Ts⟩s∈2<ω of trees Ts ∈ PT satisfying

(A) If s ∈ 2<ω and i = 0, 1, then Ts⌢i ⊆ Ts[→i] .

It easily follows from (A) that

(B) s ⊆ s′ =⇒ Ts′ ⊆ Ts ; and
(C) If n < ω and strings s ̸= t belong to 2n , then [Ts] ∩ [Tt] = ∅ .

Lemma 2 (routine). If ⟨Ts⟩s∈2<ω is a splitting system, then T =
⋂

n
⋃

s∈2n Ts is a perfect subtree
of TΛ , and [T] =

⋂
n
⋃

s∈2n [Ts] . In addition, [T↾ s] = [T] ∩ [Ts] for all s .

We proceed to several slightly more complicated applications.

Lemma 3. If {Tn : n < ω} ⊆ PT , then there exists a sequence of trees Sn ∈ PT such that
Sn ⊆ Tn for all n and [Sk] ∩ [Sn] = ∅ whenever k ̸= n.

Proof. If T, T′ ∈ PT , then there are perfect trees S ⊆ T and S′ ⊆ T′ such that [S] ∩ [S′] =
∅ . This allows us to easily define a system ⟨Ts(k)⟩s∈2<ω , k<ω of trees Ts(k) ∈ PT such that

(1) If k < ω , then ⟨Ts(k)⟩s∈2<ω is a splitting system consisting of subtrees of Tk ;
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(2) If k < ℓ < n < ω and s, t ∈ 2n , then [Ts(k)] ∩ [Tt(ℓ)] = ∅ .

(The inductive construction is arranged so that, at each step n , we define all trees
Ts(k) with k < n and s ∈ 2n and also all trees Ts(n) with lh s ≤ n .) Now, we simply put
Sk =

⋂
n
⋃

s∈2n Ts(k) for all k .

Lemma 4. If {Tn : n < ω} ⊆ PT and F : 2ω → ωω is continuous, then there exist perfect trees
Sn ⊆ Tn such that either F(a) /∈ ⋃

n[Sn] for all a ∈ [S0] or F(a) = a for all a ∈ [S0] .

Proof. Suppose that F(a0) ̸= a0 for some a0 ∈ [T0] . By continuity of F , there are a
clopen subtree S ⊆ T0 and a clopen neighborhood A of F(a0) such that F([S]) ⊆ A and
[S] ∩ A = ∅ . Hence, F(a) /∈ [S] for all a ∈ [S] . The compact set X = F([S]) is either
countable or has a perfect subset. If X is countable, then let S0 = S and, for every, n ≥ 1
let Sn ⊆ Tn be an arbitrary perfect tree such that [Sn] ⊆ [Tn]∖ X .

Assume that there is a perfect tree T such that [T] ⊆ X . By Lemma 3, there are trees
Un ∈ PT such that U0 ⊆ T , Un+1 ⊆ Tn+1 , and [Uk] ∩ [Un] = ∅ whenever k ̸= n . Choose
S0 ∈ PT such that [S0] ⊆ [S] ∩ F−1([U0]) and let Sn+1 = Un+1 .

4. Jensen’s Construction: Overview

Beginning the proof of case n = 2 of Theorem 1, we list essential properties of Jensen’s
forcing P ∈ L :

(1) P consists of perfect trees T ⊆ 2<ω (a subset of the Sacks forcing);

(2) P forces that there is a unique P-generic real;

(3) “being a P-generic real” is a Π1
2 property;

(4) P forces that the generic real is (nonconstructible and) minimal.

Thus, P forces a nonconstructible Π1
2 real singleton {a} over L , whose only element

is, therefore, a ∆1
3 real in L[a] .

Jensen [3] defined a forcing P in L in the form P =
⋃

α<ω1
Pα , where each Pα is a

countable collection of perfect trees T ⊆ 2<ω . The construction of the ω1-sequence of
sets Pα is arranged so that each Pα is generic, in a certain sense, over the least transitive
model of a suitable fragment of ZFC , containing the subsequence ⟨Pγ⟩γ<α . A striking
corollary of such a genericity is that P forces that there is only one P-generic real. Another
corollary consists in the fact that, for a real x ∈ 2ω , being P-generic is equivalent to x ∈⋂

α<ω1

⋃
T∈Pα

[T] . The construction can be managed so that the whole sequence ⟨Pα⟩α<ω1

is ∆1
2 , or, more exactly, ∆HC

1 in L . (We recall that HC = all hereditarily countable sets. A set
x is hereditarily countable iff its transitive closure is at most countable.) Altogether, it
follows that if a ∈ 2ω is a P-generic real, then {a} ∈ Π1

2 in L[a] ; that is, a ∈ ∆1
3 in L[a] ,

which is obviously the lowest possible level for a nonconstructible real. The minimality of
P-generic reals follows from another property of P : given a tree S ∈ P and a continuous
F : 2ω → ωω , there is a tree T ∈ P , T ⊆ S (a stronger condition) such that F↾ [T] is either
a bijection or a constant.

Now, we consider this construction in detail.

5. Jensen’s Sequences

In this section, we argue in L .
See Section 1 regarding matters of the power-less set theory ZFC− . Let ZFC−

P (ω)
be

the theory: ZFC− + “the set P (ω) exists” (then ω1 exists as well) + “V = L”. Note that
L2ω (all sets constructible up to 2ω ) is a natural model of ZFC−

P (ω)
.

Definition 1 (in L ). Suppose that α < ω1 and ⟨Xβ⟩β<α is a sequence of hereditarily countable
sets. We let M(⟨Xβ⟩β<α) be the least CTM M |= ZFC−

P (ω)
, necessarily of the form Lκ , κ < ω1 ,

containing ⟨Xβ⟩β<α and such that α < ωM
1 strictly and still all sets Xβ , β < α , are, at most,

countable in M.
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Definition 2 (in L ). If α < ω1 , then let ⟨Tα, cα, να⟩ be the α th element of the set PT× FPT×ω1
in the sense of the Gödel canonical well-ordering of L .

Thus, for any T ∈ PT and c ∈ FPT , there exist uncountably many indices α < ω1
such that T = Tα and c = cα .

For any ordinal λ ≤ ω1 , we let Jλ (Jensen’s sequences of length λ ) be the set of all
sequences ⟨Pα⟩α<λ , of countable sets Pα ⊆ PT , satisfying the following conditions 1◦–6◦.

1◦. P0 consists of all clopen trees ∅ ̸= S ⊆ 2<ω , including the full tree 2<ω itself.
2◦. If α < λ , T ∈ Pα , and S ⊆ T is a perfect tree clopen in T , then S ∈ Pα .
3◦. If α < λ and S ∈ P<α =

⋃
β<α Pβ , then there is a tree T ∈ Pα , T ⊆ S .

4◦. If α < λ , T ∈ Pα , D ∈ M(⟨Pβ⟩β<α) , D ⊆ P<α is open dense in P<α , then T ⊆fd ⋃
D.

