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Abstract. We generalize, on higher projective levels, a construction of “incompatible”
generic ∆1

3 real singletons given by Jensen and Johnsbråten.

Introduction

In this note, we prove the following theorem:

Theorem 1. Let n ≥ 2. There is a ccc in L, the constructible universe, forcing
notion P = Pn ∈ L such that P -generic extensions of L are of the form L[a],
where a ⊆ ω, a �∈ L, {a} is Π1

n , and

I: if b ∈ L[a], b ⊆ ω is Σ1
n in L[a] then b ∈ L and b is Σ1

n in L ;
II: if a transitive model M of ZFC extends L and contains two different

P -generic sets a, a′ ⊆ ω, then ωM
1 > ωL

1 .

For n = 2, this is the result of Jensen and Johnsbråten [4] (then I is a corollary of
the Shoenfield absoluteness). In the absense of the “incompatibility” requirement
II, the result was proved by Harrington [1] (using a version of the almost disjoint
coding of Jensen and Solovay [3]) and, independently, by the author [5,6] (using a
version of the Jensen “minimal ∆1

3 ” coding [2]). Our proof is a similar modification
of the construction in [4].

Recall that the forcing notion used in [4] is the union of a certain increasing
ω1-sequence of its countable initial segments. The construction, reviewed in Section
1, results, roughly speaking, in an ω-long iteration of the forcing by a Souslin tree.
It is the specific property of the forcing, discussed in Section 3, that a certain
ω-sequence of rationals in the extension can be effectively decoded into a generic
sequence of ω1-branches through the trees. An additional care is taken to guarantee
that, if two different sequences of rationals can be decoded this way then ωL

1 is
countable, leading to II of Theorem 1.
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The Jensen–Johnsbråten construction is summarized in Section 2, where we
show that, basically, any increasing ω1-sequence of countable objects called em-
brions, which satisfies certain conditions at each level, produces, in L, a forcing
which guarantees the uniqueness of a decodable sequence of rationals in the generic
extensions of L, as above. Furthermore, if such a sequence of embrions is ∆HC

1
then the unique decodable sequence of rationals in the extension appears to be a
Π1

2 singleton, which is the case considered in [4].
To prove Theorem 1, we employ an increasing sequence of embrions which sat-

isfies an extra requirement (of intersecting certain definable subsets, in the collection
of all embrions, Section 4), which lifts the level of definability of the decodable
sequence of rationals to be a Π1

n singleton, but guarantees I of Theorem 1. In order
to obtain the latter property, we show, in Section 5, that the mentioned extra re-
quirement provides an appropriate amount of “symmetry”, sufficient to prove that
any closed Σ1

n formula is decided by the forcing.

Referee’s comments1, 2

“ Your paper requires a committed reader. I think it is largely unavoidable, granted
my understanding of the main technical problem. Nevertheless, a larger audience
might be attracted if you included an informal discussion of your strategy, perhaps
expanding on your remarks at the end of your introduction. Whether to include
such a discussion is up to you. For what it worth, here is my understanding of your
proof.

(1) Working in L, you define a partial ordering Emb such that
• Emb is ∆1 definable over Lω1 without parameters;

• Emb is a countably closed tree of height ω1 ; and

• a cofinal branch through Emb provides an Lω1 -amenable “JJ-system” T of
length ω1 .

(2) If T is a JJ-system of length ω1 then there exists a partial ordering PT such
that
• PT is ∆1 definable over (Lω1 ,T) without parameters;

• PT satisfies the ccc; and

• PT is countably generated. Indeed, if G is PT-generic, then there exists
a canonical generic real a ∈ L[G] coding G in the sense that G is ∆1
definable from the parameter a over (Lω1 [a],T) .

• If a and b are independently PT-generic reals, then ω
L[a,b]
1 < ωL

1 .

1 The content of this Section is a part of anonymous referee’s report on this note, which I
received in due course from AML editors. It is written in the form of a “letter to the author”,
and contains insights which did not occur to me in such a perfect form when I wrote this
note.

2 Addendum from Andreas Blass, editor: The referee who provided this material was
Professor M. Stanley. He has kindly consented to this publication of his comments and to
divulging his identity as referee.
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(3) Emb ∗ PT is homogeneous.

These elements are used to complete the proof as follows.

(A) Fix n ≥ 1. If B ∗ C is sufficiently generic for Emb ∗ PT then

(Lω1 [G], B) |= ϕ ⇐⇒ ∃ (T , t) ∈ B ∗G (T , t) ||−− ϕ , (∗)
for all sentences ϕ of the forcing language that are Πn or Σn .

(B) A sufficiently Emb-generic B is definable without parameters over Lω1 . Fix
such an B and let T be the provided JJ-system of length ω1. Let G be fully
PT generic over L. Then (∗) holds for B ∗ G. Let a be the generic real
coding G .

(C) Because Emb ∗PT is homogeneous, it follows from (∗) that every real that is
Σn definable without parameters over Lω1 [a] lies in Lω1 . Hence every real
that is definable in L[a] by a Σ1

n+1 formula of analysis is constructible and
Σ1

n+1 definable in L .

(D) Because T is definable without parameters over Lω1 and PT is ccc, “ x is
PT-generic” is a property definable without parameters in Lω1 [a] and a is
the unique real with this property in Lω1 [a], since independently generic reals
collapse ωL

1 .

