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Using a modification of the invariant Jensen forcing of [11], we define a model of 
ZFC, in which, for a given n ≥ 3, there exists a lightface Π1

n-set of reals, which is 
a E0-equivalence class, hence a countable set, and which does not contain any OD
element, while every non-empty countable Σ1

n-set of reals is constructible, hence 
contains only OD reals.
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1. Introduction

Problems related to definability of mathematical objects, were among focal points of the famous discus-
sion on mathematical foundations in the beginning of XIX C. In particular, Baire, Borel, Hadamard, and 
Lebesgue, participants of the exchange of letters published in [5], in spite of essential disagreement between 
them on questions related to mathematical foundations, generally agreed that the proof of existence of an 
element in a given set, and a direct definition (or effective construction) of such an element — are different 
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mathematical results, of which the second does not follow from the first. In particular, Lebesgue in his 
contribution to [5] pointed out the difficulties in the problem of effective choice, that is, choice of definable 
element in a definable non-empty set.3

Studies in modern set theory demonstrated that effective choice is not always possible. In particular, it 
is true in many well-known models (including the very first Cohen models), that the set X = R � L of all 
Gödel-nonconstructible reals is not empty, but contains no definable elements.

One may note that if the set X is non-empty, then it has to be rather large, that is, surely of cardinality 
c, if measurable then of full measure, etc. Is there such an example among small, e.g. countable sets? This 
problem was discussed at Mathoverflow4 and Foundations of mathematics (FOM).5

The problem was solved in [10] (to appear in [16]). Namely, let L[〈an〉n<ω] be a Jω-generic extension of L, 
where Jω is the countable power (with finite support) of Jensen’s minimal forcing J [9].6 The key property 
of J is that it adds a nonconstructible generic Δ1

3 real a ∈ 2ω, in fact {a} is a Π1
2 singleton. Accordingly 

Jω adds a sequence 〈an〉n<ω of J -generic reals real an ∈ 2ω to L, and as shown in [10,16] there is no other 
J -generic reals in L[〈an〉n<ω] except for the reals an. Furthermore, since “being a J-generic real” is a Π1

2
relation, it is true in L[〈an〉n<ω] that A = {an : n < ω} is a countable (infinite) lightface Π1

2 set of reals 
without OD (ordinal-definable) elements.

Remark 1.1. Π1
2 is best possible definability type for such a set since every Σ1

2 set of reals is definitely 
constructible and hence consists of OD elements. �

Using an uncountable product of forcing notions similar to Jω, we defined in [12] a model in which there 
is a “planar” Π1

2 set with countable vertical cross-sections, which cannot be uniformized by any real-ordinal 
definable (ROD) set.

For a more detailed analysis of the problem, note that the elements an of the set A, adjoined by the 
forcing Jω, are connected to each other only by the common property of their J-genericity. Does there exist 
a similar countable set with a more definite mathematical structure?

This question was answered in [11] by a model in which there is an equivalence class of the equivalence 
relation E0

7 (a E0-class, for brevity), which is a (countable) lightface Π1
2 set in 2ω, and does not contain OD

elements. This model makes use of a forcing notion J inv, similar to Jensen’s forcing J , but different from J . 
In particular, it consists of Silver trees (rather than perfect trees of general form, as J does) and is invariant 
under finite transformations. Thus it can be called an invariant Jensen forcing. Due to the invariance, J inv

adjoins a E0-equivalence class of J inv-generic reals rather than a single real, and this class turns out to be 
a Π1

2 set without OD elements. And again Π1
2 is the lowest possible type in which such a set can be found, 

by Remark 1.1.
A forcing similar to J inv was also used in [3] to define a model with a Π1

2 Groszek–Laver pair of E0-classes.
Our main theorem extends this research line.

Theorem 1.2. Let n ≥ 3. There is a generic extension L[a] of L, by a real a ∈ 2ω, such that the following is 
true in L[a]:

(i) a /∈ OD and a is minimal over L — hence each OD real belongs to L;
(ii) the E0-class [a]E0 is a (countable) lightface Π1

n set — which by (i) does not contain OD elements;

3 Ainsi je vois déjà une difficulté dans ceci “dans un M ′ déterminé je puis choisir un m′ déterminé”, in the French original. Thus 
I already see a difficulty with the assertion that “in a determinate M ′ I can choose a determinate m′”, in the translation.
4 A question about ordinal definable real numbers. Mathoverflow, March 09, 2010. http://mathoverflow .net /questions /17608.
5 Ali Enayat. Ordinal definable numbers. FOM Jul 23, 2010. http://cs .nyu .edu /pipermail /fom /2010 -July /014944 .html.
6 See also 28A in [8] on this forcing. We acknowledge that the idea to use the countable power Jω of Jensen’s forcing J to define 

such a model belongs to Ali Enayat [2].
7 Recall that E0 is defined on the Cantor space 2ω so that x E0 y iff the set {n : x(n) �= y(n)} is finite. E0-equivalence classes are 

countable sets in 2ω, of course.

http://mathoverflow.net/questions/17608
http://cs.nyu.edu/pipermail/fom/2010-July/014944.html
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(iii) every countable Σ1
n set belongs to L, hence consists of OD elements.

