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Abstract. We generalize, on higher projective levels, a construction of “incompatible”
generic A3 real singletons given by Jensen and Johnsbraten.

Introduction

In this note, we prove the following theorem:

Theorem 1.Let n > 2. Thereisaccc in L, the constructible universe, forcing
notion P = P, € L suchthat P-generic extensions of L are of the form L[a],
where a Cw, a &L, {a}is 17,11, and

l:if bellal, bCwis ZrinL[a] thenbel and b is Tt inL;

II: if a transitive model .# of ZFC extends L and contains two different
P-generic sets a, a’ C o, then i’ > ot .

For n = 2, thisisthe result of Jensen and Johnsbraten [4] (then | isacorollary of
the Shoenfield absoluteness). In the absense of the “incompatibility” regquirement
1, the result was proved by Harrington [1] (using a version of the almost digjoint
coding of Jensen and Solovay [3]) and, independently, by the author [5,6] (using a
version of the Jensen “minimal A% " coding[2]). Our proof isasimilar modification
of the constructionin [4].

Recall that the forcing notion used in [4] is the union of a certain increasing
w1-sequenceof itscountableinitial segments. Theconstruction, reviewedin Section
1, results, roughly speaking, in an w-long iteration of the forcing by a Soudlin tree.
It is the specific property of the forcing, discussed in Section 3, that a certain
w-sequence of rationals in the extension can be effectively decoded into a generic
sequence of w1-branchesthrough thetrees. An additional careistaken to guarantee
that, if two different sequences of rationals can be decoded this way then w'i is
countable, leading to |1 of Theorem 1.
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The Jensen—Johnsbraten construction is summarized in Section 2, where we
show that, basically, any increasing w1-sequence of countable objects called em-
brions, which satisfies certain conditions at each level, produces, in L, aforcing
which guaranteesthe uniqueness of adecodabl e sequence of rationalsinthegeneric
extensions of L, as above. Furthermore, if such a sequence of embrionsis At'C
then the unique decodable sequence of rationals in the extension appears to be a
3} singleton, which is the case considered in [4].

To prove Theorem 1, we employ an increasing sequence of embrionswhich sat-
isfiesan extrarequirement (of i ntersecting certai n definabl e subsets, inthecollection
of al embrions, Section 4), which lifts the level of definability of the decodable
sequence of rationalstobea IT} singleton, but guarantees| of Theorem 1. In order
to obtain the latter property, we show, in Section 5, that the mentioned extra re-
quirement provides an appropriate amount of “symmetry”, sufficient to prove that
any closed X! formulais decided by the forcing.

Referee’s comment 2

“ Your paper requires acommitted reader. | think it islargely unavoidable, granted
my understanding of the main technical problem. Nevertheless, alarger audience
might be attracted if you included an informal discussion of your strategy, perhaps
expanding on your remarks at the end of your introduction. Whether to include
such adiscussion is up to you. For what it worth, hereis my understanding of your
proof.

(1) Working in L, you define apartial ordering Emb such that
e Emb is A, definableover L., without parameters,

e Emb isacountably closed tree of height w1 ; and

e acofinal branch through Emb providesan L,,,-amenable“J}system” T of
length w1 .

(2) If T isaJd¥system of length w; then there exists apartial ordering Pt such
that

e Pr is A, definableover (L., T) without parameters;
o P satisfiesthe ccc; and

e P71 is countably generated. Indeed, if G is Pr-generic, then there exists
acanonical generic real a € L[G] coding G inthesensethat G is A,
definable from the parameter a over (Lg,[a], T).

e If a and b areindependently P1-generic reals, then a)i[“’b] < a)& .

1 The content of this Section isapart of anonymous referee’sreport on thisnote, which |
received in due course from AML editors. It iswritten in theform of a“letter to the author”,
and contains insights which did not occur to me in such a perfect form when | wrote this
note.

2 Addendum from Andreas Blass, editor: The referee who provided this material was
Professor M. Stanley. He has kindly consented to this publication of his comments and to
divulging hisidentity as referee.
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(3) Emb *x Pt is homogeneous.
These elements are used to complete the proof as follows.
(A) Fix n > 1. If BxC issufficiently generic for Emb x Pt then
LGl B)Eye < 3IT,HeBxG (T.) -9, (%)

for all sentences ¢ of the forcing language that are 7, or X, .

(B) A sufficiently Emb-generic B is definable without parameters over L, . Fix
suchan B andlet T bethe provided JJ-system of length w1. Let G befully
Pt generic over L. Then (x) holdsfor B « G. Let a be the generic rea
coding G .