5◦. If α < ω1 , c = cα , and S = Tα ∈ P<α , then there is T ∈ Pα such that T ⊆ S and:

either we have fc(a) /∈ ⋃
T′∈Pα

[T′] for all a ∈ [T] ,

or we have fc(a) = a for all a ∈ [T] .

6◦. If α < ω1 , c = cα , and S = Tα ∈ P<α , then there exists T ∈ Pα such that T ⊆ S and
the restricted function fc↾ [T] is either a bijection or a constant.

Let J<λ =
⋃

α<ω1
Jα . (Jensen’s sequences of any countable length).

Lemma 5 (in L ). Suppose that β < λ ≤ ω1 and ⟨Pα⟩α<λ ∈ Jλ . Then, Pβ is pre-dense in the set
P<λ =

⋃
α<λ Pα .

Proof. First, Pβ is dense in P<β+1 by 3◦ . Now, by induction on λ , suppose that Pβ is
pre-dense in P<λ . To check that Pβ remains pre-dense in P<λ+1 = P<λ ∪ Pλ , consider
any tree T ∈ Pλ . By definition, Pβ ∈ M(⟨Pβ⟩β<λ) , and hence we have T ⊆fd ⋃

Pβ by
4◦ . (Note that the set P+

β = {S ∈ P<λ : ∃ S′ ∈ Pβ (S ⊆ S′)} belongs to M(⟨Pβ⟩β<λ) and is
open dense.) It follows that there exist a tree S ∈ Pβ and a string s ∈ T such that T↾ s ⊆ S .
Finally, T′ = T↾ s ∈ Pλ by 2◦ , so T is compatible with S ∈ Pβ , as required.

Lemma 6 (in L ). Assume that ⟨Pα⟩α<ω1 ∈ Jω1 . Then, the forcing P =
⋃

α<ω1
Pα ∈ L satisfies

CCC in L . Therefore the cardinals are preserved in P-generic extensions of L .

We recall that CCC, or the countable chain condition, is the claim that every antichain
in a given partially ordered set is at most countable.

Proof. Arguing in L , suppose that A ⊆ P is a maximal P-antichain, that is, a pre-dense
set, and, if S ̸= S′ belongs to A , then there is no tree T ∈ P , T ⊆ S ∩ S′ . Consider
a countable elementary submodel M ⊆ Lω2 containing A . Let φ : M

onto−→ Lγ be the
Mostowski collapse; γ < ω1 . Let α = φ(ω1) . Thus, M |= ZFC−

P (ω)
and α = ωM

1 . The
set A′ = φ(A) satisfies A′ = A ∩ P<α and is pre-dense in P<α =

⋃
β<α Pβ . It remains to

prove that A = A′.
Suppose toward the contrary that T ∈ A ∖ A′ = A ∖ P<α . Then, T is compatible with

some T′ ∈ Pα by Lemma 5; that is, there is a tree T′′ ∈ P , T′′ ⊆ T′ ∪ T .
On the other hand, α = ω

Lγ

1 ; hence, we have M ⊆ M(⟨Pβ⟩β<α) and A′ ∈ M(⟨Pβ⟩β<α) .
It easily follows from 4◦ that T′ ⊆fd A′ . Then, T′′ ⊆fd A′ as well, and hence there exist
s ∈ T′′ and S ∈ A′ such that the tree U = T′′↾ s satisfies U ⊆ T′′ ∩ S ; therefore, U ⊆ T ∩ S .
However, U ∈ P by 2◦ , and S ∈ A′ but T ∈ A∖ A′ , contrary to A being a P-antichain.

The following rather obvious lemma demonstrates that the top level of a Jensen
sequence of successor length can be freely enlarged by adding smaller trees, with only care
of the property 2◦ .
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Lemma 7 (in L ). Suppose that λ = ξ + 1 < ω1 and ⟨Pα⟩α<λ ∈ Jλ , so that Pξ is the last term in
this sequence. Let S ⊆ T be trees in PT and T ∈ Pξ . Let P′

ξ consist of all trees in Pξ and all trees
S′ ∈ PT , S′ ⊆ S, clopen in S. Then, the sequence ⟨Pα⟩α<ξ

⌢P′
ξ belongs to Jλ , too.

6. Extension of Jensen’s Sequences

Now, we prove a theorem that shows that Jensen’s sequences of any countable length
are extendable to longer sequences in L .

Theorem 3 (in L ). Suppose that λ < ω1 . Then, any sequence ⟨Pα⟩α<λ ∈ Jλ has an extension
⟨Pα⟩α≤λ ∈ Jλ+1 .

Proof. We argue in L . Basically, we have to appropriately define the top level Pλ (λ > 0)
of the extended sequence. The definition goes on in four steps.

Step 1: we define a provisional set Pλ satisfying only requirements 3◦ , 4◦ . Put
Mλ = M(⟨Pβ⟩β<λ) . Fix an arbitrary enumeration {Dn : n < ω} of all sets D ∈ Mλ ,
D ⊆ P<λ , open dense in P<λ , and any enumeration P<λ = {Sk : k < ω} . For any k , there
is a system ⟨Ts(k)⟩s∈2<ω of trees Ts(k) ∈ P<λ satisfying the following conditions (i)–(iii):

(i) If S = Sk ∈ P<λ , then TΛ(k) ⊆ S ;
(ii) For each k , ⟨Ts(k)⟩s∈2<ω is a splitting system in the sense of Section 3;
(iii) If n ≥ 1 and s ∈ 2n , then Ts(k) ∈ Dn .

Indeed, if some Ts(k) ∈ P<λ is already defined and n = lh s , then the trees U0 = Ts(k)↾ 0
and U1 = Ts(k)↾ 1 belong to P<λ as well, and hence there are trees Ts⌢0 ⊆ U0 and
Ts⌢1 ⊆ U1 in P<λ , which belong to Dn+1 .

It remains to define Pλ = {Tk : k < ω} , where Tk =
⋂

n
⋃

s∈2n Ts(k) .
Step 2. We are going to shrink the trees Tk obtained at Step 1 in order to satisfy

requirement 5◦ . Suppose that c = cλ and S = Tλ ∈ P<λ , as in 5◦ . (If S /∈ P<α , then we
skip this step.) We may assume that the enumeration ⟨Tk⟩k<ω is chosen so that T0 ⊆ S .
Let G = fc (a continuous map 2ω → ωω ). By Lemma 4, there exist perfect trees Un ⊆ Tn

such that either G(a) /∈ ⋃
n[Un] for all a ∈ [U0] or G(a) = a for all a ∈ [U0] . The new set

Pλ = {Uk : k < ω} still satisfies 3◦ and 4◦ , of course.
Step 3. We shrink the trees Uk ∈ PT obtained at Step 2 in order to satisfy 6◦. This is

similar to Step 2, with the only difference being that we apply Lemma 1 instead of Lemma 4.
Step 4. If Vk ∈ PT is one of the trees in Pλ obtained at Step 3, then we adjoin all trees

∅ ̸= S ⊆ Vk clopen in Vk to Pλ in order to satisfy 2◦.