Thus the theorem asserts the existence of a model of ZFC, in which, for a given index n ≥ 3, there is 
a lightface Π1

n E0-class (therefore, a countable OD set) in 2ω containing only non-OD elements, and in the 
same time every countable set of the dual definability type Σ1

n belongs to L. The above mentioned result 
of [11] corresponds to n = 2 in this theorem by Remark 1.1.

2. Connections to the Vitali equivalence relation

The relation E0 is tightly connected with the Vitali equivalence relation VIT = R/Q on the true real 
line R.8 In particular, there is a lightface Δ1

1 (in fact of a very low class Δ0
n) injection ϑ : R → 2ω which 

reduces VIT to E0 in the sense that the equivalence xVITy ⇐⇒ ϑ(x)E0ϑ(y) holds for all x, y ∈ R. (See 
Mycielski and Osofsky [19] for an explicit construction of ϑ, along with an inverse reduction of E0 to VIT.) 
It follows that Theorem 1.2 is true with (ii) for [a]VIT as well, since if C ⊆ 2ω is a Π1

n E0-class not containing 
OD elements, then the preimage C ′ = {x ∈ R : ϑ(x) ∈ C} is a Π1

n Vitali class not containing OD elements.
The interest in Vitali classes in this context is inspired by the observation that they can be viewed as the 

most elementary countable sets in R which do not allow immediate effective choice of an element. Indeed 
if a set X ⊆ R contains at least one isolated, or even one-sided isolated point, then one of such points 
can be chosen effectively. However any non-empty set X ⊆ R without one-sided isolated points is just an 
everywhere dense set (not counting closed segments of the complementary set). Yet the Vitali classes, that 
is, shifts of the rationals Q, are exactly the most simple and typical countable dense sets in R.

Historically, the Vitali relation and its equivalence classes have deep roots in descriptive set theory. For 
instance Sierpinski [20, c. 147] and Luzin [18, Section 64] observed that the quotient set R/Q of all Vitali 
classes has the property that (*) it cannot be mapped into R by an injective Borel map. On the other hand, 
as established in [15], in models of ZF (without the axiom of choice) the Hartogs number of the set R/Q
(the least cardinal which cannot be injectively mapped into R/Q) can be greater than the continuum. The 
relations E0 and VIT play a key role in modern studies of Borel equivalence relations, being the least ones, 
in the sense of the Borel reducibility [6], among those satisfying (*).

3. Structure of the proof

The proof of Theorem 1.2 is organized as follows. Basic notions, related to Silver trees in the set 2<ω of 
all finite dyadic strings, are introduced in sections 4–7. Every set P of Silver trees T , closed under restriction 
to a given string s ∈ T , and under the natural action s · T by s ∈ 2<ω, is considered as a forcing by Silver 
trees, a ST-forcing, in brief. Every ST-forcing adjoins a P-generic real a ∈ 2ω.

Arguing in the constructible universe L, we define a forcing notion to prove Theorem 1.2 in Section 11 in 
the form P =

⋃
α<ω1

Pα. The summands Pα are countable ST-forcings defined by induction. Any P-generic 
extension of L is a model for Theorem 1.2. The inductive construction of Pα involves two key ideas.

The first idea, essentially due to Jensen [9], is to make every level Pα of the construction generic in some 
sense over the union of lower levels Pξ, ξ < α. This is based on a construction developed in sections 8–10, 
which includes the technique of fusion of Silver trees. A special aspect of this construction, elaborated 
in [11], guarantees that P is invariant under the group of transformations (2<ω with the componentwise 
addition mod 2), which induces the equivalence relation E0. This invariance implies that P (unlike Jensen’s 
original forcing) adjoins a E0-class of generic reals rather than a single such real as in [9]. And overall, the 
successive genericity of the levels Pα implies that the three sets are equal in any P-generic extension of L: 

8 VIT is defined on R so that xVITy iff the set x – y is rational.
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1) the E0-class [a]E0 of the principal generic real a ∈ 2ω, 2) the intersection 
⋂

α<ω1

⋃
T∈Pα

[T ], and 3) the set 
of all P-generic reals over L. This equality is established in sections 12–14, and it leads to [a]E0 being Π1

n .
The second idea goes back to papers [7,14]. In L, let STF be the set of all countable sequences P =

〈Pξ〉ξ<α (α < ω1) compatible with the first genericity idea at each step ξ < α. Then a whole sequence 
〈Pα〉α<ω1 can be interpreted as a maximal chain in STF. It happens that if this chain is generic, in some 
sense precisely defined in Section 11 ((ii) of Theorem 11.4), with respect to all Σ1

n−1 subsets of STF, 
then the ensuing forcing notion P =

⋃
α<ω1

Pα inherits some basic forcing properties of the whole Silver 
forcing, up to a certain level of projective hierarchy. This includes, in particular, the invariance of the forcing 
relation with respect to some natural transformations of Silver trees, leading eventually to the proof of (iii)
of Theorem 1.2 in sections 15–17.

4. Silver trees

Let 2<ω be the set of all dyadic strings (finite sequences) of numbers 0, 1 — including the empty string Λ. 
If t ∈ 2<ω and i = 0, 1, then t�i is the extension of t by i as the rightmost term. If s, t ∈ 2<ω, then s ⊆ t

means that the string t extends s, while s ⊂ t means a proper extension. The length of a string s is denoted 
by lh(s), and we let 2n = {s ∈ 2<ω : lh(s) = n} (strings of length n).