(C) Because Emb * Pt ishomogeneous, it followsfrom (x) that every real that is
X, definable without parameters over L, [a] liesin L,,. Hence every real
that isdefinablein L[a] by a 2,}“ formula of analysisis constructible and

1 . -
D] definablein L.

(D) Because T is definable without parameters over L,, and Pt isccc, “ x is
Pr-generic” is a property definable without parametersin L, [a] and a is
the uniquereal with thisproperty in L, [a], sinceindependently genericreals
collapse } .

Obstacle.To get that “ x is Pr-generic” isa HV}H property of analysis, an Emb
branch B that issufficiently generic for (A) mustbe A, definablein (B). The best
estimate (that | know, anyway) is 4, ;. Your solution isto observe that you only
need (x) for ¢ that are (equivalent to) Hr%+1 sentences of analysis. You show
thet thereisa A, definable Emb branch that is sufficiently generic to handle the
required instances of (x) by carefully restricting the Shoenfield terms that occur
in ¢. Thisisthe point of the auxiliary forcing relation ¢ forct ¢ .”

1. Iterated sequences of Souslin trees

By a normal tree we shall understand atree 7, which consists of sequences (so
thatevery ¢+ € T isafunctionwith dom ¢ € Ord andtheorder <7 istheextension
order C) and satisfies conditions 1 — 4:

1. The empty sequence A doesnot belongto T .
2 IfreT and1l1<a <domt thentfa e T.

Let |f] = domt for any sequence ¢. It follows from 1, 2 that, for any o > 1,
T(a)={teT:|t| =a} isthe a-thlevel of T. (We start counting levelswith 1;
the missed, for the sake of convenience, level 0 would consist of A.) Let |T| be
theleast ordinal > 0 and > all |¢|, t € T (theheight of T).

For o <|T|, let Tl = T(y) (therestriction).

y<a
3. Each non-maxima ¢ € T hasinfinitely many immediate successors.

4, Eachlevel T (x) isat most countable.
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Let 1 <X <wi. Anormal A-treeisanormal tree T satisfying
o |[T|=A, and,if r € T and |f] < a < A then r hassuccessorsin T (x) .
(Theonly normal 1-tree isthe empty tree. Normal O-trees do not exist.)

Definition 2. Let 2 <A < w1. Asystem T = ({Ti)kew, T[-]) of normal A-trees
T, and amap r —— T[], satisfying requirements (1)—(8) below, is called a
JJ-systemof length A = |T|. O

(1) Ti(@) € @M foral k and 1 <a < A.

Fix arecursive partition Q" = Uk’jew Qy; of positive rationals onto disjoint
topologically dense sets Qx; € Q1. Put Oy = U; Q-

(2 Ti() ={(r):re Q) and Ti( +1) ={t"r:t € Te(e) Ar € QFY.

(t"r isthe extension of asequence ¢ by r € Q" asthe rightmost term.) Thus
any element 1 € Ty () isan a-sequence. Thetrees Tj are pairwise disjoint.

(3) If t € Ty(e) then T[t] C Ty4+1 isanormal «-tree; in addition, we have
Tivalo = UteTk(a) T[t].

@ Ift,rneT, andt <11 then T[t] = T[r1][lz].

B) If teTi(a), a+1<|T|, r#r eQt, then Tt "r]NT[t"r'] = T[1].

We observethat T[t] = ¢ whenever t € T; (1) .
Fix once and for all arecursive enumeration Q* = {r,,, 1 m € w}.

6) f t = (r,ry) € Tr(2) then T[t] = {(r') : v’ € Qm}. f t € Ti(a + 1)
and a +2 < |T| then T[t"ryu] = T[H]U{s"r i s € T[t](@) AT € O}
forany m .

Definetheassociatedmap T = Tt : if s € Tj11(0), a+1 < |T|, then T(s)
is the unique, by (4) and (5), ¢ € Ty(ax + 1) suchthat s € T[¢t]. Thus T maps
any Tiy+1 (exceptfor thetoplevel if |T| isasuccessor ordinal) onto non-limit and
bigger than 1 levelsof Ty, the previoustree. We have

1° If s, 5" € Tyy1, T(s') isdefined,and s C s/, then T(s) C T(s"). Inaddition,
if s € Trr1(a) and T(s) C ¢/, wheret’ € T,(B+ 1), a < B, thenthereis
s' € Tr11(B) suchthat s C 5" and T(s") =1

(Use (3)«5).) A few more definitions and requirements.

e Assumethat {ry}, <« isasequenceof non-negativerationals. Welet ., _, ry
to be the supremum of finite partial sums (including the case of +00).1If s, 1 €
Ty (o) then define Y (s, 1) = Zy<a sy — 1]

e Say that anormal tree T issumregular if wehave > (sl tla) < Y (s, 1) <
400 whenever s, t € T(B), a < B < |T|, and B islimit.

