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Abstract It is true in the Cohen, Solovay-random, dominaning, and Sacks generic
extension, that every countable ordinal-definable set of reals belongs to the ground
universe. It is true in the Solovay collapse model that every non-empty OD countable
set of sets of reals consists of OD elements.
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1 Introduction

It is known from descriptive set theory that countable definable sets of reals have
properties unavailable for arbitrary sets of reals of the same level of definability. Thus
all elements of a countable Δ1

1 set of reals are Δ1
1 themselveswhile an uncountable Δ1

1
set does not necessarily contain a Δ1

1 real. This difference vanishes to some extent at
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286 V. Kanovei, V. Lyubetsky

higher levels of projective hierarchy, as it is demonstrated that some non-homogeneous
forcing notions lead to models of ZFC with countable Π1

2 non-empty sets of reals
with no OD (ordinal-definable) elements [11],1 and such a set can even have the form
of a Π1

2 E0-equivalence class [12].
On the other hand, one may expect that homogeneous forcing notions generally

yield opposite results. Working in this direction, we prove the following theorems, the
main results of this paper.

Theorem 1.1 Let a be one of the following generic reals over the universe V:
(I) a Cohen-generic real over V;
(II) a Solovay-random real over V;
(III) a dominating-forcing real over V;
(IV) a Sacks (perfect-set generic) real over V.

Then it is true in V[a] that if X ⊆ 2ω is a countable OD set then X ∈ V .

Theorem 1.2 It is true in the Solovay model2 that every non-empty OD countable or
finite set X of sets of reals necessarily contains an OD element, and hence consists
of OD elements, as the notion of being OD is OD itself.

One may expect such theorems to be true in any suitably homogeneous generic
models.However it does not seem to be an easy task tomanufacture a proof of sufficient
generality, because of various ad hoc arguments lacking a common denominator,
which we have to use specifically for the Cohen, random, and dominating cases of
Theorem 1.1, and a totally different argument used for Theorem 1.2.

It would be interesting to investigate the state of affairs in different ‘coding by a
real’ models as those defined in [1,9].

To explain the method of the proof of Theorem 1.1 in parts I, II, III (the Sacks
case is quite elementary), let T be a name of a potential counterexample. We pick a
pair of reals a, b , each being generic over the ground set universe V , and satisfying
V[a] = V[b] . Then the interpretations T [a], T [b] of T resp. via a and via b
coincide as each of them is defined by the same formula (with ordinals) in the same
universe: T [a] = T [b] . In the same time, the pair 〈a, b〉 is a product generic pair
over a suitable countable model M , or close to be such in the sense that at least
M[a] ∩ M[b] ∩ 2ω ⊆ M . However T [a] ⊆ M[a] and T [b] ⊆ M[b] , so in fact
T [a] = T [b] ⊆ M , as required.

This scheme works rather transparently in the Cohen (Sect. 2) and Solovay-random
(Sect. 3) cases, but contains a couple of nontrivial lemmas (5.5 and especially 5.6 with
a lengthy proof) in the dominating case (Sect. 5).

We add an alternative and rather elementary proof for the Cohen and Solovay-
random cases (Sect. 4), whichmakes use of some old folklore results related to degrees
of reals in those extensions over the ground model. We finish in Sect. 7 with a proof
of Theorem 1.2.

1 The model presented in [11] was obtained via the countable product of Jensen’s minimal Δ1
3 real

forcing [6]. Such a product-forcing model was earlier considered by Enayat [4].
2 The Solovay model is a model of ZFC defined in [17], in which all projective, and even all ROD, real-
ordinal definable, sets of reals are Lebesgue measurable. See Kanovei and Lyubetsky [10,13] and Stern [18]
on different aspects of definability in the Solovay model.
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Countable OD sets of reals belong to the ground model 287

2 Cohen-generic case

Here we prove Case I of Theorem 1.1. We begin with some notation and a couple of
preliminary lemmas.

Assume that u, v ∈ 2ω ∪ 2<ω are dyadic sequences, possibly of different (finite
or infinite) length. We let u �v (the termwise action of u on v ) be a dyadic sequence
defined so that dom u �v = dom v (independently of the length dom u of u ) and if
j < dom v then

(u �v)( j) =
{
1 − v( j), whenever j < dom u ∧ u( j) = 1,
v( j), otherwise.

In particular, if z ∈ 2ω ∪ 2<ω then x 	→ z � x (x ∈ 2ω ) is a homeomorphism of 2ω

while p 	→ z � p ( p ∈ 2<ω ) is an order automorphism of 2<ω .
Let Coh = 2<ω be the Cohen forcing.

Lemma 2.1 Let M be a transitive model of a large fragment of ZFC . Then

(i) if a pair 〈a, b〉 ∈ 2ω×2ω is (Coh × Coh)-generic over M then M[a]∩M[b] =
M—this is a well-known theorem on product forcing;

(ii) if a pair 〈a, b〉 ∈ 2ω × 2ω is (Coh × Coh)-generic over M then so is the pair
〈a, a �b〉;

(iii) if M is countable and p, q ∈ Coh then there are reals a, b ∈ 2ω , Coh-generic
over V and such that p ⊂ a , q ⊂ b, V[a] = V[b] , and the pair 〈a, b〉 is
(Coh × Coh)-generic over M .

