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1. Introduction

We begin with the following sequence of symbolic transformations with the shift operator, related to summability of
divergent series.
Shift operator. An arbitrary series

A=aq+a+a+as+--- (1)
can be rewritten as
A=ag+7Tao +T?q +T2a + =1 +T+ 2+ 7T +---)do, )

where 7 is the shift operator, an operator of yet indefinite mathematical nature, but acting so that ta, = a,.;, — and then as

- L 3)

summing up 1+ 7 + 72 + 13 + - - according to the informal equality

1
141+ 40+ = ——. (4)
1-7
Hutton transform. Now, let d # — 1 and o[d] = d + 7. Formally,

1 d-t4dit g1 old
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and we get the Hutton transform (H,d) (Hardy [1] for d = 1) of the original series,

I dag+a; day+a, da;+as
_1+dJr 1+d * 1+d + 1+d (6)

Iterated Hutton, or Euler-Jakimovski transform. Let {d,},., be an infinite sequence of real numbers d, # — 1. Applying
transformations (H,d,), (H,d>), (H,ds),... — as in (5) and (6) - consecutively, so that the first term of every intermediate

series is separated after each iteration, we obtain the series of separated (frameboxed) terms as the final result:

A
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Remark 1. The final series is a formal Newton’s interpolation of the function 1%1 with the nodes —d;, —d;, —ds,....
We conclude that, in the spirit of (3),

1 & 40+ 1) (d 1)
A=q—g @ = Z(1 Td)A 1 dy) (1 +do( +dey) @ (8)

k=0

where each polynomial Py(t) = (di +7)(d2 +7)...(dx + ) formally acts on ao in accordance with the basic equalities
™ ag = a,.

Remark 2. Transformation (7) and (8) was explicitly introduced by Jakimovski [2] (as [F,d,]) based on a series of earlier
studies. Yet most notably, the whole idea of iterated transformation with separation of first terms of intermediate series
belongs to Leonhard Euler, Institutiones Calculi Differentialis, Part II, Section 10 - see a discussion in Hardy [1, Section 2.6].
This is why we call it the Euler-Jakimovski transformation here. The summability method based on the Euler-Jakimovski
transformation works, pending appropriate choice of d,, for rapidly divergent oscillating series like 0! — 1! 4 2! — 3! 4 ..., See
[3] for further references. 0O

2. Regression: some linear transformations

The transformations considered above can be represented by the following infinite matrices:

1 0 0 0 .. d 1 0 0
. d 1 0 0 .. 0 d 1 0 ..

H(d):m 0 d 1 0 ...|, Sdy=|(0 0o d 1 .|,

0 0 d 1 0 0 0 d

& 0 0 0 0

g_; z 0 0 0
E{da}ny) = | 9% 4t % 0 0 ,

didyd;  didytdidsidyds  ditdytds 1

D3 D3 D3 Ds

where Dy = (1 +d;)(1+d3)...(1+dk:1) - so that

[E] _ 1 S(dl) . S(dZ) . . S(dk)
k 1+dk+] 1+d1 1+d2 l+dk 0’

where [M],, k=0,1,2,..., is the kth row of any matrix M.

k:0’1727"'7 (9)
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3 5 n_ /ay dag+a; daj+a s/ a dyag+a : . .
That is, let d = {ap,a;,az,...), h = <ﬁ, e > and é = <ﬁm .. > be the infinite vectors representing

the sums in the right-hand parts of equalities resp. (1), (6) and (8). Then formally

-

h=H(d)-@ and &=E({d,}>,)-d. (10)

3. The grossone approach

The transformations above and according equalities (2)-(8) obviously do not look rigorous in any way, in particular, since
the nature of the “operator” 7 is not clear. Meanwhile, methods related to hyperreal fields (see [5,6] on modern trends in this
direction) were applied in [4] to give a precise meaning to transformations (2)-(6). The goal of this paper is to extend this
study to more complicated equalities (7) and (8) of the Euler-Jakimovski transformation, by methods of the grossone anal-
ysis. The reader is recommended to follow this paper in connection with [4].