Trees T; can contain sequences s € Tp satisfying > s = oo, so that some
“series’ divergetoinfinity. However by thenext requirement they divergein“amost
parallel” fashion.
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(7) Thetrees Tp and T[¢] forall ¢ € Ty, k € w, are sum-regular.
Let T bethe superposition: so T (t) € Tx—m (¢ +m) if t € Ty ().

e Define Pt = (J; Tx. Order Pt asfollows: s < ¢ (means: ¢ is stronger) if
seT, teTy, I <k, T () isdefined,and s < T (r) .

o Let @« < u < |T|, w beinglimit. Say: t € Ti(x), s € Tj(n) are weakly
compatiblein Pt if either r <s (then k <) or [ <k and T !(r) C s.

Note that Pt isnot atree. Assuming that |T| isalimit ordinal, it easily follows
from 1° that weak compatibility is equivalent to the true <-compatibility.

o If y < |T| thenweput Ty = ((Tkly)kew, T[]ly), where T[-]ly isthe
restriction of T[-] on the domain | J, Tx[y. (It will be clear that T|y isa
JJ-system of length y .) Wewrite Pt [y instead of P Iy -

e ZFC™ istheaxiomsof ZFC without the power set axiom.

e Assumingthat weworkin L, let,forany JJ-system T of countablelength, (T)
denote the least (countable) ordinal ¢ suchthat Ly models ZFC™, T € Ly,
and both Pt and |T| arecountablein Ly. Let .#(T) = Ly(T) .

Thefina requirement is:

(8) If A < |T| isalimitordina,and D € .Z(T[X) isadense subset of P12,
then every 1 € |, Tk (2) isweskly compatiblein Pt with an element of D.

2. Construction of JJ-systems

Let us describe how countable JJ-systems extend to longer systems.

e We say that anormal tree T issum-denseif, foral g < o < |T|, ¢ € QF,
t,t € T(B), and s € T(x), if t C s then there exists s’ € T (a) such that
s and Y (s,8)—>.@t,1) <e.

Definition 3. AnembrionisaJ}system T of countable length such that 7o and
every T[t] are sum-densetrees. Emb isthe set of all embrions.
Anembrion T’ extends T, symbolicaly T T/, if T=T'[|T|. O

Requirements (2) and (6) of Section 1 determine the construction of a unique
embrion of length 2. They also show that any embrion of length A+, where A is
alimitordinal or 0 while k > 2, admitsaunique extension to aembrion of length
A+ k + 1. Clearly the limit of an increasing countable sequence of embrions is
an embrion. The following lemma carries out the non-trivial step. It appearsto be
technically easier to jump from alimit A immediately to A + 2, without a stop at
level A +1 —whichisreflected in the lemma.

Lemma 4 (assuming V=L). Let T = ((Ti)kew, T[-]) bean embrion of a limit
length A. Thenthereisan embrion of length A + 2, extending T .
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Proof. ([4], pp. 283-285.) We haveto definethelevels T (1) and T (A + 1) and
appropriately extend the map T[-]. Possible elements of any Tj (1) are branches
b e (Q)* suchthat bla € Ti(a) foral o < A. Let T[b] = ,_; T[ble] for
any such b. Herethe problem isto suitably choose countably many branches 4 of
thiskind for any k.

Define .# = ./ (T) asin Section 1. Consider the forcing notion P € ./,
whose typical element p consists of:

a" d,, afinite subset of the set £ = (J;;_, ", suchthat: if u € d, and
1<k < |u| (thelengthof u)then ulk € d, .

b* Forany u € d, : anelement 1, (u) € Tju-1.

¢t Ifu,ved,, |ul=vl=k, ultk—1 =v[(k—1) then: g,(u,v) € Q.
It isrequired that:

d" If ued, and v=u’i ed, then t,(v) € T[t,(u)].

e Ifu,ved, [ul = =k adul(k -1 = vtk —1 = w, then
|tp(’/‘)| = |tp(v)| and Z(tp(u)a tp(u)) < Sp(u, v).

Weset p < g (thatis, g isstronger)iff d, C d;, &,(u,v) = g,(u, v) whenever
the former is defined, and ¢, (u) < t,(u) forall u e d), .