Obstacle.To get that “ x is PT-generic” is a Π1
n+1 property of analysis, an Emb

branch B that is sufficiently generic for (A) must be ∆n definable in (B). The best
estimate (that I know, anyway) is ∆n+1. Your solution is to observe that you only
need (∗) for ϕ that are (equivalent to) Π1

n+1 sentences of analysis. You show
that there is a ∆n definable Emb branch that is sufficiently generic to handle the
required instances of (∗) by carefully restricting the Shoenfield terms that occur
in ϕ. This is the point of the auxiliary forcing relation t forcT ϕ . ”

1. Iterated sequences of Souslin trees

By a normal tree we shall understand a tree T , which consists of sequences (so
that every t ∈ T is a function with dom t ∈ Ord and the order <T is the extension
order ⊂ ) and satisfies conditions 1 – 4:

1. The empty sequence � does not belong to T .

2. If t ∈ T and 1 ≤ α < dom t then t�α ∈ T .

Let |t | = dom t for any sequence t. It follows from 1, 2 that, for any α ≥ 1,
T (α) = {t ∈ T : |t | = α} is the α-th level of T . (We start counting levels with 1;
the missed, for the sake of convenience, level 0 would consist of � .) Let |T | be
the least ordinal > 0 and > all |t |, t ∈ T (the height of T ).

For α < |T |, let T �α = ⋃
γ<α T (γ ) (the restriction).

3. Each non-maximal t ∈ T has infinitely many immediate successors.

4. Each level T (α) is at most countable.
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Let 1 ≤ λ ≤ ω1. A normal λ-tree is a normal tree T satisfying

• |T | = λ, and, if t ∈ T and |t | < α < λ then t has successors in T (α) .

(The only normal 1-tree is the empty tree. Normal 0-trees do not exist.)

Definition 2. Let 2 ≤ λ ≤ ω1. A system T = 〈〈Tk〉k∈ω, T [·]〉 of normal λ-trees
Tk and a map t �−→ T [t], satisfying requirements (1)–(8) below, is called a
JJ-system of length λ = |T| . �

(1) Tk(α) ⊆ (Q+)α for all k and 1 ≤ α < λ .

Fix a recursive partition Q+ = ⋃
k,j∈ω Qkj of positive rationals onto disjoint

topologically dense sets Qkj ⊆ Q+. Put Qk =
⋃

j Qkj .

(2) Tk(1) = {〈r〉 : r ∈ Qk } and Tk(α + 1) = {t ∧r : t ∈ Tk(α) ∧ r ∈ Q+} .

( t ∧r is the extension of a sequence t by r ∈ Q+ as the rightmost term.) Thus
any element t ∈ Tk(α) is an α-sequence. The trees Tk are pairwise disjoint.

(3) If t ∈ Tk(α) then T [t] ⊆ Tk+1 is a normal α-tree; in addition, we have
Tk+1�α = ⋃

t∈Tk(α) T [t] .

(4) If t, t1 ∈ Tk and t < t1 then T [t] = T [t1]�|t | .

(5) If t ∈ Tk(α), α + 1 < |T|, r �= r ′ ∈ Q+, then T [t ∧r] ∩ T [t ∧r ′] = T [t] .

We observe that T [t] = ∅ whenever t ∈ Tk(1) .
Fix once and for all a recursive enumeration Q+ = {rm : m ∈ ω} .

(6) If t = 〈r, rm〉 ∈ Tk(2) then T [t] = {〈r ′〉 : r ′ ∈ Qkm}. If t ∈ Tk(α + 1)
and α + 2 < |T| then T [t ∧rm] = T [t] ∪ {s∧r : s ∈ T [t](α) ∧ r ∈ Qm}
for any m .

Define the associated map τ = τT : if s ∈ Tk+1(α), α+ 1 < |T|, then τ(s)

is the unique, by (4) and (5), t ∈ Tk(α + 1) such that s ∈ T [t]. Thus τ maps
any Tk+1 (except for the top level if |T| is a successor ordinal) onto non-limit and
bigger than 1 levels of Tk, the previous tree. We have

1◦. If s, s′ ∈ Tk+1, τ(s′) is defined, and s ⊂ s′, then τ(s) ⊂ τ(s′). In addition,
if s ∈ Tk+1(α) and τ(s) ⊂ t ′, where t ′ ∈ Tk(β + 1), α < β, then there is
s′ ∈ Tk+1(β) such that s ⊂ s′ and τ(s′) = t ′ .

(Use (3)–(5).) A few more definitions and requirements.

• Assume that {rγ }γ<α is a sequence of non-negative rationals. We let
∑

γ<α rγ
to be the supremum of finite partial sums (including the case of +∞ ). If s, t ∈
Tk(α) then define

∑
(s, t) = ∑

γ<α |sγ − tγ | .

• Say that a normal tree T is sum-regular if we have
∑

(s�α, t�α) <
∑

(s, t) <

+∞ whenever s, t ∈ T (β), α < β < |T |, and β is limit.

Trees Tk can contain sequences s ∈ T0 satisfying
∑

s = ∞, so that some
“series” diverge to infinity. However by the next requirement they diverge in “almost
parallel” fashion.
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(7) The trees T0 and T [t] for all t ∈ Tk, k ∈ ω, are sum-regular.

Let τm be the superposition: so τm(t) ∈ Tk−m(α +m) if t ∈ Tk(α).