The Cantor space 2ω is the set of all functions f : ω → 2 = {0, 1}. Any string s ∈ 2<ω acts on 2ω so that 
(s · x)(k) = x(k) + s(k) (mod 2) for k < lh(s), and (s · x)(k) = x(k) otherwise. If X ⊆ 2ω and s ∈ 2<ω, 
then s · X = {s · x : x ∈ X}.

Similarly, if s ∈ 2m, t ∈ 2n, m ≤ n, then define a string s · t ∈ 2n by (s · t)(k) = t(k) + s(k) (mod 2)
whenever k < m, and (s · t)(k) = t(k) whenever m ≤ k < n. If m > n, then let s · t = (s�n) · t. In both 
cases, lh(s · t) = lh(t). If T ⊆ 2<ω, then let s · T = {s · t : t ∈ T}.

Definition 4.1. A set T ⊆ 2<ω is a Silver tree, in symbol T ∈ ST, whenever there exists an in-
finite sequence of strings uk = uk(T ) ∈ 2<ω such that T consists of all strings of the form s =
u0

�i0�u1
�i1�u2

�i2� . . .�un
�in, and their substrings (including Λ), where n < ω and ik = 0, 1. In 

this case we let stem(T ) = u0 (the stem of T ), and define a closed set [T ] ⊆ 2ω of all branches
a = u0

�i0�u1
�i1�u2

�i2� · · · ∈ 2ω of T , where ik = 0, 1, ∀ k. Let

spln(T ) = lh(u0) + 1 + lh(u1) + 1 + · · · + lh(un−1) + 1 + lh(un) ,

in particular, spl0(T ) = lh(u0), so that spl(T ) = {spln(T ) : n < ω} ⊆ ω is the set of all splitting levels of 
T ∈ ST; spl(T ) is infinite. If u ∈ T ∈ ST, then define the restricted tree T �u = {t ∈ T : u ⊆ t ∨ t ⊆ u}; 
T �u ∈ ST. �
Example 4.2. If s ∈ 2<ω, then the tree B[s] = {t ∈ 2<ω : s ⊆ t ∨ t ⊂ s} belongs to ST, stem(B[s]) =
u0(B[s]) = s, spln(B[s]) = lh(s) + n, and if k ≥ 1, then uk(B[s]) = Λ. In particular B[Λ] = 2<ω. �
Lemma 4.3. Let T ∈ ST. Then

(i) if a set ∅ �= X ⊆ [T ] is open in [T ], then there is s ∈ T with [T �s] ⊆ X;
(ii) if h ∈ spl(T ) and u, v ∈ 2h ∩ T , then T �v = (u · v) · T �u and (u · v) · T = T .

Proof. (ii) By definition, h = lh(u0) + 1 + lh(u1) + 1 + · · · + lh(un−1) + 1 + lh(un),

u = u0
�i0�u1

� . . .�un−1
�in−1

�un, v = u0
�j0�u1

� . . .�un−1
�jn−1

�un
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for some n and numbers i0, i1, . . . , in−1, j0, j1, . . . , jn−1 = 0, 1, where uk = uk(T ). Now if y ∈ T �v, then 
y = v�a, where a = jn

�un+1
�jn+1

�un+2
� . . . and jn, jn+1, . . . = 0, 1. Then x = u�a belongs to T �u, and 

y = (u · v) · x. �
5. Splitting Silver trees

The simple splitting of a tree T ∈ ST consists of the subtrees

T (→ i) = T �stem(T )�i = {x ∈ [T ] : x(h) = i} , where h = lh(stem(T )), i = 0, 1.

Then we have T (→ i) ∈ ST, and u0(T (→ i)) = u0(T )�〈i〉�u1(T ), and then uk(T (→ i)) = uk+1(T ) whenever 
k ≥ 1, and spl(T (→ i)) = spl(T ) � {spl0(T )}.

The splitting can be iterated. Namely if s ∈ 2n, then define

T (→ s) = T (→ s(0))(→ s(1))(→ s(2)) . . . (→ s(n− 1)) .

Separately let T (→ Λ) = T , for the empty string Λ.

Lemma 5.1. Let T ∈ ST, n < ω, and h = spln(T ). Then

(i) if s ∈ 2n, then T (→ s) ∈ ST, lh(stem(T (→ s))) = h, and there is a string u[s] ∈ 2h ∩ T such that 
T (→ s) = T �u[s];

(ii) conversely if u ∈ 2h ∩ T , then there is a string s[u] ∈ 2n such that T �u = T (→ s[u]);
(iii) therefore, {T �u : u ∈ T} = {T (→ s) : s ∈ 2<ω}.

Proof. (i) u[s] = u0(T )�〈s(0)〉� . . .�un−1(T )�〈s(n − 1)〉�un(T ).
(ii) Define s = s[u] ∈ 2n by s(k) = u(splk(T )) for all k < n.
(iii) Let u ∈ T . Then spln−1(T ) < lh(u) ≤ spln(T ) for some n. Now, by Definition 4.1, there exists a 

(unique) string v ∈ 2h ∩ T , where h = spln(T ), such that T �u = T �v. It remains to refer to (ii). �
If T, S ∈ ST and n ∈ ω, then define S ⊆n T (the tree S n-refines T ), whenever S ⊆ T and splk(T ) =

splk(S) for all k < n. In particular S ⊆0 T is equivalent to just S ⊆ T . By definition, if S ⊆n+1 T , then 
S ⊆n T (and S ⊆ T ).