7. Definable Jensen’s Sequence

Each of the conditions 4◦ , 5◦ , 6◦ (Section 5) will have its own role. Namely, 4◦ implies
CCC and continuous reading of names (Lemma 10) and 5◦ is responsible for the generic
uniqueness of aG as in Lemma 11, while 6◦ yields the minimality of aG . However, to obtain
the required type of definability of J-generic reals in the extensions, we need to take care of
the appropriate definability of a Jensen’s sequence in L .

Definition 3. Recall that HC is the collection of all hereditarily countable sets.

ΣHC
n = all sets X ⊆ HC , definable in HC by a parameter-free Σn formula.

Σn(HC) = all X ⊆ HC definable in HC by a Σn formula with sets in HC as parameters.

Collections ΠHC
n , ∆n(HC) , etc. are defined similarly. Something like ΣHC

n (x) , x ∈ HC
means that only x is admitted as a parameter. It is known that HC = Lω1 under V = L , and
that ΣHC

n , ΠHC
n , ∆HC

n is the same as Σ1
n+1 , Π1

n+1 , ∆1
n+1 for reals and sets of reals, modulo any

appropriate coding, and the same with parameters.

Lemma 8 (in L ). The set {⟨α, p⟩ : α < ω1 ∧ p ∈ Jα} is ∆HC
1 .
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Proof. Suppose that J = ⟨Pβ⟩β<α is a sequence (of any kind) of length λ < ω1 , ϑ <

ω1 , the set Lϑ contains J and is a model of ZFC− , and, for every α < λ , the model
Mα = M(⟨Pβ⟩β<α) (defined in Definition 1) also belongs to Lϑ . Then, the property of J
being a Jensen sequence is absolute for Lϑ . This yields a Σ1 definition for the statement “ J
is a Jensen sequence” in the form: there is such-and-such ordinal ϑ such that J ∈ Lϑ and
“ J is a Jensen sequence” holds in Lϑ .

Corollary 1 (in L ). There exists a ∆HC
1 sequence p = ⟨Pα⟩α<ω1 ∈ Jω1 .

Proof. For every α, we define, by transfinite induction, Jα to be the least set, in the sense
of the Gödel ∆1 well-ordering of L , such that ⟨Pβ⟩β≤α ∈ Jα+1 . To establish the definability
type ∆HC

1 of the sequence obtained, use Lemma 8.

8. Adding One Jensen Real: Theorem 1, Case nnn = 2

Here, we prove the case n = 2 of Theorem 1.

Definition 4. By Corollary 1, fix a sequence ⟨Pα⟩α<ωL
1
∈ L such that it is true in L that

(1) ⟨Pα⟩α<ω1 ∈ Jω1 —will be used in Lemmas 9, 10, 11 and Corollary 2; and
(2) ⟨Pα⟩α<ω1 is a ∆HC

1 sequence—will be used only in Corollary 2.

Put P =
⋃

α<ω1
Pα .

Consider such a set P ⊆ PT as a forcing notion over L , the ground universe. It is
ordered so that S ⊆ T means that S is stronger as a forcing condition. Thus, P , Jensen’s
forcing of [3] (see also [21], 28.A), consists of (some, not all) perfect trees by construction.

Lemma 9. If G ⊆ P is a P -generic set over L , then the intersection
⋂

T∈G[T] is a singleton
{aG} , aG ∈ 2ω , and G = {T ∈ P : aG ∈ T} ; hence, L[aG] = L[G] .

Proof. Make use of 2◦ of Section 5.

Reals aG , G ⊆ P being a P-generic set over L , are called P-generic over L . The next
lemma provides a useful tool of representation for reals in P-generic extensions.

Lemma 10 (continuous reading of names). Suppose that G ⊆ P is P-generic over L . Let
x ∈ L[G] ∩ ωω . There exists c ∈ L ∩ FPT such that x = fc(aG) .

Proof. Let T0 ∈ P . Let .x be a name for x in the forcing language; then, every T ∈ P forces
.x ∈ ωω , and x(k) = l ⇐⇒ ∃ T ∈ G (T ||−−P

.x(k) = l).

We argue in L . Let Dkl = {T ∈ P : T ||−−P
.x(k) = l} . Each set Dk =

⋃
l∈ωDkl is

dense in P. Let Ak ⊆ Dk be a maximal P -antichain. Then, every Ak = {Tm
k : m < ω} is

countable by Lemma 6; hence, there is an ordinal α < ω1 such that T0 ∈ P<α , and, for each
k , Ak ⊆ P<α , and the set Dk(α) = Dk ∩ P<α belongs to M(⟨Pβ⟩β<α) . Note that Dk(α) is
dense in P<α by the maximality of Ak .

By 3◦ of Section 5, there exists T ∈ Pα , T ⊆ T0 . By 4◦ , we have T ⊆fd ⋃
Dk(α) for

every k , so that there are finite sets D′
k ⊆ Dk(α) such that T ⊆ ⋃

D′
k and, if S ̸= S′ belongs

to the same set D′
k , then [S] ∩ [S′] = ∅ .

Put D′
kl = D′

k ∩ Dkl . For any k , there is a finite set of values l such that D′
kl ̸= ∅ .

Thus, a continuous function F′ : [T] → ωω can be defined in L as follows: F′(x)(k) = l iff
x ∈ [T] for some T ∈ D′

kl . Let F : 2ω → ωω be a continuous extension of F′ ; F = fc for
some c ∈ FPT ∩ L . Then, T forces .x = fc(

.a) , where .a is the canonical name for aG .

Lemma 11. If G ⊆ P is a P -generic set over L , then a = aG is the only element of the set⋂
α<ω1

⋃
T∈Pα

[T] in L[G] . Moreover, aG is minimal over L .
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Proof. If α < ω1 , then the real a = aG belongs to
⋃

T∈Pα
[T] since all sets Pα are pre-dense

by Lemma 5. To prove the opposite direction, consider any S ∈ P and b ∈ 2ω ∩ L[G] . By
Lemma 10, there exists c ∈ L ∩ FPT such that b = fc(aG) . There is an ordinal α < ω1
in L such that T = Tα and c = cα . Let T ∈ Pα witness 5◦ . In the “either” case of 5◦ , T
obviously forces that fc(aG) ̸∈

⋃
T′∈Pα

[T′] , while, in the “or” case, T forces fc(aG) = aG .
To prove the minimality, consider any real b ∈ 2ω ∩ L[aG] . By Lemma 10, we have

b = fc(aG) , where c ∈ FPT ∩ L . It follows from 6◦ that there exists T ∈ G such that fc↾ [T]
is either a bijection or a constant. If fc↾ [T] is a bijection, then aG ∈ L[x] by means of the
inverse map. If fc↾ [T] is a constant z , say fc(x) = z for all x ∈ [T] in L , then obviously
b = fc(aG) = z ∈ L .