Proof (ii) Otherwise there is a condition 〈p, q〉 ∈ Coh×Coh with dom p = dom q ,
which forces the opposite over M . By the countability, there is a real a ∈ 2ω in V
Coh-generic over M , with p ⊂ a ; M[a] is a set in V . Let r = p �q and let c ∈ M
be Coh-generic over M[a] , with r ⊂ c . Then b = a �c is Coh-generic over M[a] by
obvious reasons, c = a �b , and q = p �r ⊂ b = a �c . Finally 〈a, b〉 is (Coh × Coh)-
generic over M by the product forcing theorem, a contradiction.

(iii) Assuming wlog that dom p = dom q , we let r = p �q . Once again, there is
a real c ∈ 2ω in V , Coh-generic over M , with r ⊂ c . Let a ∈ 2ω be Coh-generic
over V , hence over M[c] , too, and satisfying p ⊂ a . Then the real b = c �a is Coh-
generic over V (since c ∈ V), V[b] = V[a] , and q = r � p ⊂ b .

Finally the pair 〈a, c〉 is (Coh × Coh)-generic over M by the product forcing
theorem, therefore 〈a, b〉 = 〈a, a �c〉 is (Coh × Coh)-generic over M by (ii). �

Proof [Theorem 1.1, case I] Let a0 ∈ 2ω be a real Coh-generic over the universe V .
First of all, note this: it suffices to prove that (it is true in V[a0] that) if Z ⊆ 2ω is
a countable OD set then Z ⊆ V . Indeed, as the Cohen forcing is homogeneous, any
statement about sets in V , the ground model, is decided by the weakest condition.

Thus let Z ⊆ 2ω be a countable OD set in V[a0] .
Suppose to the contrary that Z �⊆ V .
There is a formula ϕ(z) with an unspecified ordinal γ0 as a parameter, such that

Z = {z ∈ 2ω: ϕ(z)} in V[a0] , and then there is a condition p0 ∈ Coh such that
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288 V. Kanovei, V. Lyubetsky

p0 ⊂ a0 and p0 Coh-forces that {z ∈ 2ω: ϕ(z)} is a countable set and (by the contrary
assumption) also forces ∃ z (z /∈ V ∧ ϕ(z)) .

There is a sequence {tn }n<ω ∈ V of Coh-names, such that if x ∈ 2ω is Cohen
generic and p0 ⊂ x then it is true in V[x] that {z ∈ 2ω: ϕ(z)} = {tn[x]: n < ω} ,
where t[x] is the interpretation of a Coh-name t by a real x ∈ 2ω. Let T ∈ V be the
canonical Coh-name for {tn[ȧ]: n < ω} . Thus we assume that

(1) p0 Coh-forces, over V , that T [ȧ] = {x ∈ 2ω: ϕ(x)} �⊆ V̌ ,

where ȧ is the canonical Coh-name for the Coh-generic real, and V̌ is a name for
the ground model (of “old” sets).

We continue towards getting a contradiction from (1). Pick a regular cardinal
κ > α0 , sufficiently large for the set Hκ to contain γ0 and all names tn and T .
Consider a countable elementary submodel M of Hκ containing γ0 , all tn , T . Let
π :M → M′ be theMostowski collapse onto a transitive set M′ . As Coh is countable,
we have π(Coh) = Coh , π(tn) = tn , π(T ) = T , so T ∈ M′ .

Nowpick reals a, b ∈ 2ω Coh-generic over V byLemma2.1(ii), such that p0 ⊂ a ,
p0 ⊂ b , V[a] = V[b] , and the pair 〈a, b〉 is (Coh × Coh)-generic over M′ . In
particular, as V[a] = V[b] , we have T [a] = T [b] �⊆ V by (1). On the other hand,
M′[a] ∩ M′[b] ⊆ M′ by Lemma 2.1(i), therefore T [a] ∩ T [b] ⊆ M′[a] ∩ M′[b] ⊆
M′ ⊆ V , contrary to the above. �
 (Theorem 1.1, case I)

3 Solovay-random case

Here we prove Case II of Theorem 1.1.
Let λ be the standard probability Lebesgue measure on 2ω. The Solovay-random

forcing Rand consists of all trees τ ⊆ 2<ω with no endpoints and no isolated
branches, and such that the set [τ ] = {x ∈ 2ω: ∀ n (x �n ∈ τ)} has positive mea-
sure λ([τ ]) > 0. The forcing Rand depends on the ground model, so that “random
over a model M” will mean “(Rand ∩ M)-generic over M”.

Lemma 3.1 (trivial in the Cohen case) If M ⊆ N are TM of a large fragment of
ZFC , and a ∈ 2ω is random over N then a is random over M , too.3

Proof It suffices to prove that if A ∈ M is a maximal antichain in Rand ∩ M then
A remains such in Rand ∩ N , which is rather clear since being a maximal antichain
in Rand amounts to (1) countability, (2) pairwise intersections being null sets (those
of λ-measure 0), and (3) the union being a co-null set. �


Unlike the Cohen-generic case, a random pair of reals is not a (Rand × Rand)-
generic pair. The notion of a random pair is rather related to forcing by closed sets in
2ω × 2ω (or trees which generate them, or equivalently Borel sets) of positive product
measure (non-null). This will lead to certain changes of arguments, with respect to the
Cohen-generic case of Sect. 2.

We’ll make use of the following known characterisation of random pairs.