Lemma 5.2. If T ∈ ST, n < ω, s0 ∈ 2n, and U ∈ ST, U ⊆ T (→ s0), then there is a unique tree T ′ ∈ ST
such that T ′ ⊆n T and T ′(→ s0) = U .

Proof. Let h = spln(T ). Pick a string u0 = u[s0] ∈ 2h by Lemma 5.1(i). Following Lemma 4.3(ii), define 
T ′ so that T ′ ∩ 2h = T ∩ 2h, and if u ∈ T ∩ 2h, then T ′�u = (u · u0) · U . In particular T ′�u0

= U . �
Lemma 5.3. Let . . .⊆5 T4 ⊆4 T3 ⊆3 T2 ⊆2 T1 ⊆1 T0 be an infinite decreasing sequence of trees in ST. Then

(i) T =
⋂

n Tn ∈ ST;
(ii) if n < ω and s ∈ 2n+1, then T (→ s) = T ∩ Tn(→ s) =

⋂
m≥n Tm(→ s).

Proof. Note that spl(T ) = {spln(Tn) : n < ω}; both claims easily follow. �
Corollary 5.4. Let T ∈ ST. If a set X ⊆ [T ] has the Baire property inside [T ], but is not meager inside [T ], 
then there is a tree S ∈ ST such that [S] ⊆ X. If f : [T ] → 2ω is a continuous map, then there exists a tree 
S ∈ ST such that S ⊆ T and f�[S] is a bijection or a constant.
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Proof. We can assume that X is co-meager inside [T ]; otherwise just replace T by T �u, where u ∈ T and 
X is co-meager on [T �u]. In other words, let X =

⋃
n Gn, where each Gn ⊆ [T ] is an open dense set. Using 

Lemma 5.2, we define, by induction, an infinite decreasing sequence . . .⊆5T4⊆4T3⊆3T2⊆2T1⊆1T0 of trees in 
ST, such that T0 ⊆ T and Tn ⊆ Gnfor all n.9 Then S =

⋂
n Tn ∈ ST by Lemma 5.3, and [S] ⊆

⋃
n Gn = X

by construction.
The second claim is known from the folklore theory of the Silver forcing. As the earliest reference, it 

can be extracted from some very general results in [4, § 5] on the minimality of Silver’s reals (especially 
Corollary 5.5). For a more direct argument see Theorem 8.5 in [17].

A pedestrian proof can be as follows. If a ∈ 2ω and n < ω, then let {n} · a = b ∈ 2ω be defined so 
that b(k) = a(k) for all k �= n, while b(n) = 1 − a(n). Let S ∈ ST and n(S) = lh(stem(S)). Note that 
a ∈ [S] =⇒ {n(S)} · a ∈ [S]. Say that S is f -symmetric iff f(a) = f({n(S)} · a) holds for all a ∈ [S].

Case 1: if S ∈ ST, S ⊆ T , then there is a f -symmetric subtree R ∈ ST, R ⊆ S. In this case, to get a 
tree S ∈ ST, S ⊆ T , such that f�[S] is a constant, we define, by induction, an infinite decreasing sequence 
. . .⊆5T4⊆4T3⊆3T2⊆2T1⊆1T0 ⊆ T of trees in ST, such that for each m and s ∈ 2m, Tm(→ s) is f -symmetric. 
Then by Lemma 5.3 the limit tree S =

⋂
m Tm belongs to ST and S(→ s) is f -symmetric for all s ∈ 2<ω. It 

easily follows that if n < ω, a ∈ [S], and {n} · a ∈ [S] as well then f(a) = f({n} · a). Then f is E0-invariant 
on [S]. Prove that f is a constant on [S]. Indeed if a �= b belong to [S] and f(a) �= f(b) then there are 
strings u, v ∈ S of equal length, such that for some k and i �= j we have f(x)(k) = i and f(y)(k) = j for all 
x ∈ [S�u] and y ∈ [S�v]. But the sets [S�u], [S�v] contain E0-equivalent points, a contradiction.

Thus it remains to define a sequence . . .⊆4 T3 ⊆3 T2 ⊆2 T1 ⊆1 T0 ⊆ T with the above defined properties. 
We let T0 ⊆ T be any f -symmetric subtree in ST. Let r = stem(T0) and n0 = lh(r). Thus {n0} · a ∈ [T0]
and f(a) = f({n0} · a) holds for all a ∈ [T0], by the f -symmetry.

Now let U ∈ ST, U ⊆ T0(→ 0) = T0�r�0 be any f -symmetric tree. Then V = {n0} · U ⊆ T0(→ 1) =
T0�r�1 is f -symmetric as well by the f -symmetry of T0. On the other hand, the tree T1 = U ∪V belongs to 
ST and T1(→ 0) = U ⊆ T0(→ 0) and T1(→ 1) = V ⊆ T0(→ 1), hence T1 ⊆1 T0. Let n1 = lh(stem(U)).