A cumbersome verification in [4], based in particular on the sum-density,
essentially shows that any P-generic over .# set G C P resultsin a system
of A-branches by = U g, ueq, 1) € (QT)*, where u € E, such that
o if |u| =k then b, € Ty—1 and b, ~;Ja € T[b,[(x + 1)] fordl «, i;

o if D e ./ isadense subset of Pt thenforany u € E thereis v € E such
that u Cv and b,la € D forsome o < A;

o define By = {b(;) : i € w} and By = {by~j . j =2"(2i+1)—1 for some i}
foral u € E and m : then ToU B, and W, = T[b,] U By, foral m and
u € E, aresum-dense sum-regular normal (A + 1)-trees.

Now, to get an embrion of length A + 2 extending T, we define
Tie(A) = Uyewk. mew Bum — inparticular, To(A) = Bj ;
Ti(h+1) = {(b"r:beTi(M) Ar e QT} — according to (2) ;
and finaly T[b] for b € Ty (1) asabove, and T[b, " r,,] = T[b,] U By, for all
uekE and m. O

3. The structure of generic extensions

Let T = ({Ti)kew, T[]) beadFsystem of alimit length A < w1. Put T = T7.
The following is an easy observation.

2°. Any Pr-generic extension by a generic set G C Pt resultsin a sequence of
A-branches C; = | J(G N Ty) € (QT)*, such that Cila € Ti() for all
l<a<, and T(Crq1la) =Crl(@+1) foral kewand 1 <a < A.
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In this case there is a straightforward procedure of “decoding” the branches Cy
from the sequence (gx)rew € (Q1)®, where ¢x = Cx(0) € Q*:

3°. We begin with the values Ci[1 = (gx), put Cixla +1 = T1(Crs1le) (by
induction on « simultaneously for all » ), and take unions at all limit steps.

Thus (Ci)rew isconstructiblefrom (g )rew, Viaprocedure3°, which*converges’
in the sense that

4° First, every g must be the 1st term of the 2-term sequence T1({(gix+1)).
Second, the unions at limit steps, in the inductive computation of Cy [, must
remain in thetrees Ty .

Theprincipal ideaof [4] isto arrangethings so that, in the Pt -generic extension
of L, there exists only one sequence q = (gi)iew € (Q1)® for which the proce-
dure 3° “converges’. Technicaly, itisrealized in such away that any two different
sequences of rationals, for which the procedure 3° “converges’, lead to a collapse
of w'{ in the form of an increasing w'{-mquence of rationals. Requirement (7) is
the main “ingredient” of the argument.

Lemma 5 (proved in [4]).Let T = ({(Tk)kew, T'[]) € L bea JJ-system of length
a)k Then Pt isacccforcingin L andeach T isaSoudlintreein L . Inaddition,

alf G C Py isPr-genericover L and A < w& is a limit ordinal then

G N (Py[A) isPy[A-genericover Z(T[M).

b) In any Pt-generic extension of L, there is a non-constructible sequence
(gk)kew € (QT)® for which the procedure 3° “ converges’ asin 4°.

¢) Inany extension of L, if there are two different sequences (g )rec for which
the procedure 3° “ converges’ asin 4°, then a)'l- is countable.

Proof. To seethat Pt iscccin L, notethat, by (8), for every limit Ao < wk
any dense subset D C Pt[A which belongsto .#Z(T[1) remains pre-dense in
Pr[(x + 1), therefore (by 1°) in Pt aswell. It remainsto follow usual patterns.
Thisargument also provesa). Asforb), set C, = | J(GNT) and gx = Cx(0). The
sequence {(gx)rew 1SNOt constructible because otherwise the sequence of branches
Cr belongsto L, easily leading to contradiction because constructible Souslin
trees T, cannot have cofinal branchesin L .

C) Suppose that (gx)kew and (g;)reo aretwo different sequences of positive
rationals for which the procedure 3° “converges’, to resp. branches C; and C;
in Ty (k € w). Now either Co # C; or there is k such that Cry1 # C1/<+1
but C; = C;] foral | < k. (Otherwise gy = ¢, for @l k.) In the “either”
case Co and C; are two different branches in Tp, which implies, by (7), that
there exists a strictly increasing a)'I -sequence of rationals, namely the sequence of
sums Y (Coler, Cjlar), @ < wf, hence o} iscountable. The*or” caseissimilar:
if « < B < of then Cryala and C),,lo belongto T[Ci[p]. therefore the
sequence of sSums » (Ci+1le, Cj 4 le) istrictly increasing. O

To present, in brief, the main result of [4], note that, assuming V = L, there
exists, by Lemmad4, an <-increasing A}'¢ sequenceof embrions Ty, 1 < o < w1,
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each T, being of length wa. Let addsystem T = ((Ti)kew, T[-]) Of length w;
be the “l imit” of such a sequence, sothat T, = T[wa for @l «. Then both the
map T[] andthetrees T; uniformly on k belong to A?C.