• Define PT = ⋃
k Tk. Order PT as follows: s ≤ t (means: t is stronger) if

s ∈ Tl, t ∈ Tk, l ≤ k, τk−l (t) is defined, and s ⊆ τk−l (t) .

• Let α < µ < |T|, µ being limit. Say: t ∈ Tk(α), s ∈ Tl(µ) are weakly
compatible in PT if either t ≤ s (then k ≤ l ) or l < k and τk−l (t) ⊂ s.

Note that PT is not a tree. Assuming that |T| is a limit ordinal, it easily follows
from 1◦ that weak compatibility is equivalent to the true ≤-compatibility.

• If γ < |T| then we put T�γ = 〈〈Tk�γ 〉k∈ω, T [·]�γ 〉, where T [·]�γ is the
restriction of T [·] on the domain

⋃
k Tk�γ. (It will be clear that T�γ is a

JJ-system of length γ .) We write PT�γ instead of PT�γ .

• ZFC− is the axioms of ZFC without the power set axiom.

• Assuming that we work in L, let, for any JJ-system T of countable length, ϑ(T)

denote the least (countable) ordinal ϑ such that Lϑ models ZFC−, T ∈ Lϑ ,

and both PT and |T| are countable in Lϑ . Let M(T) = Lϑ(T) .

The final requirement is:

(8) If λ < |T| is a limit ordinal, and D ∈ M(T�λ) is a dense subset of PT�λ,
then every t ∈ ⋃

k Tk(λ) is weakly compatible in PT with an element of D .

2. Construction of JJ-systems

Let us describe how countable JJ-systems extend to longer systems.

• We say that a normal tree T is sum-dense if, for all β < α < |T |, ε ∈ Q+,

t, t ′ ∈ T (β), and s ∈ T (α), if t ⊂ s then there exists s′ ∈ T (α) such that
t ′ ⊂ s′ and

∑
(s, s′)−∑

(t, t ′) < ε .

Definition 3. An embrion is a JJ-system T of countable length such that T0 and
every T [t] are sum-dense trees. Emb is the set of all embrions.

An embrion T′ extends T, symbolically T � T′, if T = T′�|T| . �

Requirements (2) and (6) of Section 1 determine the construction of a unique
embrion of length 2. They also show that any embrion of length λ+k, where λ is
a limit ordinal or 0 while k ≥ 2, admits a unique extension to a embrion of length
λ + k + 1. Clearly the limit of an increasing countable sequence of embrions is
an embrion. The following lemma carries out the non-trivial step. It appears to be
technically easier to jump from a limit λ immediately to λ+ 2, without a stop at
level λ+ 1 – which is reflected in the lemma.

Lemma 4 (assuming V= L ). Let T = 〈〈Tk〉k∈ω, T [·]〉 be an embrion of a limit
length λ. Then there is an embrion of length λ+ 2, extending T .
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Proof. ([4], pp. 283–285.) We have to define the levels Tk(λ) and Tk(λ+ 1) and
appropriately extend the map T [·]. Possible elements of any Tk(λ) are branches
b ∈ (Q+)λ such that b�α ∈ Tk(α) for all α < λ. Let T [b] = ⋃

α<λ T [b�α] for
any such b. Here the problem is to suitably choose countably many branches b of
this kind for any k .

Define M = M(T) as in Section 1. Consider the forcing notion P ∈ M,

whose typical element p consists of:

a∗. dp, a finite subset of the set E = ⋃
1≤k<ω ωk, such that: if u ∈ dp and

1 ≤ k < |u| (the length of u ) then u�k ∈ dp .

b∗. For any u ∈ dp : an element tp(u) ∈ T|u|−1 .

c∗. If u, v ∈ dp, |u| = |v| = k, u�(k − 1) = v�(k − 1) then: εp(u, v) ∈ Q+.

It is required that:

d∗. If u ∈ dp and v = u∧i ∈ dp then tp(v) ∈ T [tp(u)] .

e∗. If u, v ∈ dp, |u| = |v| = k, and u�(k − 1) = v�(k − 1) = w, then
|tp(u)| = |tp(v)| and

∑
(tp(u), tp(u)) < εp(u, v) .

We set p ≤ q (that is, q is stronger) iff dp ⊆ dq, εp(u, v) = εq(u, v) whenever
the former is defined, and tp(u) ⊆ tq(u) for all u ∈ dp .

A cumbersome verification in [4], based in particular on the sum-density,
essentially shows that any P -generic over M set G ⊆ P results in a system
of λ-branches bu =

⋃
p∈G, u∈dp

tp(u) ∈ (Q+)λ, where u ∈ E, such that

• if |u| = k then bu�α ∈ Tk−1 and bu∧i�α ∈ T [bu�(α + 1)] for all α, i ;

• if D ∈ M is a dense subset of PT then for any u ∈ E there is v ∈ E such
that u ⊆ v and bv�α ∈ D for some α < λ ;

• define B� = {b〈i〉 : i ∈ ω} and Bum = {bu∧j : j = 2m(2i+1)−1 for some i}
for all u ∈ E and m : then T0 ∪B� and Wum = T [bu]∪Bum, for all m and
u ∈ E, are sum-dense sum-regular normal (λ+ 1)-trees.