3 This result is essentially a particular case of Lemma 3.12 in [14]. Following an advice of the anonymous
referee, we keep the proof here to maintain the flow of the arguments.
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Countable OD sets of reals belong to the ground model 289

Proposition 3.2 Let M be a transitive model of a large fragment of ZFC , and a, b ∈
2ω . Then the following three assertions are equivalent :
(1) the pair 〈a, b〉 is a random pair over M;
(2) a is random over M and b is random over M[a];
(3) b is random over M and a is random over M[b]. �

Lemma 3.3 Let M be a transitive model of a large fragment of ZFC . Then

(i) if a pair 〈a, b〉 ∈ 2ω × 2ω is random over M then M[a] ∩ M[b] ∩ 2ω ⊆ M;
(ii) if a pair 〈a, b〉 ∈ 2ω × 2ω is random over M then so is the pair 〈a, a �b〉;
(iii) if M is countable and τ ∈ Rand then there are reals a, b ∈ [τ ] , random over

V , such that V[a] = V[b] , and the pair 〈a, b〉 is random over M .

Proof (i) This is somewhat more difficult than in the Cohen-generic case of
Lemma 2.1(i). Assume towards the contrary that x ∈ M[a] ∩M[b] ∩ 2ω but x /∈ M .
The random forcing admits continuous reading of real names, meaning that there are
continuous maps f, g: 2ω → 2ω , coded in M and such that x = f (a) = g(b) . Let
the contrary assumption be forced by a Borel set P ⊆ 2ω × 2ω of positive product
measure, coded in M and containing 〈a, b〉 ; in particular, P (random pair)-forces
that f (ȧlef) = g(ȧrig) .4 By the Lebesgue density theorem, we can wlog assume
that every point 〈x, y〉 ∈ P has density 1.

We claim that f (x) = g(y) for all 〈x, y〉 ∈ P . Indeed if 〈x0, y0〉 ∈ P and
f (x0) �= g(y0) then say f (x0)(n) = 0 �= g(y0)(n) = 1 for some n . As f, g are
continuous, there is a nbhd Q of 〈x0, y0〉 in P such that f (x)(n) = 0 �= g(y)(n) = 1
for all 〈x, y〉 ∈ Q . But Q′ is a non-null set by the density 1 assumption. It follows
that Q forces that f (ȧlef) �= g(ȧrig) , a contradiction.

Let a cell be any Borel set Q ⊆ P such that f, g are constant on Q , that is, there
is a real r such that f (x) = g(y) = r for all 〈x, y〉 ∈ Q . Note that in this case, if
Q is non-null then Y forces f (ȧlef) = g(ȧrig) = r ∈ M , therefore to prove (i) it
suffices to show the existence of a non-null cell Q ⊆ P .

Let Px = {y: 〈x, y〉 ∈ P } and Py = {x : 〈x, y〉 ∈ P } , cross-sections. By Fubini,
the sets X = {x : λ(Px ) > 0} and Y = {y: λ(Py ∩ X) > 0} are non-null. Let y0 ∈ Y
and let X ′ = Py0 ∩X , a non-null set. By construction, if x ∈ X ′ then the cross-section
Px is non-null, and hence Q = {〈x, y〉 ∈ P: x ∈ X ′ } is non-null by Fubini. We claim
that Q is a cell. Indeed suppose that 〈x, y〉 ∈ Q . Then x ∈ X ′ , therefore 〈x, y0〉 ∈ P ,
and we have f (x) = g(y0) by the above claim. However 〈x, y〉 ∈ P , hence similarly
g(y) = f (x) . Thus g(y) = f (x) = g(y0) = Const on Q , as required.

(ii) The contrary assumption implies the existence (in M) of a non-null Borel set
P ⊆ 2ω × 2ω and a null Borel set Q ⊆ 2ω × 2ω such that the map 〈x, y〉 	→ 〈x, x �y〉
maps P into Q . However this map is obviously measure-preserving, a contradiction.

(iii) The set P = {〈x, x � y〉: x, y ∈ [τ ]} is non-null, hence, by Fubini, so is the
projection Y = {y: λ(Py) > 0} , where Py = {x : 〈x, y〉 ∈ P } , as above. Let, in V ,
y ∈ Y be random over M . Then Py is non-null, so we can pick a real a ∈ Py random
over V hence, over M[y] , too. Then the pair 〈a, y〉 belongs to P and is random over
M by Proposition 3.2. Let b = a � y . It follows by (ii) that the pair 〈a, b〉 is random

4 ȧlef, ȧrig are canonical names for the left, resp., right of the terms of a random pair.
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over M as well. And a, b ∈ [τ ] by construction. Finally b is random over V since
so is a while y ∈ V . �

Proof [Theorem 1.1, case II] As above (the Cohen case), the contrary assumption
leads to a formula ϕ(z) with γ0 ∈ Ord as a parameter, a condition τ0 ∈ Rand in
V which Rand-forces, over V , that the set {z ∈ 2ω: ϕ(z)} is countable and ∃ z (z /∈
V̌∧ ϕ(z)) , a sequence {tn }n<ω ∈ V of Rand-names for reals in Zω , and a canonical
Rand-name T ∈ V for {tn[ȧ]: n < ω} , such that

(1) if x ∈ [τ0] is a random real over V , then it is true in V[x] that

{z ∈ 2ω: ϕ(z)} = {tn[x]: n < ω} = T [x] �⊆ V.