Theorem 6. (proved in [4]). Every Pt-generic extension of L does not collapse
wli and hasthe form L[a], where a isa non-constructible 172l real singletonin

La].

Proof. Inview of Lemmab, it remains to show that 4° can be expressed, in HC,
asa I1; property of (gx)reo. But thisis rather clear: the formula says that any
sequence of some o < a)'I steps in the “procedure” 3° starting from (qy)re, and
satisfying 4° can be extended by one more step so that 4° is not violated. Thisis
}C by the choiceof T. O

4. Setup for the proof of the main theorem

Theorem 6 is equal to the main theorem (Theorem 1) for n = 2. The proof of
the general case below follows the scheme of Jensen and Johnsbréten, but contains
one moreidea: thefina J}system T of length w; must be “generic” in the sense
that it intersects al dense A,% subsets in the partially ordered set of al embrions
of limit length.

4.1. Auxiliary forcing relation

Wearguein L inthis Subsection.
e EmbL isthe set of all embrions of limit length.

Let T = ((Tk)kew, T[]) € EmbL. Define .#(T) and Pt € .#(T) asin Section 1.
We employ a special language to carry out the study of analytic phenomena in
Pr-genericextensions. Let ¥ bethelanguage containingvariables i, j, ... of type
0 (for natural numbers) and x, y, ... of type 1 (for subsets of w), arithmetical
predicates for type 0 and the membership predicate i € x .

Define Trm(T) to be the set of all T-terms for subsets of w, that is, all sets
T C Py xw. Put Trm*(T) = Trm(T)N.#Z(T). Leta T-formulabeaformula ¢ of
£, some (or al) freevariablesof which, of types 0 and 1, are substituted by resp.
natural numbers and elements of Trm*(T). Inthiscase, if G € Pt then ¢[G]
will denote the formula obtained by substitution, in ¢, of eachterm ¢ € Trm*(T)
by theset 1[G] = {l €e w : 3t € G ({t,]) € 17)}. Thus ¢[G] isaformulaof &
containing subsets of w as parameters.

Let T32 -formula be any T-formulawhich does not contain quantifiers over
variables of type 1. Formulas of the form

Ix1Vxo3dxz ... V@ x, v and Vx13Ixo2Vxz ... 3Mx, ¥,

where ¢ € TXQ | will be called resp. T X} -formulas and T17}-formulas.
Wedefine t forcT ¢, arelationintended to approximate true forcing. Hereit
isassumed that T € EmbL, t € P, and ¢ isaclosed T-formula of one of the

classes TXL, TI1} . The definition goes on by induction.
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A If o e T2 UTZLUTHE then t forer ¢ iff (T, t, ¢ are asabove and)
t |1 ¢, where |- isthe ordinary forcing in the sense of .#(T) asthe
initial model and Pt asthe notion of forcing.

B. Let m > 1, ¢(x) € TII}. Define t forct JIx p(x), iff there is a term
T € Trm*(T) suchthat t forct ¢(7).

C. Let m > 2, ¢ beaclosed TIT. formula. Put t forct ¢ iff = sforcs g™
for any embrion S € EmbL which extends T andany se Ps, s> t, where
¢~ istheresult of the transformation of —¢ to TX}L.

The following statement is true for the usual forcing, hence true for the relation
forc restricted on formulas ¢ in TX UTX! U TII], whilethe extension on
more complicated formulasis easily carried out by induction.

5° t forcT ¢ and t forcT ¢~ areincompatible.

Lemma7. If t forcTt ¢ andanembrion S € EmbL. extends T, se€ Pg, s>t,
then sforcs ¢.

Proof. The induction step is trivial, so we concentrate on the case when ¢
belongs to TX2 U TX{ U TI1i. The key observation is that, by (8), any set
D e .4 (T), whichisadense subset of Pt, remains pre-densein Pgs. It follows
that, given a Ps-generic over .#(S) set G C Ps, therestriction G’ = GNPy is
Pr-genericover . (T). Itisalsoclearthat ¢[G] coincideswith ¢[G']. Itremains
to apply usual forcing arguments, together with the fact that sentences of classes
1 and 17} are absolute for transitive models of ZFC ™, to show that t |7 ¢

Consider the complexity of the relation forc .
Let o(x1,...,%m,l1,...,1,) beaparameter—free formulaof £. Put

Forc(p) = {(T,t, 70, ..., Ty, l1, ..., [y) : T €EmbL A T1, ..., Ty € Trm*(T)
AtePr Al ... I, ewnt forer o(ta, ..., Ty 1, ..., 1)}

Theorem 8.1f ¢ is a formula of one of the classes X9, ¥1, 11}, ¥, then
Forc(p) € ATC. If m>2and ¢ € H,}, or Z‘nl1+1 then Forc(p) € 17""1'91.