Now, to get an embrion of length λ+ 2 extending T, we define

Tk(λ) =
⋃

u∈ωk,m∈ω Bum – in particular, T0(λ) = B� ;
Tk(λ+ 1) = {b∧r : b ∈ Tk(λ) ∧ r ∈ Q+} – according to (2) ;

and finally T [b] for b ∈ Tk(λ) as above, and T [bu
∧rm] = T [bu] ∪ Bum for all

u ∈ E and m . �

3. The structure of generic extensions

Let T = 〈〈Tk〉k∈ω, T [·]〉 be a JJ-system of a limit length λ ≤ ω1. Put τ = τT .

The following is an easy observation.

2◦. Any PT-generic extension by a generic set G ⊆ PT results in a sequence of
λ-branches Ck = ⋃

(G ∩ Tk) ∈ (Q+)λ, such that Ck�α ∈ Tk(α) for all
1 ≤ α < λ, and τ(Ck+1�α) = Ck�(α + 1) for all k ∈ ω and 1 ≤ α < λ .
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In this case there is a straightforward procedure of “decoding” the branches Ck

from the sequence 〈qk〉k∈ω ∈ (Q+)ω, where qk = Ck(0) ∈ Q+ :

3◦. We begin with the values Ck�1 = 〈qk〉, put Ck�α + 1 = τT(Ck+1�α) (by
induction on α simultaneously for all n ), and take unions at all limit steps.

Thus 〈Ck〉k∈ω is constructible from 〈qk〉k∈ω, via procedure 3◦, which “converges”
in the sense that

4◦. First, every qk must be the 1st term of the 2-term sequence τT(〈qk+1〉).
Second, the unions at limit steps, in the inductive computation of Ck�α, must
remain in the trees Tk .

The principal idea of [4] is to arrange things so that, in the PT-generic extension
of L, there exists only one sequence q = 〈qk〉k∈ω ∈ (Q+)ω for which the proce-
dure 3◦ “converges”. Technically, it is realized in such a way that any two different
sequences of rationals, for which the procedure 3◦ “converges”, lead to a collapse
of ωL

1 in the form of an increasing ωL
1 -sequence of rationals. Requirement (7) is

the main “ingredient” of the argument.

Lemma 5 (proved in [4]). Let T = 〈〈Tk〉k∈ω, T [·]〉 ∈ L be a JJ-system of length
ωL

1 . Then PT is a ccc forcing in L and each Tk is a Souslin tree in L . In addition,

a) If G ⊆ PT is PT-generic over L and λ < ωL
1 is a limit ordinal then

G ∩ (PT�λ) is PT�λ-generic over M(T�λ) .

b) In any PT-generic extension of L, there is a non-constructible sequence
〈qk〉k∈ω ∈ (Q+)ω for which the procedure 3◦ “converges” as in 4◦.

c) In any extension of L, if there are two different sequences 〈qk〉k∈ω for which
the procedure 3◦ “converges” as in 4◦, then ωL

1 is countable.

Proof. To see that PT is ccc in L, note that, by (8), for every limit λ < ωL
1 ,

any dense subset D ⊆ PT�λ which belongs to M(T�λ) remains pre-dense in
PT�(λ + 1), therefore (by 1◦) in PT as well. It remains to follow usual patterns.
This argument also proves a). As for b), set Ck =

⋃
(G∩Tk) and qk = Ck(0). The

sequence 〈qk〉k∈ω is not constructible because otherwise the sequence of branches
Ck belongs to L, easily leading to contradiction because constructible Souslin
trees Tk cannot have cofinal branches in L .

c) Suppose that 〈qk〉k∈ω and 〈q ′k〉k∈ω are two different sequences of positive
rationals for which the procedure 3◦ “converges”, to resp. branches Ck and C′

k

in Tk ( k ∈ ω ). Now either C0 �= C′
0 or there is k such that Ck+1 �= C′

k+1
but Cl = C′

l for all l ≤ k. (Otherwise qk = q ′k for all k .) In the “either”
case C0 and C′

0 are two different branches in T0, which implies, by (7), that
there exists a strictly increasing ωL

1 -sequence of rationals, namely the sequence of
sums

∑
(C0�α,C′

0�α), α < ωL
1 , hence ωL

1 is countable. The “or” case is similar:
if α < β < ωL

1 then Ck+1�α and C′
k+1�α belong to T [Ck�β], therefore the

sequence of sums
∑

(Ck+1�α,C′
k+1�α) is strictly increasing. �

To present, in brief, the main result of [4], note that, assuming V = L , there
exists, by Lemma 4, an �-increasing ∆HC

1 sequence of embrions Tα, 1 ≤ α < ω1,
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each Tα being of length ωα. Let a JJ-system T = 〈〈Tk〉k∈ω, T [·]〉 of length ω1
be the “l imit” of such a sequence, so that Tα = T�ωα for all α. Then both the
map T [·] and the trees Tk uniformly on k belong to ∆HC

1 .

Theorem 6. (proved in [4]). Every PT-generic extension of L does not collapse
ωL

1 and has the form L[a], where a is a non-constructible Π1
2 real singleton in

L[a] .