Pick a regular cardinal κ > α0 , sufficiently large for the set Hκ to contain γ0 and
all names tn and T . Consider a countable elementary submodel M of Hκ containing
γ0 , all names tn and T , and Rand . Let π :M → M′ be the Mostowski collapse onto
a transitive set M′ . Unlike the Cohen case, the set Rand′ = π(Rand) is equal to
Rand ∩ M′ , just the random forcing in M′ , but still π(tn) = tn for all n , since by
the ccc property of Rand we can assume that tn is a hereditarily countable set, and
accordingly π(T ) = T .

Pick reals a, b ∈ [τ0] random over V by Lemma 3.3(iii), such that V[a] = V[b] ,
and the pair 〈a, b〉 is random over M′ . As V[a] = V[b] , we have T [a] = T [b] �⊆ V
by (1). But M′[a]∩M′[b] ⊆ M′ by Lemma 2.1(i), therefore T [a]∩T [b] ⊆ M′[a]∩
M′[b] ⊆ M′ ⊆ V , and we get a contradiction required.

�
 (Theorem 1.1, case II)

4 Cohen and random cases: a different proof

Herewepresent a shorter proof ofCases I and II of Theorem1.1, based on the following
lemmas.

Lemma 4.1 Let a ∈ 2ω be Cohen-generic over a transitive model M , and b ∈
2ω ∩ M[a] , a real in the extension. Then
(i) either b ∈ M or there is a real b′ ∈ 2ω , Cohen-generic over M and satisfying

M[b] = M[b′] ;
(ii) either M[b] = M[a] or M[a] is a Cohen-generic extension of M[b] . �

Lemma 4.2 Let a ∈ 2ω be random over a transitive model M , and b ∈ 2ω ∩M[a] ,
a real in the extension. Then

(i) either b ∈ M or there is a real b′ ∈ 2ω , random over M and satisfying M[b] =
M[b′] ;

(ii) either M[b] = M[a] or M[a] is a random extension of M[b] . �

The lemmas are known in set theoretic folklore, yet we are not able to suggest any

reference. In particular Lemma 4.1(ii) is rather simple on the base on general results
on intermediate models by Grigorieff [5] since any subforcing of the Cohen forcing
either is trivial or is equivalent to Cohen forcing.
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Countable OD sets of reals belong to the ground model 291

Proof [Theorem 1.1, case I, from Lemma 4.1] In M[a] , let b belong to a countable
OD set X = {x ∈ 2ω: ϕ(x)} , where ϕ is a formula containing ordinals. As b ∈ M[a] ,
there is a Borel function f , coded in M , such that b = f (a) . We have to prove that
b ∈ M . Let ȧ be a canonical Coh-name for the generic real.

We have two cases, by Lemma 4.1(ii).
Case 1 M[b] = M[a] . Then there is a Borel function g , coded in M , such that
a = g(b) . There is a Cohen condition u ∈ Coh which satisfies u ⊂ a and forces
ȧ = g( f (ȧ)) , ϕ( f (ȧ)) , and the sentence “{x ∈ 2ω: ϕ(x)} is countable”.

Now, the set A of all reals a′ ∈ 2ω , Cohen-generic over M and satisfying u ⊂ a′
and M[a′] = M[a] , belongs to M and definitely is uncountable in M . If a′ ∈ A then
f (a′) satisfies ϕ( f (a′)) in M[a′] = M[a] and hence belongs to X . Furthermore if
a′ �= a′′ ∈ A then f (a′) �= f (a′′) since a′ = g( f (a′) and a′′ = g( f (a′′) . We
conclude that X is uncountable, a contradiction.
Case 2 M[a] is a Cohen-generic extension of M[b] . Let ψ(x) be the formula saying:
“x ∈ 2ω and Coh forces ϕ(ẋ) , where ẋ is a canonical Coh-name for x in any
transitive ground model containing x . As Coh is a homogeneous forcing notion, the
set Y = X∩M[b] coincideswith the set {x ∈ 2ω: ψ(x)} defined in M[b] , and b ∈ Y .
Finally M[b] is a Cohen extension of M by Lemma 4.1(i) (or else just b ∈ M), and
it remails to apply the result in Case 1 to Y . �

Proof [Theorem 1.1, case II, from Lemma 4.2] Similar. �


It is really temptating to prove the dominating case of the theorem by this same
rather simple method. However we cannot establish any result similar to Lemmas 4.1,
4.2 for dominating forcing. Some relevant results by Palumbo [15,16] fall short of
what would be useful here. Generally, a remark in [15, Section 4] casts doubts that
even claims (i) of the lemmas hold for dominating-generic extensions in any useful
form. This is why we have to process the dominating case of Theorem 1.1 the hard
way in the next section.

5 Dominating case

Here we prove Case III of Theorem 1.1.
Let Z = {. . . ,−2,−1, 0, 1, 2, . . .} , integers of both signs.
We let the dominating forcing DF consist of all pairs 〈n, f 〉 such that f ∈ Zω

(that is, f is an infinite sequence of integers) and n < ω . We order DF so that
〈n, f 〉 ≤ 〈n′, f ′〉 (the bigger is stronger) iff n ≤ n′ , f �n = f ′�n , and f ≤ f ′
componentwise, that is, f (k) ≤ f ′(k) holds for all k < ω .5

A modified version DF′ consists of all pairs 〈u, h〉 , where u ∈ Z<ω , h ∈ Zω .
Each such pair is identified with the pair 〈dom u, u�h〉 ∈ DF , where � denotes the
concatenation, and the order on DF′ is induced by this identification.