Remark 3. Whilst the foundations of the “grossone” paradigm of Sergeyev [8] remain work in progress [7,9,10], we will stick
to a version introduced in [11, Section 1.2]. It includes some key features of the paradigm, especially suited for dealing with
infinite sequences and series. It sees the grossone unit (] is an infinite integer, divisible by any finite integer. O

We replace series (1) by a sum of the form

A =ag+ar+a+---+ag. (1)
Sums of this type, that is, with (D or another grossone-based infinite quantity, were earlier considered in [11].

Definition 4 (shadows, Definition 1 in [4]). A standard series ag + a; +a; + --- is called the shadow of a hyperfinite sum
ag + a1 + -+ +ag iff ax ~ ay for all standard k, where

x~y iff |x—y]is infinitesimal.

A standard infinite matrix X with terms xy; is called the shadow of a hyperreal (D + 1) x (D + 1) matrix Y iff xy ~ y,, for all
standard k, . O

In this paper, we will introduce certain linear transformations of infinite sums like (11) by matrices of dimension
(D+1) x (O+1), which correspond to the Euler-Jakimovski transformation, and whose action does not change the sum
value. We also show that, provided some conditions are satisfied, shadows of transformed infinite sums are equal to the
results of standard transformations of their shadows.

It must be said that the Hutton and Jakimovski summation methods belong to a wide variety of linear summation
methods (see [1]). Our choice of these methods to be considered in this paper is based not on their special position in this
variety (on the contrary, the Hutton summability method is dominated by some other methods, see, e.g. [1], comments to
Chapter 1), but rather because of their transparent connection with the shift operator, exploited in Section 1. It is a challeng-
ing problem to consider some other summability methods on the base of the same methodology, of course.

4. The shift matrix and the Hutton (D-transform

In this section, we present some definitions and results of [4], mainly related to the Hutton transform, which are
necessary for understanding of the main content of the paper. We are going to consider (11) in the form

A=ag+a 1V +2,1% 4.0 42 1@, (12)
where
&9 = (£=x0)(¢=x1)...(E=X1), and separately, £% =1, (13)

which is implied by Newton'’s interpolation theorem with nodes Xo, X1, ...,Xq, (Proposition 2 in [4], called the nonstandard
Taylor expansion there.)

Blanket Assumption 5. It will be assumed that:
1" : an internal sequence of hyperreals x;, 0 < k < (), is fixed;
27 &0 = (=) (£ —%1) ... (£ —X_1), in accordance with (13);

3" : hyperreals Xo, ..., Xq, are pairwise different and x;, = 1. O

Working in these assumptions and making use of the matrices
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0 1 0 O 0
0 0 1 O 0 100 0
0 1 O 0
1
T:OOO O7U:001 0 |1,
o 0 0 o .. 1
0 0 O 1
o 0 0 o ...0
of dimension (D + 1) x (D + 1), and (D + 1)-vectors
5’k = <akvak+17"‘7a(D70707"'70>7 k2071727"'7®7 (14)
——
k zeros
we demonstrated in [4] that
[Tk}ogo = [TI{SO}O = [Ap = ar (15)

(Recall that [M], denotes the nth row of a matrix M and rows are enumerated from top to bottom starting with 0 as the index
of the top row.) Then equality (12) takes the form