Proof. In view of Lemma 5, it remains to show that 4◦ can be expressed, in HC,

as a Π1 property of 〈qk〉k∈ω. But this is rather clear: the formula says that any
sequence of some α < ωL

1 steps in the “procedure” 3◦ starting from 〈qk〉k∈ω and
satisfying 4◦ can be extended by one more step so that 4◦ is not violated . This is
ΠHC

1 by the choice of T . �

4. Setup for the proof of the main theorem

Theorem 6 is equal to the main theorem (Theorem 1) for n = 2. The proof of
the general case below follows the scheme of Jensen and Johnsbråten, but contains
one more idea: the final JJ-system T of length ω1 must be “generic” in the sense
that it intersects all dense ∆1

n subsets in the partially ordered set of all embrions
of limit length.

4.1. Auxiliary forcing relation

We argue in L in this Subsection.

• EmbL is the set of all embrions of limit length.

Let T = 〈〈Tk〉k∈ω, T [·]〉 ∈ EmbL. Define M(T) and PT ∈ M(T) as in Section 1.
We employ a special language to carry out the study of analytic phenomena in
PT-generic extensions. Let L be the language containing variables i, j, ... of type
0 (for natural numbers) and x, y, ... of type 1 (for subsets of ω ), arithmetical
predicates for type 0 and the membership predicate i ∈ x .

Define Trm(T) to be the set of all T-terms for subsets of ω, that is, all sets
τ ⊆ PT ×ω. Put Trm∗(T) = Trm(T)∩M(T). Let a T-formula be a formula ϕ of
L, some (or all) free variables of which, of types 0 and 1, are substituted by resp.
natural numbers and elements of Trm∗(T). In this case, if G ⊆ PT then ϕ[G]
will denote the formula obtained by substitution, in ϕ, of each term τ ∈ Trm∗(T)

by the set τ [G] = {l ∈ ω : ∃ t ∈ G (〈t, l〉 ∈ τ)}. Thus ϕ[G] is a formula of L
containing subsets of ω as parameters.

Let TΣ0∞-formula be any T-formula which does not contain quantifiers over
variables of type 1. Formulas of the form

∃ x1 ∀ x2 ∃ x3 . . . ∀ (∃) xm ψ and ∀ x1 ∃ x2 ∀ x3 . . . ∃ (∀) xm ψ ,

where ψ ∈ TΣ0∞, will be called resp. TΣ1
m-formulas and TΠ1

m-formulas.
We define t forcT ϕ, a relation intended to approximate true forcing. Here it

is assumed that T ∈ EmbL, t ∈ PT, and ϕ is a closed T-formula of one of the
classes TΣ1

m, TΠ1
m . The definition goes on by induction.
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A. If ϕ ∈ TΣ0∞ ∪ TΣ1
1 ∪ TΠ1

1 then t forcT ϕ iff ( T, t, ϕ are as above and)
t ||−−T ϕ, where ||−−T is the ordinary forcing in the sense of M(T) as the
initial model and PT as the notion of forcing.

B. Let m ≥ 1, ϕ(x) ∈ TΠ1
m. Define t forcT ∃ x ϕ(x), iff there is a term

τ ∈ Trm∗(T) such that t forcT ϕ(τ) .

C. Let m ≥ 2, ϕ be a closed TΠ1
m formula. Put t forcT ϕ iff ¬ s forcS ϕ−

for any embrion S ∈ EmbL which extends T and any s ∈ PS, s≥ t, where
ϕ− is the result of the transformation of ¬ ϕ to TΣ1

m .

The following statement is true for the usual forcing, hence true for the relation
forc restricted on formulas ϕ in TΣ0∞ ∪ TΣ1

1 ∪ TΠ1
1 , while the extension on

more complicated formulas is easily carried out by induction.

5◦. t forcT ϕ and t forcT ϕ− are incompatible.

Lemma 7. If t forcT ϕ and an embrion S∈ EmbL extends T, s∈ PS, s≥ t,
then s forcS ϕ .

Proof. The induction step is trivial, so we concentrate on the case when ϕ

belongs to TΣ0∞ ∪ TΣ1
1 ∪ TΠ1

1 . The key observation is that, by (8), any set
D ∈ M(T), which is a dense subset of PT, remains pre-dense in PS. It follows
that, given a PS-generic over M(S) set G ⊆ PS, the restriction G′ = G∩ PT is
PT-generic over M(T). It is also clear that ϕ[G] coincides with ϕ[G′]. It remains
to apply usual forcing arguments, together with the fact that sentences of classes
Σ1

1 and Π1
1 are absolute for transitive models of ZFC−, to show that t ||−−T ϕ

iff t ||−−S ϕ. �

Consider the complexity of the relation forc .
Let ϕ(x1, . . . , xm, l1, . . . , lµ) be a parameter–free formula of L. Put

Forc(ϕ) = {〈T, t, τ1, . . . , τm, l1, . . . , lµ〉 : T ∈ EmbL ∧ τ1, . . . , τm ∈ Trm∗(T)

∧ t ∈ PT ∧ l1, . . . , lµ ∈ ω ∧ t forcT ϕ(τ1, . . . , τm, l1, . . . , lµ)} .

Theorem 8. If ϕ is a formula of one of the classes Σ0∞, Σ1
1 , Π1

1 , Σ1
2 , then

Forc(ϕ) ∈ ∆HC
1 . If m ≥ 2 and ϕ ∈ Π1

m or Σ1
m+1 then Forc(ϕ) ∈ ΠHC

m−1 .