Corollary 2 (= Theorem 1, case n = 2). Assume that G ⊆ P is P-generic over L . Then, L[G]
satisfies Theorem 1 for n = 2 .

Proof. Lemma 11 implies that {aG} ∈ ΠHC
1 ; hence, ∈ Π1

2 , in L[G] = L[aG] . Thus aG ∈ ∆1
3

in L[aG] , as required by (i) of Theorem 1. The minimality claim (iii) follows from Lemma 11,
whereas the equality V = L[aG] of (ii) of Theorem 1 in L[G] is implied by Lemma 9. Finally,
(iv) holds since all Σ1

2 sets x ⊆ ω are constructible by Shoenfield’s absoluteness.

9. Warmup: Definable Generic Forcing Construction

To solve the general case of Theorem 1, we employ one more idea. Jensen’s ω1-
sequence ⟨Pα⟩α<ω1 as in 4 can be seen as an ω1-branch of type ∆HC

1 through the set J<ω1

of all countable (transfinite) sequences satisfying conditions 1◦–6◦ above.
The idea behind the general case n ≥ 3 is to maintain the choice of Pα in such a

way that the final ω1-long sequence of (countable sets of trees) Pα intersects all suitably
definable (depends on n !) “dense” sets. In this way, we will obtain a version of Jensen’s
forcing that allows us to prove Theorem 1. The main cog in this construction is that, because
of the “definable genericity”, the resulting set P =

⋃
α<ω Pα resolves every boldface Σ1

n−1
set D of perfect trees, in the sense that either it contains a tree in D or it contains a tree
non-extendable to a tree in D . This makes P similar to the Sacks forcing up to level n ,
leading to claim (iv) of Theorem 1 because of the homogeneity of the Sacks forcing.

Such a definably generic forcing construction was applied to great effect by Harring-
ton [23] with the almost disjoint forcing. We will overview some new results in this direction
in the concluding section.

Now, let us present the definably generic forcing construction in detail.

10. Complete Sequences and Forcing Notions

Approaching the general case of Theorem 1, we begin with a few definitions.

Definition 5. Let P = ⟨P ; ≼⟩ be a partially ordered set. For any D ⊆ P, let Dsolv = Dsolv
P be

the set of all p ∈ P that solve D in the sense that either p ∈ D or there are no elements q ∈ D,
q ≼ p.

Recall Definition 3 on the definability types like Σn(HC) and ΣHC
n .

Definition 6 (in L ). Suppose that n ≥ 3 . A sequence ⟨Pα⟩α<ω1 ∈ Jω1 is n-complete if, for any
Σn−2(HC) set D ⊆ J<ω1 , there is γ < ω1 such that ⟨Pα⟩α<γ ∈ Dsolv—meaning that either
⟨Pα⟩α<γ ∈ D or there is no sequence in D extending ⟨Pα⟩α<γ .

A set P ⊆ PT of perfect trees is n-complete if, for any Σn−2(HC) set W ⊆ PT , the set
Wsolv ∩ P = {S ∈ P : S ∈ W ∨ ¬ ∃ T ∈ W (T ⊆ S)} is dense in P.

Thus, n -completeness is a property of “generic" nature, where genericity is related to
a family of sets distinguished by a definability property.

Lemma 12 (in L ). If a sequence ⟨Pα⟩α<ω1 ∈ Jω1 is n-complete, then
⋃

α<ω1
Pα is n-complete.
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Proof. Suppose that W ⊆ PT is a Σn−2(HC) set, and S ∈ P =
⋃

α<ω1
Pα ; that is, S ∈ Pϑ

for some ϑ < ω1 . We prove that there is T ∈ Wsolv ∩ P such that T ⊆ S . The set D of
all sequences ⟨P′

α⟩α<λ ∈ J<ω1 , λ < ω1 , such that there exists T ∈ ⋃
α<λ P′

α ∩ W , T ⊆ S , is
Σn−2(HC) . It follows that ⟨Pα⟩α<λ ∈ Dsolv for some λ < ω1 , i. e., either ⟨Pα⟩α<λ ∈ D , or
there is no sequence in D that extends ⟨Pα⟩α<λ .

If ⟨Pα⟩α<λ ∈ D , then, by definition, there is a tree T ∈ P ∩ W with T ⊆ S , as required.
Suppose that ⟨Pα⟩α<λ is not extendable to a sequence in D , and denote ξ = max{λ, ϑ+

1} . Then, the extended sequence p = ⟨Pα⟩α≤ξ is not extendable to a sequence in D because
⟨Pα⟩α<λ is not extendable. By 3◦, there is a tree T ∈ Pξ , T ⊆ S . We claim that T ∈ Wsolv .

Suppose, to the contrary, that T /∈ W and there is T′ ∈ W such that T′ ⊆ T . Then,
by Lemma 7, there is a set P′

ξ ⊆ PT containing T′ and such that p′ = p⌢P′
ξ is still a

sequence in Jξ+1 extending p , and p′ ∈ D by the choice of T′ . But, this contradicts the
non-extendability of p , and therefore T ∈ Wsolv .

Lemma 13 (in L ). If n ≥ 3 , then there exists an n-complete ∆HC
n−1 sequence ⟨Pα⟩α<ω1 ∈ Jω1 .

Proof. Let U ⊆ HC × HC be a universal ΣHC
n−2 set. That is, U itself is ΣHC

n−2 , and if
X ⊆ HC is a (boldface) Σn−2(HC) set, then there is a parameter p ∈ HC such that
X = Up := {x ∈ HC : ⟨p, x⟩ ∈ U} . As we argue in L , for any α < ω1 , let pα be the α th
element of HC = Lω1 in the sense of Gödel’s ∆HC

1 well-ordering of HC = Lω1 . Then,
HC = {pα : α < ω1} and the sequence ⟨pα⟩α<ω1 is ΣHC

1 .
To prove the lemma, we define a strictly ⊂-increasing sequence ⟨j[α]⟩α<ω1 of se-

quences j[α] ∈ J<ω1 as follows. Let j[0] be the empty sequence.
Let j[λ] =

⋃
α<λ j[α] whenever λ < ω1 is a limit.

For every α , if j[α] ∈ J<ω1 is defined, then let j[α + 1] be the Gödel-least sequence
j ∈ J<ω1 such that j[α] ⊆ j and j ∈ Upα

solv .
The limit sequence ⟨Pα⟩α<ω1 =

⋃
α<ω1

j[α] ∈ Jω1 is n -complete by construction,
and, by an easy estimation, based on the assumption that U is ΣHC

n−2 , it belongs to ∆HC
n−1 .

The next theorem is the conclusive step in the proof of Theorem 1.

Theorem 4 (in L ). Assume that n ≥ 3 , ⟨Pα(n)⟩α<ω1 ∈ Jω1 is an n-complete ∆HC
n−1 sequence

(Lemma 13), and P(n) =
⋃

α<ω1
Pα(n) . Then, P(n)-generic extensions of L prove Theorem 1.

Its proof will be accomplished in Section 13. A few remarks follow before the
proof starts.