A= [UsTI LTI g T 5, (16)
considered as the (D-counterpart of (2). We proved in [4] that moreover
D 1 (D 1
M, 721@ ... L 701@] _
[U+T1 +T21% 4. T ]0 L_TL, (17)
where
1 % 0 O 0 O
0 1 x O 0 O
0 0 1 x 0 O
1=U+XT=]0 0 0 1 0 O
0 0 0 0 ... 1 Xpa
o 0 0 o0 ... 0 1
(the modified unit matrix of dimension (D + 1) x (D + 1), and
X 0 0 0 ... 0 O
0 x 0 O 0 O
X — 0 0 x, 0 ... 0 O |ofdimension
T ]l0 0 0 x5 0 0 |(D+1)x(@D+1).
0 0 0 0 ... 0 x4

so that the equality (17) is the (D-counterpart of (3). But (17) has the precise meaning of a sum and a complete proof which
does not depend on any special assumption about the nature of the initial series (12).
Now we multiply both sides of (17) with 3y and, using (15) and (16), obtain the following counterpart of (4):
a0+a11(1)+a21(2)+~-+a@1(®) =A = L 50. (18)
- 1-T],

Thus the analogy between (1)-(4) on the one hand and (12), (16), (18), (17) on the other, is based on the identification of ©

with T, 1 (in the denominator 1 — t) with 1, and on the adjoining of factors 1% and taking the Oth row. Following this line, we

developed the Hutton transform from this standpoint in [4]. Namely, given a parameter d # — 1, we defined the Hutton (-

matrix

1+dx, O .0 0

aridxvu 1 | ¢ L 09

HA) == ~1+4|° d 0 0
0 0 oo d o 1T4dxg

of dimension (D + 1) x (D + 1), where



40 V. Kanovei, V. Lyubetsky / Applied Mathematics and Computation 255 (2015) 36-43

0o 0 0 ... 0 O
1 0 O 0 . .
r-lo 1 o 0 of dimension
@+ x(D+1)
0O 0 0 ...1 O

is the transpose of T. Then, for any ((D + 1)-vector 3 = (ag,a1,...,aq), the product h = H(d) - 3 is still a ((D + 1)-vector,
defined by

. 1 +dxo . da_q + (1 +ka)ak

ho = and hy = ———————— for 1<k<®.
0= q1d K 1+d @
Thus the action of H(d) on 3 converts the hyperfinite sum (12) to
@ o
Z hk](k) _ 1;11;0 a0 + Z dakfl*’l(l;dxk)ak 10—
k=0 k=1 (19)

= 21: H(d)], - 1Y 3.
=0

k

Theorem 6 (proved in [4]). Assume that the series in (1) is the shadow of the sum in (12), and x; ~ 0 for all standard k. Then the
standard matrix H(d) of Section 2 is the shadow of H(d) and the series in (6) is the shadow of the sum in the 2nd line of (19).
Moreover, if h = H(d) - 3 as above, then 2", b 1% = S 2, 1%, s0 that the Hutton (D-transform does not change the value of
sums of the form (12).

Proof (sketch). The first claim is rather obvious. To check the moreover claim note that the coefficient of each a; in the right-
hand side of the first line of (19) is, indeed, equal to 1%, in accordance with (12). O

5. A technical theorem

Here we prove a theorem (Theorem 7) which generalizes an earlier result in [4, 5.2]. We will need this result in Section 7.
We first define the matrix

d 1+dx, O 0 ... 0 0
0 d 1+4dyq 0 ... 0 0
sa@_d1rT_|° O d 1+dy, ... 0 0
0 0 0 0 ... d 1+dxy,
0 0 0 0 ... 0 d

of dimension (D + 1) x (D + 1). Recall that T* is the transpose of T. Put
X O 0 0
0 X1 O 0
XX =TEXT* =10 0 %0 0
0 O 0 X3

a diagonal matrix of dimension (@ + 1) x (D + 1), with Xy, X1, ...,Xg,[0]0,[0]...,0 (k zeros) on the diagonal. Then we
define, for k=0,1,..., (D,

Kl = U+*XT, *s(d) = d-*1+T, and *Fx) = ("1 —xT) .
In particular, °X = X, °1 = 1,9S(d) = S(d), and °F(x) = (1 — xT)~'. Moreover, in the assumptions of Blanket Agreement 5, if

Xn ~ 0 for all standard n, and d, k are limited, then the shadow of kS(d) is equal to the matrix S(d) in Section 2, the shadow
of X is the infinite (in the usual sense) null matrix, and the shadow of ¥1 is the infinite unit matrix.