5 This slightly differs from the standard definition, as e.g. in Bartoszyński and Judah [2, 3.1] where
f ∈ ωω . The difference does not change any forcing properties, but leads to a more friendly setup since
DF as defined here is a group under componentwise addition.
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Definition 5.1 If G ⊆ DF is a generic filter then aG = ⋃
〈n, f 〉∈G f �n belongs

to Zω ; we call aG a dominating-generic real. More exactly, if M is a transitive
model and a set G ⊆ DF ∩ M is (DF ∩ M)-generic over M then say that aG is a
dominating-generic (dg, in brief) real over M . �

Remark 5.2 Unfortunately there is no result similar to Proposition 3.2 for the domi-
nating forcing, since if a is a dg real over M and b is a dg real over M[a] then a
is definitely not dg over M[b] . This will make our arguments here somewhat more
complex than in the Solovay-random section. �


If u, v are finite or infinite sequences of integers in Z then let u ⊕ v be a sequence
defined by componentwise sum, so that dom (u ⊕ v) = dom v (independently of the
length dom u ) and if j < dom v then (u ⊕ v)( j) = u( j) + v( j) . If in addition
dom u = dom v then u � v is defined similarly.

For instance f ⊕ g and f � g are defined for all f, g ∈ Zω.

Lemma 5.3 If M ⊆ N are TM of a large fragment of ZFC , and a ∈ Zω is dg over
N then a is dg over M , too.

Proof It suffices to prove that if A ∈ M is a maximal antichain in DF ∩ M then A
remains such in DF ∩ N . Note that A is countable in M since DF is a ccc forcing,
therefore A is effectively coded by a real r ∈ M so that being a maximal antichain is
a Π1

1 property of r . It remains to refer to the Mostowski absoluteness theorem. �

Lemma 5.4 If M is a TM of a large fragment of ZFC , h ∈ M∩Zω, and a ∈ Zω is
a dg real over M then a ⊕ h , a � h are dg over M , too.

Proof The maps 〈n, f 〉 	→ 〈n, f ⊕ h〉 and 〈n, f 〉 	→ 〈n, f � h〉 are order-
automorphisms of DF ∩ M in M . �

Lemma 5.5 If M is a TM of a large fragment of ZFC , a ∈ Zω is a dg real over M ,
and b ∈ Zω is a dg real over M[a] , then M[a] ∩ M[b] ∩ 2ω ⊆ M .

Proof Otherwise the opposite is forced over M[a] by a condition 〈n, f 〉 ∈ DF ∩
M[a] ; thus f ∈ Zω ∩ M[a] . To be more precise, 〈n, f 〉 (DF ∩ M)-forces M[ḃ] ∩
M[a] ∩ 2ω �⊆ M over M[a] , where M is a suitable name for M as a class in M[a] ,
and ḃ is a canonical name for the dg real over M[a] .

We claim that any other condition 〈n′, f ′〉 ∈ DF∩M[a] forces the same. Suppose
to the contrary that in fact some 〈n′, f ′〉 ∈ DF∩M[a] forces M[ḃ]∩M[a]∩2ω ⊆ M
over M[a] . We can wlog assume that n′ = n and the n-tails of f and f ′ coincide:
f ( j) = f ′( j) for all j ≥ n . Now let b ∈ Zω be a dg real over M[a] compatible
with 〈n, f 〉 , that is, b�n = f �n and f ≤ b componentwise. Let b′ ∈ Zω be defined
so that b′( j) = b( j) for all j ≥ n , but b�n = f ′�n ; then b′ is a dg real over M[a]
compatible with 〈n, f ′〉 . Then by construction we have M[b] ∩M[a] ∩ 2ω �⊆ M but
M[b′]∩M[a]∩2ω ⊆ M . However obviously M[b] = M[b′] , a contradiction which
completes the claim.

We conclude that if b ∈ Zω is anydg real over M[a] then M[b]∩M[a]∩2ω �⊆ M .
As a itself is generic over M , there is a condition 〈m, h〉 ∈ DF ∩ M such that
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M[b] ∩ M[a] ∩ 2ω �⊆ M holds whenever a ∈ Zω is dg over M compatible with
〈m, h〉 and b ∈ Zω is dg over M[a] .

Now let κ = 2ℵ0 in M , and let λ = κ+ be the next cardinal in M . Let

Q = {〈m′, h′〉 ∈ DF ∩ M: 〈m, h〉 ≤ 〈m′, h′〉}.

Consider the finite-support forcing product Qλ in M . A Qλ-generic extension of
M has the form N = M[{aξ }ξ<λ] , where aξ ∈ 2ω are pairwise dg reals over M ,
compatible with 〈m, h〉 , in particular M[aξ ] ∩ M[aη] = M whenever ξ �= η .