Lemma 11 implies that if G ⊆ P(n) is P(n)-generic over L , then the corresponding
real aG is minimal. It also follows from the same lemma and the fact that the sequence
⟨Pα(n)⟩α<ω1 ∈ Jω1 is ∆HC

n−1 in L that the singleton {aG} is Π1
n and hence aG is ∆1

n+1 in
L[G] . It is a more difficult problem to prove the remaining claim of Theorem 1, that is, that
any Σ1

n set x ⊆ ω in L[G] is constructible. We will establish this fact in the remainder; the
result will be based on the n-completeness property and on some intermediate claims.

11. Digression: Definability of the Sacks Forcing

Our next goal is to estimate the definability of the Sacks forcing relation, restricted to
formulas of a certain ramified version of the second-order Peano language.

Definition 7. Let L be the ordinary language of the second-order Peano arithmetic, with variables
of type 1 for functions in ωω . Extend this language so that some type 1 variables can be substituted
by symbols of the form ĉ , c ∈ FPT , and each ĉ is viewed as a name for fc(a) , where a means a
generic real of any kind. (Recall that fc : 2ω → ωω is a continuous map coded by c ∈ FPT .) Let
sL be the extended language; the index s is from Sacks. Accordingly, sΣ1

n and sΠ1
n will denote the

standard types of formulas of sL .
If a ∈ 2ω and φ is a formula of sL , then φ[a] is the result of the substitution of fc(a) for any

name ĉ in φ ; φ[a] is a formula of L with real parameters.
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Definition 8. Let ||−− be the Sacks forcing relation (that is, PT is the forcing notion). Define an
auxiliary relation of “strong” forcing forc , restricted to sΣ1

k formulas, k ≥ 1 , generally, to all
existential formulas of sL , as follows:

(∗) If φ(x) is a formula of sL with the only free variable x (over ωω ), and T ∈ PT , then
T forc ∃ x φ(x) if there exists c ∈ FPT such that T ||−− φ(ĉ) .

But, if φ is a sΠ1
k formula, then we define: T forc φ iff T ||−− φ .

It is a known property of the Sacks forcing that any real x in the PT-generic extension
V[G] of the universe V has the form x = fc(aG) , where c ∈ FPT ∩ V ; see, e.g., [24].
Therefore, the forcing relation forc as in Definition 8 is still adequate. In particular, the
following lemma holds:

Lemma 14. Suppose that φ is a closed formula in sΠ1
k , k ≥ 1 , and T ∈ PT . Then, T forc φ iff

there is no S ∈ PT , S ⊆ T , such that S forc φ¬ .

Here, φ¬ is the result of the canonical transformation of ¬ φ to a sΣ1
k form.

Now, let us address the descriptive complexity of forc .

Lemma 15. The relation forc restricted to sΠ1
1 formulas is ΠHC

1 . If k ≥ 2 , then the relation
forc restricted to sΣ1

k formulas is ΣHC
k−1 while forc restricted to sΠ1

k formulas is ΠHC
k−1 .

Proof. We argue by induction. Suppose that φ = φ(ĉ1, . . . , ĉm) is a closed formula in sΠ1
1 .

It follows from the Shoenfield absoluteness and the perfect set theorem for Σ1
1 sets that,

for any T ∈ PT , T forc φ is equivalent to the set Tφ = {a ∈ [T] : ¬ φ[a]} being countable,
and then to

∀ a ∈ [T] (φ[a] ∨ a ∈ ∆1
1(c1, . . . , cm))

as any countable Σ1
1(c) set X ⊆ ωω consists of elements of type ∆1

1(c) . Yet, the displayed
formula is Π1

1 , hence ∆HC
1 , as x ∈ ∆1

1(c) is a Π1
1 relation.

The step Π1
k → Σ1

k+1 : make use of Definition 8(∗).
Now, the step Σ1

k → Π1
k . Suppose that k ≥ 2, φ is a closed formula in sΣ1

k , and T ∈
PT . Then, by Lemma 14, T forc φ is equivalent to

∀ S ∈ PT (S ⊆ T =⇒ ¬ S forc φ¬) ,

and hence we obtain Π1
k using the inductive hypothesis for φ¬ .

12. Back to the n-n-n-Complete Jensen’s Forcing

Let n and P(n) be the same as in Theorem 4. We begin with the following.

Lemma 16 (in L ). For any closed formula φ in sΣ1
k , 1 ≤ k ≤ n − 1 , the set of all T ∈ P(n) such

that T forc φ or T forc φ¬ is dense in P(n) .

Proof. The set W = {T ∈ PT : T forc φ} is ΣHC
n−2 by Lemma 15. Therefore, the set

P(n) ∩ Wsolv is dense in P(n) by Lemma 12. However, it follows from Lemma 14 that
Wsolv is equal to the set of all T ∈ PT such that T forc φ or T forc φ¬ .

It is a basic fact of forcing theory that the truth in generic extensions is, in a certain
way, connected with the forcing relation. Thus, the truth in P(n)-generic extensions L[G]
of L corresponds to the P(n)-forcing relation. However—and this is the key moment—
the following theorem shows that the truth in P(n)-generic extensions is also in tight
connection with PT , the Sacks forcing notion, up to the level Σ1

n . This is a consequence
of n-completeness, of course: in some sense, the n-completeness means that P(n) is an
elementary submodel of PT with respect to formulas of a certain level of complexity.
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Theorem 5. Let n and P(n) be the same as in Theorem 4. Suppose that Φ is a closed formula in
sΣ1

k , 1 ≤ k ⩽ n , or sΠ1
k , 1 ≤ k < n , and a set G ⊆ P(n) is P(n)-generic over L . Then, Φ[aG]

holds in L[G] if there is T ∈ G such that T forc Φ .

Proof. We argue by induction on k . Let Φ be a closed sΠ1
1 formula. If T ∈ G and

T forc Φ , then, in L , Φ[a] is true for all a ∈ [T] with, at most, a countable set of exceptions;
see the proof of Lemma 15. And, all exceptions are ∆1

1 , hence absolutely defined and belong
to L . Therefore, the generic real aG ∈ [T] cannot be an exception, thus Φ[aG] holds in
L[G] . If Φ is sΣ1

1 , then Φ is ∃ x φ(x) , φ being sΠ1
0 , and if T forc Φ , then, by definition,

T forc φ(ĉ) for some c ∈ FPT , and so on. On the other hand, it follows from Lemma 16
that there is T ∈ G such that T forc Φ or T forc Φ¬ . This easily implies the result for
sΣ1

1 ∪ sΠ1
1 .

Step sΣ1
k → sΠ1

k , 2 ≤ k < n . Let Φ be a sΠ1
k formula. Suppose that Φ[aG] fails

in L[aG] . Then, Φ¬[aG] holds in L[aG] , and hence, by the inductive hypothesis, there is
a condition S ∈ G satisfying S forc Φ¬ . Then, by Lemma 14, there is no T ∈ G with
T forc Φ . Conversely, suppose that there is no T ∈ G with T forc Φ . Then, by Lemma 16,
there is a condition S ∈ G satisfying S forc Φ¬ . It follows that Φ¬[aG] holds in L[aG] ,
and, subsequently, Φ[aG] fails, as required.