Proof. The base part follows from the uniform ∆HC
1 (T) definability of the usual

forcing ||−−T in the model M(T). The induction step is clear. �

4.2. Forcing to prove the main theorem

Let us fix a natural number n ≥ 3 for which we prove Theorem 1.
Arguing in L, we easily define, using Theorem 8, an � -increasing ∆HC

n

sequence of embrions Tα, 1 ≤ α < ω1, each Tα of length ωα, satisfying

6◦. If α < ω1, t ∈ PTα , and ϕ is a closed TαΣ
1
n formula, then there exist

α ≤ β < ω1 and a condition t ′ ∈ PTβ , t ′ ≥ t, such that t ′ forcTβ ϕ or
t ′ forcTβ ϕ− .
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Let a JJ-system T = 〈〈Tk〉k∈ω, T [·]〉 of length ω1 be the “limit” of this sequence,
so that Tα = T�ωα for all α. Then both the map τ and the trees Tk uniformly
on k belong to ∆HC

n (in L ).
Let ||−− be the ordinary forcing in the sense of L as the initial model and PT as

the notion of forcing. Define Trm(T) to be the set of all countable sets τ ⊆ PT×ω,

so that Trm(T) = ⋃
α<ω1

Trm(Tα). Define TΣ1
m and TΠ1

m as in Subsection 4.1.
Let, finally, t forcT ϕ mean that t forcTα ϕ for some ordinal α < ω1. The
following lemma ties ||−− and forcT .

Lemma 9. Let 1 ≤ m ≤ n. Assume that ϕ is a closed TΣ1
m or TΠ1

m formula,
and t ∈ PT . Then t ||−− ϕ and t forcT ϕ− are incompatible.

Proof. We argue by induction on m. Assume that ϕ belongs to TΣ0∞ ∪ TΣ1
1 ∪

TΠ1
1 . Let α be any ordinal such that t ∈ PTα and ϕ is a formula in TαΣ

1
m or

TαΠ
1
m. By definition t forcTα ϕ means that t ||−−α ϕ, where ||−−α is the ordinary

forcing in the sense of M(Tα) as the initial model and PTα = PT�ωα as the
notion of forcing. On the other hand, by a) of Lemma 5, if G ⊆ PT is PT-generic
over L then Gα = G ∩ PTα is PTα -generic over M(Tα). Finally, by the choice
of α, the formulas ϕ[G] and ϕ[Gα] coincide. It follows, by the usual forcing
technique and the absoluteness argument applied in the proof of Lemma 7., that
t ||−− ϕ iff t ||−−α ϕ. In other words, ||−− and forcT coincide for formulas in
TΣ0∞ ∪ TΣ1

1 ∪ TΠ1
1 , as required.

Now we carry out the step. Prove the result for a TΣ1
m+1 formula ϕ of the

form ∃ x ψ(x), assuming that m < n. Suppose, on the contrary, that t ||−− ϕ and
t forcT ϕ−. As PT is ccc by Lemma 5, there is a term τ ∈ Trm(T) such that
t ||−− ψ(τ). By 6◦, there is a condition t ′ ∈ PT, t ′ ≥ t, such that t ′ forcT ψ(τ)

or t ′ forcT ψ(τ)−. Clearly we have the latter: otherwise this would contradict
the assumption t forcT ϕ− by Lemma 7. and 5◦. But this contradicts t ||−− ψ(τ)

by the induction hypothesis.
Prove the result for a TΠ1

m+1 formula ϕ of the form ∀ x ψ(x). Suppose,
on the contrary, that t ||−− ϕ and t forcT ϕ−. The latter, by definition, implies
t forcT ψ(τ)−, for a term τ ∈ Trm(T). On the other hand, the former implies
t ||−− ψ(τ), which is a contradiction by the induction hypothesis. �

Corollary 10. Let ϕ be a closed parameter-free Σ1
n or Π1

n formula. If G ⊆ PT
is PT-generic over L then ϕ is true in L[G] iff there is t ∈ G such that t forcT ϕ .
(Apply 6◦ and Lemma 9..) �

4.3. The proof of the main theorem

Let us show that the forcing PT suffices for Theorem 1.
Everything here, except I of Theorem 1, is just the same as for Theorem 6.

Thus we can concentrate on requirement I of Theorem 1. The next theorem (proved
below) is the key part of the proof.

Theorem 11.Let m ≥ 1. Assume that ϕ is a parameter-free Σ1
m formula,

T, T′ ∈ EmbL, and t ∈ PT, t ′ ∈ PT′ . Then t forcT ϕ is inconsistent with
t ′ forcT′ ϕ− .
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Assuming this theorem, we can improve the end of Corollary 10. as follows, so
that G does not occur any more:

• ... iff there are an embrion S∈ EmbL and s∈ PS such that s forcS ϕ.

It immediately follows that, in a PT-generic extension of L, every Σ1
n subset

of ω belongs to L – actually, is Σ1
n in L by Theorem 8.

� (Theorem 1 )

5. Proof of the homogeneity theorem

In this Section, devoted to the proof of Theorem 11, we argue only in L. The
proof is based on transformations of Emb . Let T = 〈〈Tk〉k∈ω, T [·]〉 and T′ =
〈〈T ′

k〉k∈ω, T ′[·]〉 be two embrions, of equal length η < ω1 .

• An isomorphism of T onto T′ is a ⊂-isomorphism h : PT
onto−→ PT′ which

maps T0 onto T ′
0 and T [s] onto T ′[h(s)] for any s ∈ PT .