Proof. The base part follows from the uniform A[’C(T) definability of the usual
forcing |1 inthemodel .#(T). Theinduction step isclear. O

4.2. Forcing to prove the main theorem

Let usfix anatural number n > 3 for which we prove Theorem 1.

Arguing in L, we easily define, using Theorem 8, an < -increasing AnHC
sequence of embrions T, 1 < a < w1, each T, of length wa, satisfying
6° If « < w1, t € Py, and ¢ isa closed TQE,} formula, then there exist

o < B < w1 and acondition t’ € Pr,, t" > t, suchtha t’ forct, ¢ or
t' forct, ¢~ .
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Letadlsystem T = ((Ti)kew, T[]) Of length w1 bethe“limit” of this sequence,
sothat Ty = Tlwa for al «. Then both the map T and thetrees T uniformly
on k belongto AHC (in L).

Let |~ betheordinary forcinginthesenseof L astheinitial model and Pt as
thenotion of forcing. Define Trm(T) tobetheset of al countablesets © € Pr x w,
sothat Trm(T) = |, ,, Trm(T,). Define T, and T17,, asin Subsection 4.1.

Let, finaly, t forct ¢ mean that t forct, ¢ for someordina « < w;. The
following lemmaties | and forcT .

Lemma9. Let 1 <m < n. Assumethat ¢ isaclosed TX! or TIT} formula,

m

andt e Pt. Thent | ¢ and t forcT ¢~ areincompatible.

Proof. We argue by induction on m. Assumethat ¢ belongsto T2 UTX] U
Tl Let o beany ordinal suchthat t € Py, and ¢ isaformulain T, X} or
Tan,ﬁ. By definition t forct, ¢ meansthat t |-, ¢, where |-, istheordinary
forcing in the sense of .#(T,) as the initia model and Py, = Prlwa as the
notion of forcing. On the other hand, by @) of Lemmab, if G C Pt is Py-generic
over L then G, = G NP1, is Pt -generic over .#(T,). Findly, by the choice
of «, theformulas ¢[G] and ¢[G,] coincide. It follows, by the usual forcing
technique and the absoluteness argument applied in the proof of Lemma 7., that
t |- ¢ iff t |, ¢. Inother words, | and forct coincide for formulasin
T2 uT2luTH, asrequired.

Now we carry out the step. Prove the result for a TZr}ZH formula ¢ of the
form 3 x ¥ (x), assumingthat m < n. Suppose, on the contrary, that t |- ¢ and
t forcT ¢~. As Py isccc by Lemmab, thereisaterm t € Trm(T) such that
t |- ¥(r). By 6°, thereisacondition t’ € P1, t' > t, suchthat t’ forct ¥ (1)
or t" forct ¥ (r)~. Clearly we have the latter: otherwise this would contradict
the assumption t forct ¢~ by Lemma7. and 5°. But this contradicts t |— ¥ ()
by the induction hypothesis.

Prove the result for a T17nl1+l formula ¢ of the form Vx ¥ (x). Suppose,
on the contrary, that t | ¢ and t forct ¢ . The latter, by definition, implies
t forcT ¥(r)~, foraterm t € Trm(T). On the other hand, the former implies
t | ¥ (r), whichisacontradiction by the induction hypothesis. O

Corollary 10. Let ¢ beaclosed parameter-free X1 or 7! formula. If G € Pt
isPt-genericover L then ¢ istruein L[G] iffthereist € G suchthat 7 forct o .
(Apply 6° and Lemma9..) O

4.3. The proof of the main theorem

Let us show that the forcing Pt suffices for Theorem 1.

Everything here, except | of Theorem 1, is just the same as for Theorem 6.
Thuswe can concentrate on requirement | of Theorem 1. The next theorem (proved
below) isthe key part of the proof.

Theorem 11.Let m > 1. Assume that ¢ is a parameter-free X1 formula,
T, T € EmbL, and t € Pr, t' € Pyv. Then t forct ¢ isinconsistent with
t’ forct ¢~
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Assuming this theorem, we can improve the end of Corollary 10. asfollows, so
that G does not occur any more:

o ...ifftherearean embrion S € EmbL and s € Ps suchthat s forcg ¢.

It immediately followsthat, in a Pt-generic extension of L, every X! subset
of w belongsto L —actualy, is X! in L by Theorem 8.