The next step: let U00 ∈ ST, U00 ⊆ T1(→ 00) be any f -symmetric tree. Then so are the trees U01 =
{n1} · U00, U10 = {n0} · U00, U11 = {n1} · {n0} · U00. We define T2 = U00∪U01∪U10∪U11; then T2 ∈ ST, 
T2 ⊆2 T1.

And so on.

Case 2 = not case 1, that is, there is a tree T ′ ∈ ST, T ′ ⊆ T , which has no f -symmetric subtrees 
R ∈ ST, R ⊆ T ′. In this case, to get a tree S ∈ ST, S ⊆ T , such that f�[S] is a bijection, we define, 
by induction, an infinite decreasing sequence . . . ⊆5 T4 ⊆4 T3 ⊆3 T2 ⊆2 T1 ⊆1 T0 ⊆ T ′ of trees in ST, such 
that f”[Tm(→ s�0)] ∩ f”[Tm(→ s�1)] = ∅ holds for each m and s ∈ 2m. Then by Lemma 5.3 the tree 
S =

⋂
m Tm belongs to ST and we have f”[S(→ s�0)] ∩ f”[S(→ s�1)] = ∅ for all s ∈ 2<ω. It follows that 

f is a bijection on [S].
Thus it remains to define a sequence . . .⊆4 T3 ⊆3 T2 ⊆2 T1 ⊆1 T0 ⊆ T ′ with the above defined properties. 

To begin with, the tree T ′ is not f -symmetric, hence there exists a point a ∈ [T ′] such that f(a) �= f(b), 
where b = {n′} · a ∈ [T ′], and n′ = n(T ′) = lh(r), r = stem(T ′). Let say a(n′) = 0 and b(n′) = 1
(and a(n) = b(n) whenever n �= n′). Indeed, as f is continuous, there are strings u, v ∈ S of equal length 
	 = lh(u) = lh(v) > n′, such that u ⊂ a, v ⊂ b (then u(n′) = 0, v(n′) = 1, and u(n) = v(n) for all 
n < 	, n �= n′), and f”[T ′�u] ∩ f”[T ′�v] = ∅. Then the tree T0 = T ′�u ∪ T ′�v satisfies T0(→ 0) = T ′�u and 
T0(→ 1) = T ′�v, hence f”[T0(→ 0)] ∩ f”[T0(→ 1)] = ∅ by construction.

9 If some Tn is defined, then let T ′ = Tn and pick s0 ∈ 2n+1. As Gn+1 is open dense, there is a tree U ∈ ST, U ⊆ T (→ s0)∩Gn+1. 
By Lemma 5.2 there is a tree T ′′ ∈ ST such that T ′′ ⊆n+1 T ′ and T ′′(→ s0) = U ⊆ Gn+1. Pick the next string s1 ∈ 2n+1 and 
get a tree T ′′′ ∈ ST with T ′′′ ⊆n+1 T ′′ and T ′′′(→ s1) ⊆ Gn+1. And so on. In the end, we get a tree Tn+1 ∈ ST such that 
Tn+1 ⊆n+1 Tn and Tn+1(→ s) ⊆ Gn+1 for all s ∈ 2n+1, hence Tn+1 ⊆ Gn+1.
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To define T1, we similarly split the tree T0(→ 0) and apply Lemma 5.2 to get a tree S1 ∈ ST such that 
S1 ⊆2 T0 and f”[S1(→ 〈0, 0〉)] ∩ f”[S1(→ 〈0, 1〉)] = ∅. The other pair of splitting sets,

S1(→ 〈1, 0〉) = S1(→ 〈1〉)(→ 0) and S1(→ 〈1, 1〉) = S1(→ 〈1〉)(→ 1)

do not necessarily satisfy f”[S1(→ 〈1, 0〉)]∩f”[S1(→ 〈1, 1〉)] = ∅. However, as S1(→ 〈1〉) is not f -symmetric, 
we can apply the same shrinking procedure (followed by Lemma 5.2) to obtain a tree T1 ∈ ST such that 
T1 ⊆2 S1 and f”[T1(→ 〈1, 0〉)] ∩ f”[T1(→ 〈1, 1〉)] = ∅.

Then a tree T2 ∈ ST, T2 ⊆3 T1, is defined, such that f”[T2(→ s�0)] ∩ f”[T2(→ s�1)] = ∅ for any string 
s = 〈i0, i1〉 ∈ 2<ω of length 2. And so on. �
6. ST-forcings

Definition 6.1. Any set P ⊆ ST satisfying

(A) if u ∈ T ∈ P, then T �u ∈ P, and
(B) if T ∈ P and σ ∈ 2<ω, then σ · T ∈ P,

is called a forcing by Silver trees, ST-forcing in brief. �
Remark 6.2. Any ST-forcing P can be considered as a forcing notion ordered so that if T ⊆ T ′, then T is 
a stronger condition. The forcing P adjoins a real x ∈ 2ω. More exactly if a set G ⊆ P is P-generic over a 
given model or set universe M (and P ∈ M is assumed), then the intersection 

⋂
T∈G[T ] contains a unique 

real a = a[G] ∈ 2ω, and this real satisfies M [G] = M [a[G]] and G = {T ∈ P : a[G] ∈ [T ]}. Reals a[G] of 
this kind are called P-generic. �
Example 6.3. The following sets are ST-forcings: the set Pcoh = {T [s] : s ∈ 2<ω} of all trees in 4.2 — the 
Cohen forcing, and the set ST of all Silver trees — the Silver forcing itself. �
Lemma 6.4. If ∅ �= Q ⊆ ST, then the following set is a ST-forcing:

P = {σ · (T �u) : u ∈ T ∈ Q ∧ σ ∈ 2<ω} = {σ · (T (→ s)) : T ∈ Q ∧ s, σ ∈ 2<ω}.