Theorem 7. For any k, we have

{ 1 ]0_1+ka 1-x 1 }_dek[u]ﬁlka[ 1 }

k _ | =" k+1
k1T 71+d [ 0+1+d{s()k1*1—0 1+d 1+d k“l*TO S(d)
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Proof. We first observe that [U], = L% [F1 — T]; + 1% [¥S(d)],. Multiplying both sides by (*1 - T) ', we obtain

1 _ 1 _ 1+dX0 17)(0 k 1
{ﬁh = Wb =5 = 75q Yotiyg {s(d)'ikl—TL’

which is the first equality of the theorem.
To establish the second equality, it is enough to show that

("1 -T)*s(d) = “Is(d) (‘1-T),
or equivalently
F1-T)d-"1+T) = d-*"1+T)(*1-T),
or equivalently, after opening the brackets and simplifying,
bl _d-TH = TY1—-d -1,
thatis, (14+d)-*'"1T = (14d)- Tk, or*'1T = T*1,0r
U+MXT)T = TU+XT),
or equivalently (as UT = TU)): ¥IXT = TkX. Yet by definition

0 %7 0 0 O
0 0 X2 0 O

IXT =TX = |0 0 0 Xep3 O ],
0 0 0 0 X4

as required. O

6. Euler-Jakimovski (D-transform

In this section we concentrate on the (D-interpretation of the Euler-Jakimovski transform. The plan is roughly the same as
in the previous section. We define a (D-version E of the Euler-Jakimovski matrix E = E({d,}) of Section 2, prove that the latter
is the shadow of the former (under certain conditions) and that its action commutes with the shadow operation (this will
require a bit more efforts than in the case of the Hutton transform), prove that E can be obtained by a certain simulation
of Egs. (7) and (8), and then show, in Section 7, that a suitable reiteration of the Hutton (D-transform of Section 4 leads
to E as well.

Blanket Assumption 8. A sequence of hyperreals x;, k < (D, satisfying conditions of Blanket Assumption 5, a hyperfinite
sum (12), and the corresponding vector 3 = 3, continue to be fixed. Also fix an internal sequence {dn}f};l of hyperreals
d,# -1. O

Definition 9 (Euler-Jakimovski (D-transform). We set
WS = ks(dy) - ¥'S(dy_q) - ... - 'S(dy)

for all k < (. Define the Euler-Jakimovski matrix E by the equalities

B 1 + dip1 Xk (k)
Bl = Tvdydrdy - (A +dod + ) Sk

— for all k,0 < k < (. (Compare with (9).) The Euler-Jakimovski (D-transform € of 3 (¢€,3 are (I) + 1-vectors) is defined by
€=E3. O

(20)

We are able now to define the (1)-version

mn
@D

1®. where (eg,...,eq) = & = E3 = Ed,
0 (21)

(I+diaxg) [9s])
so that e, = W)(Hdﬂm a forallk

of (8), similar to (19) in Section 4. The difference between (21) and (19) is that it is not evident that P &, 1% = =% 5, 1®
— compare with Theorem 6. We will address this question in the next section.To illustrate the definition, we present the first
few values of e;:
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eo = Ko ao;

e = Kq (diag + (1 4+ dixq1) a1);

e; =Ky (didyap + (di + dy + dida (X1 +X2)) a1 + (1 + dix2) (1 + daxz) az);

es = K3 [d1dad3 a0 + (didy + dads + dids + didads (X1 + X2 + X3)) a1 + (di + da + d3 + (d1dy + dads + dids) (X2 + X3)
+d1dyds3 (X3 + XoX3 +X3)) 2z + (1 + d1x3)(1 + dox3) (1 + d3x3) a3];

1+dp 1%

T s SO that in particular Ko = Lidixg oo o Ldy e 1+dsXy ot cetera.

and so on, where K, = 1+d, A+dy)(1+dy) (T+dy)(T+dy) (T+d3)

Proposition 10. Assume that the series in (1) is the shadow of the sum in (12), and x;, ~ 0 for limited k. Then the series in (8) is the
shadow of the sum [ e, 1% in (21).