O (Theorem 1)

5. Proof of the homogeneity theorem

In this Section, devoted to the proof of Theorem 11, weargueonly in L. The
proof is based on transformations of Emb. Let T = ({Ti)kew, T[]} and T’ =
{(T))kew> T'[-]) betwo embrions, of equal length 1 < w; .

e Anisomorphismof T onto T’ isa C-isomorphism & : Py ontg Pt which

maps Tp onto T and T'[s] onto T'[h(s)] forany s € Pr.
As Ty NT; =T, NT/ = ¢ provided k # [ (see Section 1), there is no need to

split & in asequence of separate maps Ay : Tx ong T,.

Let Isom(T, T") denotethe set of all isomorphisms T onto T'.

5.1. Existence of isomorphisms

Let T = ((Ti)kew, T[-]) beanembrion of length A + 1, where A < w1 isalimit
ordinal. For any b € Ty (1) define T,.[b] = T[b] U U[b], where U[b] isthe set
of al s € Tyy1(A) suchthat sja € T[b] fordl o < A.

e Saythat T istop-correct if, whenever k € w, T.[b] isanorma (A + 1)-tree
forany b € T (A), and Tyr1(A) = UbeTk(A) T.[b].

In particular, if T’ isanembrionof lengthatleast A +2, then T=T'[(A + 1) is
easily top-correct.

Lemmal2. Let T = (Ti)kew T[], T = ((T))kew T'[]) be top-correct
embrions of length 2 + 1, A being alimit ordinal, .#(T') € .#(T), t € T;(%),
and t’ € TJT(A). Then there is an isomorphism 4 € Isom(T, T") N .Z(T) such
that ht =1t'.

Proof. The proof is based on the following statement:
7°. Let T and T’ becountablenormal (A + 1)-trees, t € T(1), and ¢’ € T'()).

Thenthereisa c-isomorphism i : T oM 77 with h(t) =t

To prove this, we first define, using a kind of back-and-forth argument, a map
onto

h:T() — T'()) suchthat h(t) =t and, for all sq, so € T (L), the maximal
a < A suchthat s1]a = s2]a isequal tothemaximal o’ < A suchthat A(sy) o’ =
h(s2)[a’. Now pull 2 down: defing, for u € T(a), a < A, h(u) = h(s)|a, where
s € T()) isany satisfying u = s e .
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Note that, by the top-correctness, for any s € Ti11(1) there is a unique
b € Ti(1) suchthat s € T.[b], andthesamefor s" € T}, ;(1). Applying 7° con-
secutively for Tp, then for each T [b], where b € Tp()), then for each T, [b],
where b € T1(X), etc., we get a C-isomorphism £ : Pt ontg Py, mapping Tp
onto Ty and any 7.[b] onto T/ [h(b)], with h(t) =t

The construction of # can be maintained in .#(T) because both T and T’
belong to and are countablein . (T) . O

5.2. Extensions of isomor phisms on longer embrions

Let us assume the following in this Subsection:

8. T = ((Tk)kews T[-]) and T" = ((T)kew, T'[-]) are top-correct embrions of
oneandthesamelength A + 1, A < w1 being limit, .#(T") C .4 (T), and
he #(T)NIsom(T,T)).

In this case, the action of & can be correctly extended on any embrion S =
{({Sk)kew> S[‘]) € Emb whichextends T. Indeed assumethat s € Si(y). If y <A
then s € Ty (y), andweput AT (s) = hi(s). If L <y thendefine s’ = h'(s)
(Q1)” sothat s'[A = h(s[A) while s'(@) = s(a) foral o« > A. Let S} =
(hT(s) : s € S}, for each k. To define the associated map S'[-], assume that
s'=ht(s) €S, sothat s € . Put S'[s'] = {h"(r) : ¢t € S[s]}. Thisendsthe
definition of S' = ((S} )kew, S'[]). We shall write S' = AS.

Lemma 13. Inthiscase, S' = S isan embrion extending T', .#(S) = .4 (S),
and At € Isom(S, S) N .#(S).

Proof. It sufficesto check only (8), (7), and the sum-density for S’ above 1; the
rest of requirementsis quite obvious.

Prove (8). Let n < |§| = |S| bealimit ordinal, and D" € .#(S'[n) bea
dense subset of Pg[n. Provethat any s’ = ht(s) € e, Si(n) is compatible
with an element of D’. Thecase n < A isclear: apply (8) for T'. Assume that
A <mn < |S]. Then .#(S|n) € #(Sln) because h € .4 (T). It follows that
theset D = {t € Ps[n : h*(¢t) € D'} belongsto .#(S|n). Moreover, D isa
dense subset of Ps|n. Therefore s iscompatible with an element of D. Then s’
is compatible with an element of D’, asrequired.