Proof. To prove 6.1(A), let T ∈ Q and v ∈ S = σ · (T �u). Then w = σ · v ∈ T �u and v = σ · w. It follows 
that S�v = σ · (T �u�w), where T �u�w = T �u or = T �w, whenever accordingly w ⊆ u or u ⊂ w. The second 
equality of the lemma follows from Lemma 5.1(iii). �
Definition 6.5 (Collages). If P ⊆ ST, T ∈ ST, n < ω, and all split trees T (→ s), s ∈ 2n, belong to P, then 
T is an n-collage over P. The set of all n-collages over P is Colgn(P). Then P = Colg0(P) ⊆ Colgn(P) ⊆
Colgn+1(P). �
Lemma 6.6. Let P ⊆ ST be a ST-forcing, and n < ω. Then:

(i) if T ∈ P and s ∈ 2<ω, then T (→ s) ∈ P;
(ii) if T ∈ ST and s0 ∈ 2n, then T (→ s0) ∈ P is equivalent to T ∈ Colgn(P);
(iii) if U ∈ Colgn(P), s0 ∈ 2n, S ∈ P, and S ⊆ U(→ s0), then there is a tree V ∈ Colgn(P) such that 

V ⊆n U and V (→ s0) = S;
(iv) if U ∈ Colgn(P) and D ⊆ P is open dense in P, then there is a tree V ∈ Colgn(P) such that V ⊆n U

and V (→ s) ∈ D for all s ∈ 2n.
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A set D ⊆ P is dense in P if for any S ∈ P there is a tree T ∈ D, T ⊆ S, and open dense, if in addition 
S ∈ D holds whenever S ∈ P, T ∈ D, S ⊆ T .

Proof. To prove (i) make use of 6.1(A) and Lemma 5.1(i).
(ii) If T ∈ Colgn(P), then by definition T (→ s0) ∈ P. To prove the converse let h = spln(T ) and let a 

string u[s] ∈ 2h∩T satisfy T (→ s) = T �u[s] for all s ∈ 2n by Lemma 5.1(i). If T (→ s0) ∈ P and s ∈ 2n, then 
T (→ s) = T �u[s] = (u[s] · u[s0]) · T �u[s0] = (u[s] · u[s0]) · T (→ s0) by Lemma 4.3(ii). Therefore T (→ s) ∈ P
by 6.1(B). And finally T ∈ Colgn(P).

(iii) By Lemma 5.2, there is a tree V ∈ ST, satisfying V ⊆nU and V (→ s0) = S. However V ∈ Colgn(P)
by (ii).

To prove (iv) apply (iii) 2n times (for all s ∈ 2n). �
7. Continuous maps

Let P be a fixed ST-forcing in this section.
Regularity. We study the behavior of continuous maps on sets of the form [T ], T ∈ P. The next definition 

highlights the case when a given continuous f : 2ω → 2ω is forced to be not equal to a map of the form 
x �→ σ · x, σ ∈ 2<ω.

Definition 7.1. Let T ∈ P. A continuous f : 2ω → 2ω is regular on T inside P, if there is no tree T ′ ∈ P
and string σ ∈ 2<ω such that T ′ ⊆ T and σ · f(x) = x (equivalently, f(x) = σ · x) for all x ∈ [T ′]. �
Lemma 7.2. Let S, T ∈ P, f : 2ω → 2ω be continuous, and σ ∈ 2<ω. Then:

(i) there are trees S′, T ′ ∈ P such that S′ ⊆ S, T ′ ⊆ T , [T ′] ∩ (σ · f”[S′]) = ∅;
(ii) if τ ∈ 2<ω, T = τ · S, and f is regular on S inside P, then there exist trees S′, T ′ ∈ P such that 

S′ ⊆ S, T ′ ⊆ T , T ′ = τ · S′, and [T ′] ∩ (σ · f”[S′]) = ∅.

Proof. (i) Let x0 ∈ [S] and let y0 ∈ [T ] be different from σ · f(x0). As f is continuous, there is m ≥ lh(σ), 
such that σ · (f(x)�m) �= y0�m whenever x ∈ [S] and x�m = x0�m. By 6.1(A), there are trees S′, T ′ ∈ P
such that S′ ⊆ S, T ′ ⊆ T , x�m = x0�m for all x ∈ [S′], and y�m = y0�m for all y ∈ [T ′].