Consider a (DF ∩ N)-generic extension N[b] of N , so that b ∈ Zω is a dg real
over N . Then b is dg over each M[aξ ] by Lemma 5.3. It follows by the above that
M[b]∩M[aξ ]∩2ω �⊆ M . Let zξ ∈ M[b]∩M[aξ ]∩2ω

�M , for all ξ < λ . Note that
if ξ �= η then zξ �= zη since M[aξ ]∩M[aη] = M , see above. Thus we have λ-many
different reals in M[b] . However M[b] is a CCC extension of M by Lemma 5.3, and
hence there cannot be more (in the sense of cardinality) reals in M[b] than in M . The
contradiction ends the proof. �

Lemma 5.6 If M is a TM of a large fragment of ZFC , a ∈ Zω is a dg real over M ,
and b ∈ Zω is a dg real over M[a] , then M[b] ∩ M[a ⊕ b] ∩ 2ω ⊆ M .

Onemaywant to prove the lemma by proving that 〈b, a⊕b〉 is dominating product-
generic over M due to the genericity of a . But in fact this is not the case. Indeed if
〈b, a⊕b〉 is dominating product-generic over M then a transparent forcing argument
shows that a = (a ⊕ b) � b is simply Cohen-generic over M , contrary to a being
dg.

Proof By Lemma 5.4, a ⊕ b is dg over M[a] , and hence over M by Lemma 5.4
Therefore the contrary assumption implies a pair of (DF ∩ M)-real names σ, τ ∈ M
such that σ [b] = τ [a ⊕ b] ∈ 2ω

�M , where t[b] is the i-nterpretation of σ .
Let us present the two-step iterated forcing P ∈ M which produces M[a][b] as

DF ∗DF′ , with DF′ , not DF , as the second stage. Then P consists of all quadruples,
or double-pairs, of the form p = 〈〈mp, f p〉, 〈u p, tp〉〉 = 〈mp, f p, u p, tp〉 , where
〈mp, f p〉 ∈ DF ∩ M , u p ∈ Z<ω , and tp ∈ M is a DF-name for an element of Zω ,
with a suitable order. We shall use ȧ, ḃ as canonical P-names of the dg real over M
and dg real over M[a] , respectively.

By the contrary assumption, there is a condition p0 = 〈m0, f0, u0, t0〉 ∈ P which
P-forces, over M , the formula σ [ḃ] = τ [ȧ ⊕ ḃ] ∈ 2ω

�M, so that

(1) if 〈a, b〉 ∈ Zω is a pair P-generic over M (so a is dg over M and b dg over
M[a]) and compatible with p0 , then σ [b] = τ [a ⊕ b] ∈ 2ω

�M.

Let n0 = dom u0 . We can assume that n0 ≤ m0 ; otherwise change m0 to n0 .
By simple strengthening, we find a stronger condition p1 = 〈m1, f1, u1, t1〉 in P ,

p1 ≥ p0 , such that m0 ≤ n1 = dom u1 ≤ m1 .

Claim If conditions p2 = 〈m, f, u2, t2〉 and p3 = 〈m, f, u3, t3〉 (same m, f !) in
P satisfy p1 ≤ p2 , p1 ≤ p3 , and in addition k < ω , z ∈ {0, 1} , and p2 P-forces
σ [ḃ](k) = z then so does p3 .

123



294 V. Kanovei, V. Lyubetsky

Proof [Claim] Otherwise there are conditions p2 and p3 as in the claim, such that
p2 P-forces σ [ḃ](k) = 0 while p3 P-forces σ [ḃ](k) = 1. We can wlog assume that
dom u3 = dom u2 = some n and m1 ≤ n ≤ m , so overall

n0 = dom u0 ≤ m0 ≤ n1 = dom u1 ≤ m1 ≤ n = dom u2 = dom u3 ≤ m. (5.2)

And we can wlog assume that

(3) t2 = t3 = some t ∈ Z<ω , thus p2 = 〈m, f, u2, t〉 P-forces σ [ḃ](k) = 0 while
p3 = 〈m, f, u3, t〉 (same m, f, t !) P-forces σ [ḃ](k) = 1.

Indeed just let t = sup{t2, t3} termwise, thus t ∈ M is a (DF ∩ M)-name saying: I
am a real in Zω and each value t ( j) is equal to sup{t2( j), t3( j)} .

It is clear that the difference between the conditions p2 and p3 of (3) is located
in the set U = { j : u2( j) �= u3( j)} ⊆ [n1, n) = { j : n1 ≤ j < n} , which we divide
into subsets U2 = { j : u3( j) < u2( j)} and U3 = { j : u2( j) < u3( j)} . Now define
f2, f3 ∈ Zω as follows:

f3( j) =
{
f ( j) + u2( j) − u3( j), whenever j ∈ U2
f ( j), otherwise

;

f2( j) =
{
f ( j) + u3( j) − u2( j), whenever j ∈ U3
f ( j), otherwise

;

⎫⎪⎪⎬
⎪⎪⎭

(5.4)

so that f ≤ f2 and f ≤ f3 termwise, the difference between f, f2, f3 is still located
in U ⊆ [n1, n) , and the termwise sums ( f2�n) ⊕ u2 , ( f3�n) ⊕ u3 coincide.

Note that q2 = 〈m, f2〉 and 〈m, f3〉 are conditions in DF ∩ M , and f2�n1 =
f3�n1 = f �n1 by construction. Let a0 ∈ Zω be a dg real over M , compatible with
the condition 〈m, f 〉 , so that
(a) f �m ⊂ a0 and f ≤ a0 termwise,

Accordingly define a2, a3 ∈ Zω so that

(b) a2�n = f2�n , a3�n = f3�n , and a3( j) = a2( j) = a0( j) for all j ≥ n , so that
f2 ≤ a2 and f3 ≤ a3 termwise.