Proof. Say that a matrix M is almost triangular iff there is a finite natural number ny such that [ < k + ny whenever My, # 0.
(M, is the (k, I)th element of M.) Such a matrix can contain nonzero elements above the diagonal only in finitely many con-
secutive diagonals.

The matrices T, T*, U, E, H, and kX, k1, ks(d,), (s for all standard indices k are almost triangular; the product of a
standard number of almost triangular matrices is almost triangular as well.

It is also clear that if a standard double-infinite matrix Z is the shadow (see Definition 4) of an almost triangular
(O+1) x (O + 1) matrix Z, and a standard infinite vector 7 is the shadow of a (D + 1)-dimensional vector v, then Z 7 is the
shadow of Zv.

Note that, in the assumptions of Proposition 10, the shadow of every matrix ¥X (k standard) is the zero matrix. Since the
property of being the shadow is preserved under addition and multiplication (for almost triangular matrices), the
matrix S(d) introduced in Section 2 is the shadow of every matrix ¥S(d), and accordingly the product S(dy) - S(dy) - ... - S(d;)
is the shadow of XS (provided k is standard). Therefore E = E({d,}) is the shadow of E. This completes the proof of
Proposition 10. O

7. Euler-Jakimovski matrix via reiteration of Hutton transform

We are going to demonstrate here that the hyperfinite sum S"" e, 1 b in (21) can be obtained by reiteration of the Hutton
transform of Section 4, similarly to Egs. (7) and (8).

Theorem 11 (under Blanket Assumption 8). We have

1 - 1+ diaxy (k) k
—| = ‘ 5],1%.
{14]0 2 Trdyasd)...ardoy | S

Proof. Let us apply the equality of Theorem 7 consecutively, starting with =, for the indices k =0, 1,...,@ — 1 and accord-

-7 T'
ingly values d = d;,d,,...,dg. The first two steps will be as follows:
1 _ 1+dix X[ 1 1
{1—TL* 1+d, Ul + 1+d {11— } S(dy)
- 1+ d]XO — X (1+ de] 1 — X1 1 2 1
=T34, Yot 1+d 1+d; 174, |2 { TL s(dz)} S(d1)
]+d1X0 )( +d2X1) 1 ( _XO)(l—X]) |: 1 :|
=2 U, +——A = U], 's(d @s.
l+d1 [ ]0 ( 1)( +d2) [ ]0 (1)+(]+d1)(1+d2) 21-T
After (D steps, the rightmost term turns out to be
Moo [ g =) 0810 = Ny [U]g- 5100 — o,
where
Ny = 1

T+d)(1+dy)...(1+dy)

and 1% = (1 = x0)(1 = x1) ... (1 — X,_1) — so that 1“*Y = 0 because x,, = 1. Therefore, we obtain the equality of the theorem
after exactly the number (D of “Hutton” steps. O
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Corollary 12. In the notation of (12) of Section 4 and (21) of Section 6,

@ @ (1 + dii1xe) [VS] v
10 — et 0 3= 10 = A
;ek ;(1+d1)(1+d2)--'(1+d"“) ’ ;ak

Proof. The left and right equalities hold by definition. To prove the middle one, recall that [{15], -3 = Y1 gac 1% by (18) in
Section 4. It remains to multiply the equality of the theorem by 3. O

It follows that the Euler-Jakimovski (D-transform does not change the value of sums of the form (12).
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