(ii) Assume that lh(σ) = lh(τ) (otherwise the shorter string can be extended by zeros). The set X =
{x ∈ [S] : σ · f(x) �= τ · x} is open in [S] and non-empty, by the regularity. Let x0 ∈ X. There is a number 
m ≥ lh(σ) = lh(τ) satisfying τ · (x0�m) �= σ · (f(x0)�m). By 6.1(A) there is a tree S′ ∈ P satisfying 
x0 ∈ [S′] and x�m = x0�m, f(x)�m = f(x0)�m for all x ∈ [S′]. Put T ′ = τ · S′. �

Coding continuous maps. If f : 2ω → 2ω is continuous, k < ω and i = 0, 1, then the set Di
k(f) = {x ∈

2ω : f(x)(k) = i}, and D0
k(f) ∩ D1

k(f) = ∅, D0
k(f) ∪ D1

k(f) = 2ω. Let Ci
k(f) be the set of all ⊆-minimal 

strings s ∈ 2<ω such that [B[s]] ⊆ Di
k(f). Then C0

k(f), C1
k(f) ⊆ 2<ω are finite irreducible and incompatible 

antichains10 in 2<ω, and Di
k(f) =

⋃
s∈Ci

k(f)[B[s]], while the union C0
k(f) ∪ C1

k(f) is a maximal antichain 
in 2<ω. Let code(f) = 〈Ci

k(f)〉k<ω,i=0,1 — the code of f . Thus each Di
k(f) is a clopen set, determined by 

a finite union of basic clopen sets [B[s]], and Ci
k(f) is coding this finite union.

The other way around, if c = 〈Ci
k〉k<ω,i=0,1 is a family of finite irreducible antichains Ci

k ⊆ 2<ω, and if 
k < ω, then C0

k, C1
k are incompatible and C0

k ∪ C1
k is a maximal antichain in 2<ω, then c is called a code 

of continuous function. In this case, the related continuous function f : 2ω → 2ω is denoted by fc, that is, 
fc(x)(k) = i whenever x ∈

⋃
s∈Ci

k
[B[s]].

10 An antichain A ⊆ 2<ω is irreducible, if it does not contain a pair of the form s�0, s�1. Two antichains A, A′ ⊆ 2<ω are 
incompatible, if any strings s ∈ A and s′ ∈ A′ are ⊆-incomparable.
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Let CCF denote the set of all codes of continuous functions.

8. Generic extensions of ST-forcings

The forcing notion to prove Theorem 1.2 will be defined in the form of an ω1-union of its countable parts 
— levels. The next definition presents requirements which will govern the interactions between the levels.

Definition 8.1. Let M be any set and P be a ST-forcing. We say that another ST-forcing Q is an M-extension
of P, in symbol P �M Q, if the following holds:

(A) Q is dense in Q ∪ P;
(B) if a set D ∈ M, D ⊆ P is pre-dense in P and U ∈ Q, then U ⊆fin ⋃

D, that is, there is a finite set 
D′ ⊆ D such that U ⊆

⋃
D′;

(C) if T0 ∈ P, f : 2ω → 2ω is a continuous map with a code in M, regular on T0 inside P, and U, V ∈ Q, 
U ⊆ T0, then [V ] ∩ (f”[U ]) = ∅. �

Condition (C) claims essentially that if the regularity holds, then T0 forces, in the sense of Q ∪ P, that 
f(a[G]) does not belong to 

⋃
V ∈Q[V ].

If M = ∅, then we write P � Q instead of P �∅ Q; in this Case (B) and (C) are trivial. Generally, we’ll 
consider, in the role of M, transitive models of the theory ZFC′ which includes all ZFC axioms except for 
the Power Set axiom, but an axiom is adjoined, which claims the existence of P(ω). (Then the existence 
of ω1 and sets like 2ω and ST easily follows.)

Lemma 8.2. Let M |= ZFC′ be a transitive model, P ∈ M and Q be ST-forcings satisfying P �M Q, and 
U ∈ Q. Then

(i) if T ∈ P, then [U ] ∩ [T ] is clopen in [U ];
(ii) if D ∈ M, D ⊆ P is pre-dense in P, then D remains pre-dense in Q ∪P;
(iii) if T, T ′ ∈ P are incompatible in P, then T, T ′ are incompatible in Q ∪P, too, and moreover
(iv) if R ⊆ U is a Silver tree, then the set R = Q ∪ {σ · (R(→ t)) : t, σ ∈ 2<ω} is a ST-forcing, and still 

P �M R.

Proof. (i) The set D(T ) = {S ∈ P : S ⊆ T ∨ [S] ∩ [T ] = ∅} belongs to M and is open dense in P by 
6.1(A). Then by 8.1(B) there is a finite set D′ ⊆ D(T ) such that U ⊆

⋃
D′. But then we have [U ] � [T ] =

⋃
S∈D′′([S] ∩ [U ]), where D′′ = {S ∈ D′ : [S] ∩ [T ] = ∅}. Thus [U ] � [T ] is a closed set.
(ii) Let U ∈ Q. Then by 8.1(B) there is a finite set D′ ⊆ D such that U ⊆

⋃
D′. By (i) there is a tree 

T ∈ D′ such that [T ] ∩ [U ] has a non-empty open interior in [U ]. By Lemma 4.3(i), there is s ∈ U such that 
[U ′] ⊆ [T ] ∩ [U ], where U ′ = U�s, thus U ′ ⊆ U ∩ T . Finally U ′ ∈ Q, as Q is a ST-forcing.