Then a2, a3 are dg reals over M , compatible with resp. 〈m, f2〉 , 〈m, f3〉 .
Now come back to the name t which occurs in conditions p2, p3 in (3). As t is a

(DF ∩ M)-name for a real in Zω , in fact the interpretations t[a0] , t[a2] , t[a3] belong
to Zω ∩M[a0] . Moreover, as soon as the finite strings f �n , u2 , u3 (of length n ) are
given, the reals a2 = H2(a0) and a3 = H3(a0) are defined by simple functions H2
and H3 whose definitions are contained in (b) and (5.4). Let t ′ ∈ M be a (DF ∩ M)-
name for a real in Zω , explicitly defined as the termwise supremum of t[ȧ] , t[H2(ȧ)] ,
t[H3(ȧ)] , so that in particular

(c) t ′[a0]( j) = sup{t[a0]( j), t[a2]( j), t[a3]( j)} for all j < ω .

Note that q2 = 〈m, f2, u2, t〉 and q3 = 〈m, f3, u3, t〉 are still conditions in P ,
and f2�n1 = f3�n1 = f �n1 by construction. As n0 ≤ m0 ≤ n1 by (5.2), it follows
that p0 ≤ q2 and p0 ≤ q3 . (We do not claim that p1 ≤ q2,3 or p2,3 ≤ q2,3 !) By the
choice of a0 there is a real b2 ∈ Zω such that 〈a0, b2〉 is a P-generic pair in Zω ×Zω ,
compatible with the condition p′

2 = 〈m, f, u2, t ′〉 , so that
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(d) u2 ⊂ b2 , and u2�t ′[a0] ≤ b2 termwise.

We further define b3 ∈ Zω so that

(e) u3 ⊂ b3 , and b3( j) = b2( j) for all j ≥ n = dom u2 = dom u3 , hence
u3�t ′[a0] ≤ b3 termwise by (d).

It follows that 〈a0, b3〉 is a P-generic pair, compatible with p3 = 〈m, f, u3, t〉 . We
conclude by (3) that

(5) σ [b2](k) = 0 while σ [b3](k) = 1, thus σ [b2] �= σ [b3] .

Then the pairs 〈a2, b2〉 and 〈a3, b3〉 are P-generic over M , and we have

(6) a2 ⊕ b2 = a3 ⊕ b3—therefore τ [a2 ⊕ b2] = τ [a3 ⊕ b3] ,

since (a2�n) ⊕ (b2�n) = ( f2�n) ⊕ u2 = ( f3�n) ⊕ u3 = (a3�n) ⊕ (b3�n) by
construction, and if n ≤ j then a3( j) = a2( j) = a0( j) and b3( j) = b2( j) .

Assume for a moment that

(7) the pairs 〈a2, b2〉 , 〈a3, b3〉 are compatible with the conditions resp. q2, q3 .

Then, as p0 ≤ q2, q3 , we have σ [b2] = τ [a2 ⊕ b2] and σ [b3] = τ [a3 ⊕ b3] , by
(1). It follows that σ [b2] = σ [b3] by (6), which is a contradiction with (5), and this
proves the claim. Thus it remains to establish (7), which amounts to

(7)a f2�m ⊂ a2 , f3�m ⊂ a3 , and f2 ≤ a2 , f3 ≤ a3 termwise,
(7)b u2 ⊂ b2 , u3 ⊂ b3 , and
(7)c u2�t[a2] ≤ b2 and u3�t[a3] ≤ b3 termwise.

Beginning with (7)a, note that f2�n ⊂ a2 by (b), while if n ≤ j < m then
a2( j) = a0( j) = f ( j) by (b) and (a), and f2( j) = f ( j) by construction, hence
a2( j) = f2( j) , and f2�m ⊂ a2 is verified. Similarly, if j ≥ m then f2( j) = f ( j)
and a2( j) = a0( j) , but f ( j) ≤ a0( j) by (a), hence f2( j) ≤ a2( j) .

Claim (7)b immediately follows from (d), (e).
As regards for (7)c, we have t[a2] ≤ t ′[a0] and t[a3] ≤ t ′[a0] componentwise by

(c). It remains to refer to (d) and (e).
�
 (Claim 5)

A standard consequence of the claim is that p1 P-forces that σ [ḃ] ∈ M[ȧ] .
However p0 ≤ p1 and p0 forces the opposite, a contradiction.

�
 (Lemma 5.6)

Proof [Theorem 1.1, case III] As above, the contrary assumption leads to a formula
ϕ(z) with γ0 ∈ Ord as a parameter, a condition p0 = 〈m0, f0〉 ∈ DF in V which
DF-forces, over V , that the set {z ∈ 2ω: ϕ(z)} is countable and ∃ z (z /∈ V̌ ∧ ϕ(z)) ,
a sequence {tn }n<ω ∈ V of DF-names for reals in Zω , and a canonical DF-name
T ∈ V for {tn[ȧ]: n < ω} , such that

(8) if x ∈ Zω is a dg real, over V , compatible with p0 then it is true in V[x] that
{z ∈ 2ω: ϕ(z)} = {tn[x]: n < ω} = T [x] �⊆ V.
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Pick a regular cardinal κ > α0 , sufficiently large for Hκ to contain γ0 and all
names tn and T . Consider a countable elementary submodel M of Hκ containing
γ0 , all tn , T , and DF . Let π :M → M′ be the Mostowski collapse onto a transitive
set M′ . We have π(tn) = tn for all n (as by the ccc property of DF we can assume
that tn is a hereditarily countable set), and π(T ) = T .