As Tk ∩ Tl = T ′
k ∩ T ′

l = ∅ provided k �= l (see Section 1), there is no need to

split h in a sequence of separate maps hk : Tk
onto−→ T ′

k .
Let Isom(T,T′) denote the set of all isomorphisms T onto T′ .

5.1. Existence of isomorphisms

Let T = 〈〈Tk〉k∈ω, T [·]〉 be an embrion of length λ+ 1, where λ < ω1 is a limit
ordinal. For any b ∈ Tk(λ) define T+[b] = T [b] ∪ U [b], where U [b] is the set
of all s ∈ Tk+1(λ) such that s�α ∈ T [b] for all α < λ .

• Say that T is top-correct if, whenever k ∈ ω, T+[b] is a normal (λ+ 1)-tree
for any b ∈ Tk(λ), and Tk+1(λ) =

⋃
b∈Tk(λ)

T+[b] .

In particular, if T′ is an embrion of length at least λ+ 2, then T = T′�(λ+ 1) is
easily top-correct.

Lemma 12. Let T = 〈〈Tk〉k∈ω, T [·]〉, T′ = 〈〈T ′
k〉k∈ω, T ′[·]〉 be top-correct

embrions of length λ+ 1, λ being a limit ordinal, M(T′) ⊆ M(T), t ∈ Tj (λ),

and t ′ ∈ T ′
j (λ). Then there is an isomorphism h ∈ Isom(T,T′) ∩ M(T) such

that ht = t ′ .

Proof. The proof is based on the following statement:

7◦. Let T and T ′ be countable normal (λ+ 1)-trees, t ∈ T (λ), and t ′ ∈ T ′(λ).
Then there is a ⊂-isomorphism h : T

onto−→ T ′ with h(t) = t ′.

To prove this, we first define, using a kind of back-and-forth argument, a map

h : T (λ)
onto−→ T ′(λ) such that h(t) = t ′ and, for all s1, s2 ∈ T (λ), the maximal

α < λ such that s1�α = s2�α is equal to the maximal α′ < λ such that h(s1)�α′ =
h(s2)�α′. Now pull h down: define, for u ∈ T (α), α < λ, h(u) = h(s)�α, where
s ∈ T (λ) is any satisfying u = s�α .
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Note that, by the top-correctness, for any s ∈ Tk+1(λ) there is a unique
b ∈ Tk(λ) such that s ∈ T+[b], and the same for s′ ∈ T ′

k+1(λ). Applying 7◦ con-
secutively for T0, then for each T+[b], where b ∈ T0(λ), then for each T+[b],

where b ∈ T1(λ), etc., we get a ⊂-isomorphism h : PT
onto−→ PT′ , mapping T0

onto T ′
0 and any T+[b] onto T ′+[h(b)], with h(t) = t ′.

The construction of h can be maintained in M(T) because both T and T′
belong to and are countable in M(T) . �

5.2. Extensions of isomorphisms on longer embrions

Let us assume the following in this Subsection:

8◦. T = 〈〈Tk〉k∈ω, T [·]〉 and T′ = 〈〈T ′
k〉k∈ω, T ′[·]〉 are top-correct embrions of

one and the same length λ + 1, λ < ω1 being limit, M(T′) ⊆ M(T), and
h ∈ M(T) ∩ Isom(T,T′) .

In this case, the action of h can be correctly extended on any embrion S =
〈〈Sk〉k∈ω, S[·]〉 ∈ Emb which extends T. Indeed assume that s ∈ Sk(γ ). If γ ≤ λ

then s ∈ Tk(γ ), and we put h+(s) = hk(s). If λ < γ then define s′ = h+(s) ∈
(Q+)γ so that s′�λ = h(s�λ) while s′(α) = s(α) for all α ≥ λ. Let S′k =
{h+(s) : s ∈ Sk }, for each k. To define the associated map S′[·], assume that
s′ = h+(s) ∈ S′k, so that s ∈ Sk. Put S′[s′] = {h+(t) : t ∈ S[s]}. This ends the
definition of S′ = 〈〈S′k〉k∈ω, S′[·]〉. We shall write S′ = hS.

Lemma 13. In this case, S′ = hS is an embrion extending T′, M(S′) = M(S),

and h+ ∈ Isom(S,S′) ∩M(S) .

Proof. It suffices to check only (8), (7), and the sum-density for S′ above λ; the
rest of requirements is quite obvious.

Prove (8). Let η < |S| = |S′| be a limit ordinal, and D′ ∈ M(S′�η) be a
dense subset of PS′�η. Prove that any s′ = h+(s) ∈ ⋃

k∈ω S′k(η) is compatible
with an element of D′. The case η ≤ λ is clear: apply (8) for T′. Assume that
λ < η < |S′|. Then M(S′�η) ⊆ M(S�η) because h ∈ M(T). It follows that
the set D = {t ∈ PS�η : h+(t) ∈ D′ } belongs to M(S�η). Moreover, D is a
dense subset of PS�η. Therefore s is compatible with an element of D. Then s′
is compatible with an element of D′, as required.