Step sΠ1
k → sΣ1

k+1 , 1 ≤ k < n . Thus, let Φ be a formula ∃ x φ(x) , where φ is
Π1

k . Assume that T ∈ G satisfies T forc Φ . This entails, by (∗) of Definition 8, that
T forc φ(ĉ) for some c ∈ FPT ∩ L , a code of the continuous map fc : 2ω → ωω . Apply
the induction hypothesis to the formula φ(ĉ) : it says that φ(ĉ)[aG] holds in L[G] . But,
φ(ĉ)[aG] is φ[aG](x) , where x = fc(aG) ∈ ωω ∩ L[G] . Therefore, Φ[aG] holds in L[G] ,
as required.

In the opposite direction, let Φ[aG] be true in L[G] ; that is, φ[aG](x) holds for some
x ∈ ωω ∩ L[G] . By Lemma 10, there is c ∈ FPT ∩ L such that x = fc(aG) . The formula
φ(ĉ)[aG] coincides with φ[aG](x) and hence holds in L[G] . Therefore, by the induction
hypothesis, there is T ∈ G such that T forc φ(ĉ) . But, then, T forc Φ by (∗) of
Definition 8, as required.

13. Proof of Theorem 1: General Case

Here, we accomplish the proof of Theorems 4 and 1. We fix n ≥ 3.
Let P(n) ∈ L be the same as in Theorem 4. If a set G ⊆ P(n) is P(n)-generic over L ,

then all Σ1
n sets x ⊆ ω in L[G] are constructible by Theorem 5 because, by the homogeneity

of the Sacks forcing, for any parameter-free formula Φ and any trees T , T′ ∈ PT , we have

T forc Φ ⇐⇒ S forc Φ.

Let us present this final argument in more detail.
If S, T ∈ PT , then let HOMST be the set of all homeomorphisms h : [S] onto−→ [T] ;

clearly, HOMST is non-empty. Suppose that h ∈ HOMST . Recall that continuous functions
F : 2ω → ωω are coded so that fc is the function coded by c ∈ FPT . If c, d ∈ FPT , then
write c −→ hd iff fd(h(a)) = fc(a) for all a ∈ [S] = dom h . If φ = Φ(ĉ1, . . . , ĉm) and
ψ = Φ(d̂1, . . . , d̂m) are formulas of sL (see Section 11), and ci −→ hdi for all i , then write
φ −→ hψ . In this case, the formulas φ[a] and ψ[h(a)] coincide for any a ∈ [S] .

Lemma 17. Suppose that S, T ∈ PT , h ∈ HOMST , Φ and Ψ are closed formulas in one and the
same type, sΣ1

k or sΠ1
k , and Φ −→ hΨ . Then, S forc Φ if and only if T forc Ψ .

Proof. Routinely argue by induction on the complexity of the formulas.

Corollary 3. If S, T ∈ PT and Φ is a formula in Σ1
k or Π1

k , then S forc Φ iff T forc Φ .

Proof. Pick h ∈ HOMST , note that Φ −→ hΦ (as Φ contains no symbols of the form ĉ ),
and apply Lemma 17.
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Lemma 18. If G ⊆ P(n) is P(n)-generic over L , and x ⊆ ω , x ∈ L[G] is Σ1
n in L[G] , then

x ∈ L and x is Σ1
n in L .

Proof. Let φ(m) be a parameter-free Σ1
n formula such that x = {m : φ(m)} in L[G] .

Consider the tree S = 2<ω ∈ PT . Then,

m ∈ x ⇐⇒ L[G] |= φ(m) ⇐⇒ ∃ T ∈ G (T forc φ(m)) ⇐⇒ S forc φ(m) ,

by Theorem 5 and Corollary 3. It remains to refer to Lemma 15.

This ends the proof of Theorems 4 and 1.

14. Theorem 2: Outline

As the proof of Theorem 1, given above, contains a heavy dose of the forcing technique,
first of all we have to adequately replace PA2 with a more ZFC-like, forcing-friendly set
theory, dealing with Theorem 2. We will make use of the theory

ZFC−
lc := ZFC− plus “V = L” plus “all sets are countable”, (†)

as such a proxy theory. (The upper minus stands for the absence of the power sets axiom,
whereas l and c in the lower index stand for the constructibility (L ) and countability.) The
following is the according proxy theorem (compared to Theorem 1).

Theorem 6. If n ≥ 2 , then there exists a generic extension of the universe of ZFC−
lc , in which all

axioms of ZFC− hold, along with the following :

(i) There is a nonconstructible ∆1
n+1 real a ∈ 2ω such that :

(ii) V = L[a] holds ;
(iii) a is minimal over the ground universe of ZFC−

lc , in the sense similar to (iii) of Theorem 1 ;
(iv) But, all Σ1

n sets x ⊆ ω are constructible and Σ1
n in the ground universe of ZFC−

lc .

The universe of ZFC−
lc is naturally identified with LωL

1
. It will take some effort to

obtain the proof of Theorem 1 relativized to LωL
1

so that it can be executed in the universe

of ZFC−
lc , denoted by L†

ω1
below for the sake of convenience.

To establish Theorem 6, we will make use of a suitable version of the forcing notion
P(n) as a definable class in L†

ω1
, and a class-forcing notion, CCC, with regard to all

definable class-antichains, and then we will show that P(n)-generic extensions of L†
ω1

prove Theorem 2.
Yet, there is a serious obstacle: the treatment of P(n) involves ordinals and some

other objects in Lω2 (rather than Lω1 ) in the proof of the key CCC result by Lemma 6, and
this is not admissible in ZFC− . We overcome this difficulty, following the idea of a recent
construction of definable-3 sequences by Enayat and Hamkins [25].

Definition 9. The ground set universe of ZFC−
lc is denoted by L†

ω1
. We use ω1 to denote

the collection (a proper class) of all ordinals in L†
ω1

; all of them are countable.

Remark 1. Arguing in ZFC−
lc , we will often consider (definable) proper classes as they will play

a more essential role than is common in ZFC . We will also consider such things as class-size
collections of proper classes, e.g., class-long sequences ⟨Xα⟩α<ω1 of proper classes Xα , with the
understanding that the real thing considered in this case is some (definable) class Y ⊆ ω1 × L†

ω1
whose slices Yα = {x : ⟨α, x⟩ ∈ Y} are equal to the given classes Xα .

15. Jensen’s Sequences, ZFC− Version

Adapting the proof of Theorem 1 above for the proof of Theorem 6, we are going to
introduce P as a definable class forcing under ZFC−

lc . In this section, we argue in ZFC−
lc .
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Definition 10 (in ZFC−
lc ). If α < ω1 and ⟨Xβ⟩β<α is a sequence of any sets, then let M†(⟨Xβ⟩β<α)

be the least CTM M, necessarily of the form Lκ , κ < ω1 , which

(1) Models ZFC−
lc(bound) , i.e., ZFC−

lc with the collection and separation schemata (see Section 1)
restricted to bounded ∈ -formulas;

(2) Contains ⟨Xβ⟩β<α ; and
(3) Contains the set Tru(Lα) = all ∈-formulas, with parameters in Lα , true in Lα .