By the countability, there is a real a ∈ Zω in V , dg over M′ . We can wlog assume
that a( j) = 0 for all j < m0 and a( j) ≥ 0 for all j ≥ m0 .

Let b ∈ Zω be a real dg over V , compatible with p0 . In our assumptions, the real
b′ = a⊕b ∈ Zω also is dg over V and compatible with p0 , and V[b′] = V[b] (since
a ∈ V). Then T [b] = T [b′] by (8).

On the other hand, b is dg over M′[a] as well by Lemma 5.3. It follows by
Lemma 5.6 that M[b] ∩ M[b′] ∩ 2ω ⊆ M , therefore

T [b] ∩ T [b′] ⊆ M′[b] ∩ M′[b′] ⊆ M′ ⊆ V,

so that T [b] = T [b′] ⊆ V , and we get a contradiction required with (8).

�
 (Theorem 1.1, case III)

6 Sacks case

It is a known property of Sacks-generic extensions V[a] that if b ∈ 2ω is a real in
V[a] then either b ∈ V or b itself is Sacks-generic over V and V[b] = V[a] . Thus
if X ∈ V[a] is an OD set of reals in V[a] and X �⊆ V then there is a perfect set
Y ⊆ 2ω coded in V , such that every Sacks-generic real b ∈ Y in V[a] belongs to
X . However it is true in V[a] that every (non-empty) perfect set coded in V contains
uncountably many reals Sacks-generic over V .

This is a rather transparent argument, so we can skip details.
�
 (Theorem 1.1, case IV)

7 A stronger result in the Solovay model

Here we prove Theorem 1.2. The case, when X is a (non-empty OD countable) set
of reals in this theorem, is well known and is implicitly contained in the proof of the
perfect set property for ROD sets of reals by Solovay [17]. However the proofs known
for this particular case of sets of reals (as, e.g., in [7] or Stern [18]) do not work for
sets X ⊆ P(2ω) (as in Theorem 1.2).

Our first proof of Theorem 1.2 was presented in a preprint [8]. Further research
demonstrated though that the original proof was a largely unnecessary roundabout,
and the result can be obtained by a rather brief reduction to the following known
property of the Solovay model:

Proposition 7.1 (Silver’s theorem, the OD case, see Kanovei [7] or Stern [18]) It
holds in the Solovay model, that if an OD equivalence relation on ωω has at most
countably many equivalence classes then all equivalence classes are OD sets. �
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Proof [Theorem 1.2 from 7.1] Arguing in the Solovay model, let X be a non-empty
OD countable set of sets of reals; we have to prove that X contains an OD element
(an OD set of reals). Consider a particular case first.
Case 1 X consists of pairwise disjoint sets. If x, y are reals then define x E y iff
either both x, y do not belong to

⋃
X or x, y belong to the same set X ∈ X . Clearly

this is an OD relation still with countably many equivalence classes, and hence each
E-class is an OD set, as required.
Case 2 General. Let C be the set of all countable sets C of reals, such that if X �= Y
belong to X then already X ∩C �= Y ∩C . Note that C �= ∅ as X is countable. If
X ∈ X then let PX be the set of all pairs of the form 〈C, X ∩ C〉 , where C ∈ C .
Then PX ∩ PY = ∅ whenever X �= Y belong to X . We conclude that P = {PX :
X ∈ X } is a countable collection of pairwise disjoint non-empty sets PX of pairs of
the form 〈C,C ′〉 , where C ′ ⊆ C are countable sets of reals.

There exists anOD coding of such pairs by reals, that is, anODmap x 	→ 〈Cx ,C ′
x 〉 ,

where x ∈ ωω is a real, C ′
x ⊆ Cx are countable sets of reals for any x , and for any

such pair 〈C,C ′〉 there is at least one x ∈ ωω such that C = Cx and C ′ = C ′
x . It

follows from the above that the derived sets

QX = {x ∈ ωω: 〈Cx ,C
′
x 〉 ∈ PX }, X ∈ X ,

form a countable OD family Q = {QX : X ∈ X } of pairwise disjoint non-empty sets
of reals. By the result in Case 1, all sets QX ∈ Q are OD. But if any QX is OD then
so is both PX = {〈Cx ,C ′

x 〉: x ∈ QX } and X itself. �


8 Problems

Problem 8.1 Is the stronger result as in Theorem 1.2 (for a set of sets of reals) still
true in the generic extensions mentioned in Theorem 1.1? �

Problem 8.2 Is it still true in the Solovay model that every nonempty countable OD
set (of any kind) contains an OD element? See Caicedo and Ketchersid [3] on a similar
result under a strong determinacy hypothesis AD+ . �

Problem 8.3 Do some other simple generic extensions by a real (other than Cohen-
generic, Solovay-random, ans Sacks) admit results similar to Theorem 1.1 and also
those similar to the old folklore Lemmas 4.1 and 4.2 above? �
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