Prove (7). Suppose that W ′ is S′0 or S′[s′] for some s′ = h+(s) ∈ S′k,
α < η < |S′|, η is limit, and s′1 = h(s1), s′2 = h(s2) belong to W ′(η). (Then s1
and s2 belong to the set W which is equal to resp. S0 or S[s] .) We have to prove
that

∑
(s′1�α, s′2�α) <

∑
(s′1, s

′
2) < +∞. Assume λ < η (the nontrivial case). To

prove the right inequality note that
∑

(s′1, s
′
2) =

∑
(s′1�λ, s′2�λ)+

∑
λ≤γ<λ|s1(γ )− s2(γ )| ,

so the result follows from the fact that S and T′ are embrions. The left inequality
is demonstrated similarly.

Finally prove the sum-density. Suppose that W ′ is S′0 or S′[s′] for some
s′ = h(s) ∈ S′k, ε ∈ Q+, β ≤ λ < α ≤ |W ′| (the nontrivial case), and
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t ′1 = h(t1), t ′2 = h(t2) belong to W ′(β), and s′1 = h(s1) ∈ W ′(α), t ′1 ⊂ s′1. We
have to find s′2 ∈ W ′(α) such that t ′2 ⊂ s′2 and

∑
(s′1, s

′
2)−

∑
(t ′1, t

′
2) < ε .

Let u′1 = s′1�λ, so u′1 = h(u1) ∈ W ′(λ), where u1 ∈ W(λ) and W = S0 or
W = S[s]. As T′ ∈ Emb, there is u′2 = h(u2) ∈ W ′(λ) ( u2 ∈ W(λ) ) such that
t ′2 ⊂ u′2 and

∑
(u′1, u

′
2) −

∑
(t ′1, t

′
2) < ε/2. As S ∈ Emb, there is s2 ∈ W(α)

with u2 ⊂ s2 and
∑

(s1, s2)−
∑

(u1, u2) < ε/2. Now s′2 = h(s2) is as required
since

∑
(s′1, s

′
2)−

∑
(u′1, u

′
2) =

∑
(s1, s2)−

∑
(u1, u2) . �

Let us assume the following stronger version of 8◦:

9◦. T, T′, λ, and h are as above in 8◦ and M(T′) = M(T) .

Now consider any embrion S ∈ EmbL extending T. Define S′ = hS (also
an embrion by Lemma 13., clearly satisfying M(S′) = M(S) by 9◦), and let
h+ ∈ Isom(S,S′) ∩ M(S) be defined as above. If τ ∈ Trm(S) then hτ =
{〈h+(t), l〉 : 〈t, l〉 ∈ τ } belongs to Trm(S′). Moreover, hτ ∈ Trm∗(S′) whenever
τ ∈ Trm∗(S), and further, if (assuming 9◦) 8 is an S-formula then the formula
h8, obtained by changing every term τ ∈ Trm∗(S) in 8 by hτ, is an S′-formula.

Note finally that h−1 ∈ Isom(T′,T), and the consecutive action of h and h−1

on conditions, terms, and formulas, is identity.

Lemma 14. Assume that t ∈ PS and 8 is a S-formula. Then t forcS 8 iff
ht forcS′ h8 .

Proof. We argue by induction on the complexity of 8 .
Let 8 be a formula in SΣ0∞∪SΣ1

1 ∪SΠ1
1 (case A in Subsection 4.1). Then h

defines, in M(S) = M(S′), an order isomorphism PS onto PS′ , such that ϕ[G]
is equal to (hϕ)[h ”G] for any set G ⊆ PS and any S-formula ϕ. This implies
the result by the ordinary forcing theorems. ( h ”G is the h-image of G .)

The induction steps B and C in Section 4.1 do not cause any problem. (However
Lemma 13. and 9◦ participate in the consideration of step C.) �

5.3. Proof of Theorem 11

Let us suppose, to the contrary, that t0 forcT0 ϕ and t ′0 forcT′
0
ϕ−. We may

assume that T0 and T′
0 are embrions of one and the same limit length λ < ω1.

By Lemma 4, there are embrions S and S′′, of length λ+ω, extending resp. T0
and S0. Then T = S�(λ + 1) and T′ = S′′�(λ + 1) are top-correct embrions of
length λ+ 1, still extending resp. T0 and S0.

We can assume that M(T) = M(T′).
(Indeed, suppose that, say, ϑ(T′) < ϑ(T). Let η = λ+ϑ(T), a limit ordinal.

Let T1 be an embrion of length η + ω, extending T. Choose, by Lemma 12.,
h ∈ M(T) ∩ Isom(T,T′). Define T′

1 = hT1 : an embrion of length η + ω by
Lemma 13.. Note that T2 = T1�(η + 1) and T′

2 = T′
1�(η + 1) are top-correct

embrions of length η+1, extending resp. T and T′. Finally, as η is long enough,
we have h ∈ M(T′

2), which easily implies M(T2) = M(T′
2). Now we can take

T2 and T′
2 instead of T, T′. )
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Fix conditions t ∈ PT and t ′ ∈ PT′ such that t0 ≤ t, t ′0 ≤ t ′, and t ∈
Tj (λ), t ′ ∈ T ′

j (λ) for one and the same j. Choose, by Lemma 12., h ∈ M(T) ∩
Isom(T,T′) such that h(t) = t ′. Then S′ = hS is an embrion of length λ + ω

extending T′ by Lemma 13., and t ′ ∈ PS′ . Then, by Lemma 7., t forcS ϕ – thus
t ′ forcS′ hϕ by Lemma 14., – and t ′ forcS′ ϕ−. However hϕ is ϕ because ϕ

does not contain terms, which is a contradiction by 5◦.
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