Prove (7). Suppose that W’ is Sy or S’[s'] for some s = h'(s) € S,
a <n < |S], nislimit,and s] = h(s1), s5 = h(s2) belongto W’'(n). (Then s1
and s belongtotheset W whichisequal toresp. Sp or S[s].) Wehaveto prove
that » (s7la, spla) < Y (s, 55) < 4+00. Assume A < n (thenontrivial case). To
prove the right inequality note that

> (s, 59) = Y(s1 1A $510) 4+ Doy 151(y) — s2(v)]

so the result follows fromthefact that S and T’ are embrions. The left inequality
is demonstrated similarly.

Finally prove the sum-density. Suppose that W’ is S, or S’[s’] for some
s' = h(s) € S, ¢ € Qf, B <A < a < |W| (the nontrivial case), and
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11 = h(t1), t, = h(r2) belongto W'(B), and s; = h(s1) € W (a), 1; C s7. We
havetofind s; € W'(«) suchthat #, C s; and ) (s, 55) — D (11.15) < €.

Let u} =s1[A, SO uy =h(u) € W' (), where ug € W(x) and W = Sp or
W = S[s]. As T’ € Emb, thereis u}, = h(uz) € W' (1) (u2 € W(1)) such that
ty Cufp and Y (uy,ub) — Y (11,15) < €/2. As S € Emb, thereis s € W(a)
with up C s2 and )" (s1,s2) — > (u1, u2) < /2. Now s5, = h(s2) isasrequired
since ) (sq, s5) — D (uy, uh) =D (s1,52) — Y (u1, u2). O

Let us assume the following stronger version of 8°:
9. T, T, a, and h areasabovein8 and .#(T') = .#(T).

Now consider any embrion S € EmbL extending T. Define S = hS (aso
an embrion by Lemma 13,, clearly satisfying .#(S) = .#(S) by 9°), and let
ht e Isom(S,S) N .#(S) be defined as above. If t € Trm(S) then ht =
{((hT (@), 1) : (¢t,]) € T} belongsto Trm(S). Moreover, ht € Trm*(S) whenever
7 € Trm*(S), and further, if (assuming 9°) @ isan S-formulathen the formula
h®, obtained by changing every term t € Trm*(S) in ® by ht, isan S-formula.

Notefinally that =1 € Isom(T’, T), andthe consecutiveactionof # and 72—t
on conditions, terms, and formulas, is identity.

Lemma 14. Assume that t € Ps and @ isa Sformula. Then t forcg @ iff
ht forcg hd.

Proof. We argue by induction on the complexity of &.

Let & beaformulain S¥2 USEZ1USIT] (caseA in Subsection 4.1). Then &
defines, in .4 (S) = .4 (S), an order isomorphism Ps onto Py, suchthat ¢[G]
isequal to (hg)[h"G] for any set G € Ps and any S-formula ¢. Thisimplies
the result by the ordinary forcing theorems. (2" G isthe h-imageof G .)

Theinduction steps B and C in Section 4.1 do not cause any problem. (However
Lemma 13. and 9° participate in the consideration of step C.) O

5.3. Proof of Theorem 11

Let us supposg, to the contrary, that to forct, ¢ and t; forcy, ¢~ We may
assume that To and T6 are embrions of one and the same limit length A < w;.
By Lemmad4, thereareembrions S and S’, of length A + w, extending resp. To
and S. Then T=S[{(A+1) and T' = S’|(A + 1) are top-correct embrions of
length & + 1, still extendingresp. To and .

We can assumethat .#(T) = .#(T').

(Indeed, supposethat, say, #(T') < #(T). Let n = A+ ¢ (T), alimit ordinal.
Let T1 be an embrion of length n + @, extending T. Choose, by Lemma 12.,
h € 4 (T) N Isom(T,T’). Define T = ATy : an embrion of length n + » by
Lemma 13.. Notethat T = T1[(n + 1) and T, = T7[(n + 1) are top-correct
embrionsof length n+1, extendingresp. T and T'. Finally, as n islong enough,
we have h € ./ (TY), which easily implies .#(T2) = .4 (T%). Now we can take
T2 and T, instead of T, T'.)
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Fix conditions t € Pt and t" € Py suchthat to < t, t; <t/, and t €
Ti(h), t' e TJT(A) for one and the same j. Choose, by Lemma12., h € .#(T) N
Isom(T,T’) suchthat i(t) =t’. Then S = hS isan embrion of length A + @
extending T’ by Lemma13.,and t’ € Pg. Then, by Lemma7., t forcs ¢ —thus
t’ forcg he by Lemmal4., —and t’ forcg ¢~. However he is ¢ because ¢
does not contain terms, which is a contradiction by 5°.
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