Compared to Definition 1, we may note that, arguing in ZFC−
lc , it is not suitable to

refer to models of ZFC− . This is the reason for passing to ZFC−
lc(bound) here.

Definition 11 (in ZFC−
lc ). If α < ω1 , then let ⟨Tα, cα, να⟩ be the α th element of the set PT ×

FPT × ω1 in the sense of the Gödel canonical well-ordering of L .

For any ordinal λ ≤ ω1 , we let J†
λ (Jensen’s sequences of length λ , ZFC−

lc version)
be the set of all sequences ⟨Pα⟩α<λ of length λ , of countable sets Pα ⊆ PT , satisfying
conditions 1◦, 2◦, 3◦, 5◦, 6◦ of Definition 2, and the following condition instead of 4◦.

4†. If α < λ , T ∈ Pα , D ∈ M†(⟨Pβ⟩β<α) , D ⊆ P<α is open dense in P<α , then T ⊆fd ⋃
D .

Let J†
<λ =

⋃
α<λ J†

α .

Lemma 19 (in ZFC−
lc ). Suppose that β < λ ≤ ω1 and ⟨Pα⟩α<λ ∈ J†

λ . Then, Pβ is pre-dense in
the set P<λ =

⋃
α<λ Pα —the proof is similar to Lemma 5.

Lemma 20 (in L ). Assume that ⟨Pα⟩α<ω1 ∈ J†
ω1

. Then, the forcing notion P =
⋃

α<ω1
Pα ∈ L

satisfies CCC in L with regard to all antichains A ⊆ P definable in L†
ω1

with parameters.

In this lemma, CCC is naturally understood in the class form: every class-size definable
antichain is a countable set.

Proof. Suppose that A ⊆ P is a maximal P-antichain. As A is definable, assume that
A = {T ∈ Lω1 : Lω1 |= φ(p, T)} , where p ∈ L†

ω1
is a parameter and φ any ∈- formula.

There exists a limit ordinal α such that p ∈ Lα , the set P<α =
⋂

γ<α Pγ satisfies
P<α = P ∩ Lα , the set A<α = A ∩ P<α is a maximal P<α -antichain, and therefore pre-dense
in P<α , and, finally, Lα is elementarily equivalent to L†

ω1
with regard to φ , so that, overall,

we have: A<α = {T ∈ Lα : Lα |= φ(p, T)} .
Let M = M†(⟨Pγ⟩γ<α) . We assert that A<α ∈ M . Indeed, by definition, the truth set

τ = Tru(Lα) belongs to Lµ . On the other hand, A<α = {T : φ(p, T) ∈ τ} by the above.
It follows that A<α ∈ M since M models ZFC−

lc(bound) .
Now, it suffices to prove that A = A<α . Suppose, to the contrary, that T ∈ A∖ A<α =

A ∖ P<α . Then, T is compatible with some T′ ∈ Pα by Lemma 19; that is, there is a
tree T′′ ∈ J , T′′ ⊆ T′ ∩ T . On the other hand, it follows from 4† that T′ ⊆fd A<α .
Then, T′′ ⊆fd A<α as well, and hence there exist s ∈ T′′ and S ∈ A<α such that the
tree U = T′′↾ s satisfies U ⊆ T′′ ∩ S ; therefore, U ⊆ T ∩ S . However, U ∈ P by 2◦,
and S ∈ A<α but T ∈ A ∖ A<α , contrary to the assumption that A is a P-antichain.

The following extendability theorem is proved in a similar way to Theorem 3, so we
skip the proof.

Theorem 7 (in ZFC−
lc ). Suppose that λ < ω1 . Then, any sequence ⟨Pα⟩α<λ ∈ J†

λ has an
extension ⟨Pα⟩α≤λ ∈ J†

λ+1 .

16. Definable Jensen’s Sequence and the Forcing Engine, ZFC− Version

We deal with the issue of the definability of Jensen’s sequences in ZFC−
lc .
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Remark 2. Note that HC = L†
ω1

= all sets, in ZFC−
lc . The definability types ΣHC

n , ΠHC
n , ∆HC

n
consist of definable classes X ⊆ L†

ω1
in ZFC−

lc , of course.

Lemma 21 (in ZFC−
lc , note similarities to Corollary 1). There exists a (∆

L†
ω1

1 = ∆HC
1 ) sequence

p = ⟨Pα⟩α<ω1 ∈ J†
ω1

.

Definition 12 (in ZFC−
lc ). By Lemma 21, fix a sequence ⟨Pα⟩α<ω1 of sets Pα ∈ L†

ω1
, such that it

holds in L†
ω1

that 1) ⟨Pα⟩α<ω1 ∈ J†
ω1

, and 2) ⟨Pα⟩α<ω1 is a ∆
L†

ω1
1 sequence.

Put P =
⋃

α<ω1
Pα .

Consider such a set P ⊆ PT as a forcing notion (here, a proper class) over L†
ω1

.
The forcing engine does not necessarily work in ZFC−

lc for an arbitrary class-size forc-
ing notion. But, there is a type of forcing notions that admits adequate treatment of forcing
similar to the standard ZFC case. This is the class forcing theory of S. D. Friedman [26,27],
further developed by Antos and Gitman [19] to be applicable over ZFC− .

Definition 13 (S. D. Friedman, see [19,26]). A forcing notion (a partially ordered definable
class) P = ⟨P ; ≤⟩ is pre-tame if, for every class sequence ⟨Dx⟩x∈a of dense classes Dx ⊆ P ,
parametrized by elements of a set a (so that D = {⟨x, z⟩ : x ∈ a ∧ z ∈ Dx} is a definable
class), and every condition p ∈ P , there is a condition q ≤ p and a sequence ⟨dx⟩x∈a of
sets dx ⊆ P such that each dx ⊆ Dx is pre-dense below q in P .

Theorem 8 (S. D. Friedman, see [19,26]). In ZFC− , let P be a pre-tame class-forcing notion.
Then, P preserves ZFC− and satisfies the main forcing principles, including the truth forcing and
forcing definability theorems.

Remark 3. The forcing notion P , introduced by Definition 12, is a class forcing satisfying CCC by
Theorem 20. Therefore, P is pre-tame under ZFC−

lc , as, obviously, is any CCC forcing. We conclude
that Theorem 8 is applicable, and hence usual forcing theorems are valid for P -generic extensions of
L†

ω1
, the ZFC−

lc set universe.

This justifies all forcing results in Sections 7 and 8 above, on the basis of ZFC−
lc .

In particular, we have:

Corollary 4 (in ZFC−
lc , = Theorem 6, case n = 2). Assume that G ⊆ P is P-generic over L†

ω1
.

Then, L†
ω1
[G] satisfies Theorem 6 for n = 2 .

This completes the proof of Theorem 6, case n = 2.

17. Theorem 6: General Case

The proof of the general case of Theorem 6 follows the arguments in Sections 10–13
mutatis mutandis. We sketch it here without going into details.

Recall Definition 2 on the definability types like ΣHC
n = Σ

L†
ω1

n .

Definition 14 (in ZFC−
lc ). Suppose that n ≥ 3 . Similarly to Definition 6, a sequence ⟨Pα⟩α<ω1

in J†
ω1

is n-complete if, for any Σn−2(L†
ω1
) set D ⊆ J†

<ω1
, there is γ < ω1 such that ⟨Pα⟩α<γ ∈

Dsolv , i. e., either ⟨Pα⟩α<γ ∈ D or no sequence in D extends ⟨Pα⟩α<γ .
A set P ⊆ PT of perfect trees is n-complete if, for any Σn−2(L†

ω1
) set W ⊆ PT , the set

Wsolv ∩ P = {S ∈ P : S ∈ W ∨ ¬ ∃ T ∈ W (T ⊆ S)} is dense in P.

The two following results are the conclusive steps in the proof of Theorem 6.
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Lemma 22 (in ZFC−
lc , similar to Lemma 13). If n ≥ 3 , then there exists an n-complete ∆

L†
ω1

n−1
sequence ⟨Pα⟩α<ω1 ∈ J†

ω1
.

Theorem 9 (in ZFC−
lc , similar to Theorem 4). Assume that n ≥ 3 , ⟨Pα(n)⟩α<ω1 ∈ J†

ω1
is an n-

complete ∆
L†

ω1
n−1 sequence (Lemma 22), and P(n) =

⋃
α<ω1

Pα(n) . Then, P(n)-generic extensions
of L prove Theorem 6.

This completes the proof of Theorem 6 (general case).

Corollary 5. If n ≥ 2 , then the conjunction (i) ∧ (ii) ∧ (iii) ∧ (iv) of items of Theorem 6 is
consistent with ZFC− provided that ZFC−

lc is consistent.

Proof. This is a usual metamathematical corollary of Theorems 9 and 8 and Remark 3.

18. Reduction to Second-Order Peano Arithmetic

Corollary 5 reduces Theorem 2 to the statement

Consis(PA2) =⇒ Consis(ZFC−
lc) .

We recall that the consistency of PA2 is the blanket assumption in Theorem 2. Yet, we
can use the following equiconsistency result:

Theorem 10. Theories PA2 and ZFC−
lc are equiconsistent.

Proof. The theorem has been a well-known fact since some while ago; see, e.g., Theorem
5.25 in [11]. A rather natural way of proof is as follows.

Step 1. Theory ZFC− + “all sets are countable” is interpreted in PA2 by the tree
interpretation described in [11], § 5, especially Theorem 5.11, or in [13], Definition VII.3.10
ff. Kreisel [12], VI(a)(ii), attributed this interpretation to the type of “crude” results.

Step 2. Arguing in ZFC− + “all sets are countable”, we define the transitive class L
of all constructible sets, which models ZFC− + “all sets are constructible”.

Step 3. We argue in ZFC− + “all sets are constructible”. If every ordinal is countable,
then immediately all sets are countable; that is, we have ZFC−

lc . If there exist uncountable
ordinals, then let ω1 be the least of them. Then, Lω1 is a transitive set that models ZFC−

lc .
We conclude from Steps 1,2,3 that PA2 and ZFC−

LC are equiconsistent.

Combining Theorem 10 and Corollary 5, we finalize the proof of Theorem 2.

19. Conclusions and Problems

In this study, the method of definable generic forcing notions was employed to the
construction of a model in which, for a given n ≥ 2, there is a nonconstructible ∆1

n+1 real
a , minimal over L and satisfying V = L[a] , but all Σ1

n reals are constructible (Theorem 1).
This essentially strengthens and extends our earlier results in [10] by V = L[a] and the
minimality claim. In addition, we established (Theorem 2) the ensuing consistency result on
the basis of second-order Peano arithmetic PA2 , instead of the much stronger theory ZFC
typically assumed as a premise in independence results obtained by the forcing method.
This is a new result and a valuable improvement upon much of known independence
results in modern set theory.

The technique developed in this paper may lead to further progress in studies of
different aspects of the projective hierarchy. We hope that this study will contribute to the
following crucial problem by S. D. Friedman; see [26] (P. 209) and [27] (P. 602): find a model
of ZFC , for a given n , in which all Σ1

n sets of reals are Lebesgue measurable and have the
Baire and perfect set properties, and, at the same time, there exists a ∆1

n+1 well-ordering of
the reals.
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From our study, it is concluded that the technique of transitive models of bounded
Separation in ZFC− , as in Section 15, will lead to similar consistency and independence
results, related to second-order Peano arithmetic PA2 and similar to our Theorem 2, on the
basis of the consistency of PA2 itself.

The following problems arise from our study.

Problem 1. Iterations of Jensen’s forcing were developed by Abraham [28]. Combining
this technique with the finite-support Jensen products technique and some earlier forcing
constructions used in the theory of generic choiceless models, a model of ZF is presented
in [29] in which the countable AC holds but the dependent choices scheme DC fails for
some Π1

2 relation (which is the best possible). This leads to two different problems:

(I) Reprove the consistency results in [29] on the basis of the consistency of theory PA2 ,
similar to Theorem 2.

(II) Generalize the mentioned consistency result of [29] to higher projective levels by
means of a suitable definable generic forcing notion. That is, given n ≥ 3, define a
model of ZF in which the countable AC holds whereas DC fails for some Π1

n relation
but holds for Π1

n−1 . A recent paper [30], containing some consistency results related
to different forms of the countable AC , is a step in this direction.

Problem 2. The method of definable generic forcing notions has been recently applied for
some definability problems in modern set theory, including the following applications:

− A model of ZFC , in which the separation principle holds for a given effective projective
type Σ1

n , n ≥ 3, is defined in [31];
− A model of ZFC , in which well-orderings of the reals first appear at a given projective

level, is defined in [32];
− A model of ZFC , in which the full basis theorem holds in the absence of analytically

definable well-orderings of the reals, is defined in [34].

It is a common problem related to all these results to establish their PA2 -consistency
versions similar to Theorem 2.

Problem 3. A somewhat modified forcing notion, say P′(n) ⊆ PT , rather similar to P(n)
of Theorem 4, is defined in [35]. It is invariant under some transformations so that, instead
of a single generic real by P(n) , it adjoins a E0-equivalence class of P′(n)-generic reals.
(Recall that reals a, b ∈ 2ω are E0-equivalent if a(n) = b(n) for all but finite n . See some
generalizations in [36].) It turns out that this P′(n)-generic E0-class is a (countable) Π1

n
set containing no OD (ordinal-definable) elements in the extension, and, at the same time,
every countable Σ1

n set definitely contains OD elements.
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