(iii) By the incompatibility, if S ∈ P, then S �⊆ T or S �⊆ T ′, and hence there is a tree S′ ∈ P, S′ ⊆ S, 
satisfying [S′] ∩ [T ] ∩ [T ′] = ∅. Therefore the set D = {S ∈ P : [S] ∩ [T ] ∩ [T ′] = ∅} is dense in P and 
belongs to M. Now if U ∈ Q, then U ⊆fin ⋃D by 8.1(B), thus immediately [U ] ∩ [T ] ∩ [T ′] = ∅.

(iv) R is a ST-forcing by Lemma 6.4, so we have to prove P �M R. We skip a routine verification of 
8.1(A),(B) and focus on (C). Let T0, f be as in (C).

Consider trees R′ = σ · (R(→ t)) ∈ R, R′ ⊆ T0, and V ∈ Q; we have to prove that [V ] ∩ (f”[R′]) = ∅. 
The problem is that while R′ ⊆ σ · R ⊆ U ′ = σ · U , it may not be true that U ′ ⊆ T0. But, now we claim 
that there is a finite set of trees {U1, . . . , Un} ⊆ Q such that R′ ⊆ U1 ∪ . . . ∪Un ⊆ T0. If this is established, 
then [V ] ∩ (f”[Ui]) = ∅ for all i since P �M Q, and we are done.
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To prove the claim consider the dense set D(T0) ∈ M as in the proof of (i) above. Then U ′ ⊆fin ⋃
D, 

hence there is a finite set D′ ⊆ D(T0) satisfying U ′ ⊆
⋃

D′. As by construction R′ ⊆ U ′ ∩ T0, we conclude 
that R′ ⊆

⋃
D′′, where D′′ = {S ∈ D′ : S ⊆ T0}. Now if S ∈ D′′, then [S] ∩ [U ′] is clopen in [U ′], therefore 

[S] ∩ [U ′] =
⋃

v∈W (S)[U ′�v], where W (S) ⊆ U ′ is a suitable finite set. We put {U1, . . . , Un} =
⋃

S∈D′′{U ′�v :
v ∈ W (S)}. �
Theorem 8.3. Let M |= ZFC′ be a countable transitive model and P ∈ M be a ST-forcing. Then there exists 
a countable ST-forcing Q satisfying P �M Q.

The proof of this theorem is presented below. Section 9 contains the definition of the ST-forcing Q, and 
the proof of its properties follows in Section 10.

9. Construction of extending ST-forcing

The next definition formalizes a construction of countably many Silver trees by means of Lemma 5.3.

Definition 9.1. A system is any indexed set ϕ = 〈〈νϕm, τϕm〉〉m∈|ϕ|, where |ϕ| ⊆ ω is finite, and if m ∈ |ϕ|, 
then νϕm ∈ ω, τϕm = 〈Tϕ

m(0), Tϕ
m(1), . . . , Tϕ

m(νϕm)〉, each Tϕ
m(n) is a Silver tree, and Tϕ

m(n + 1) ⊆n+1 Tϕ
m(n)

whenever n < νϕm.
In this case, if n ≤ νϕm and s ∈ 2n, then let Tϕ

m(s) = Tϕ
m(n)(→ s).

If P is a ST-forcing, then Sys(P) is the set of all system ϕ such that Tϕ
m(n) ∈ Colgn(P) for all m ∈ |ϕ|

and n ≤ νϕm. Then every tree Tϕ
m(s) belongs to P. �

A system ϕ extends a system ψ, in symbol ψ � ϕ, if |ψ| ⊆ |ϕ|, and for any index m ∈ |ψ|, first, νϕm ≥ νψm, 
and second, τϕm extends τψm in the sense that simply Tϕ

m(n) = Tψ
m(n) for all n ≤ νψm.

Lemma 9.2. Let P be a ST-forcing and ϕ ∈ Sys(P).
If m ∈ |ϕ| and n = νϕm, then the extension ϕ′ of the systemϕ by νϕ

′
m = n + 1 and Tϕ′

m (n + 1) = Tϕ
m(n)

belongs to Sys(P) and ϕ � ϕ′.
If m /∈ |ϕ| and T ∈ P, then the extension ϕ′ of the systemϕ by |ϕ′| = |ϕ| ∪{m}, νϕ′

m = 0 and Tϕ′
m (0) = T , 

belongs to Sys(P) and ϕ � ϕ′. �
Now, according to the formulation of Theorem 8.3, we assume that M |= ZFC′ is a countable transitive 

model and P ∈ M is a (countable) ST-forcing.

Definition 9.3. (i) We fix a �-increasing sequence Φ = 〈ϕ(j)〉j<ω of systems ϕ(j) ∈ Sys(P), generic over 
M in the sense that it intersects every set D ∈ M, D ⊆ Sys(P) dense in Sys(P). The density here means 
that for any system ψ ∈ Sys(P) there is a system ϕ ∈ D such that ψ ⊆ ϕ. The goal of this definition is to 
define another ST-forcing Q from Φ, see item (iv) below.

(ii) If m, n < ω, then the set Dmn = {ϕ ∈ Sys(P) : νϕm ≥ n} is dense by Lemma 9.2 and belongs to M, 
hence it intersects Φ. Therefore if m < ω, then there exists an infinite sequence

. . .⊆5 TΦ
m(4) ⊆4 TΦ

m(3) ⊆3 TΦ
m(2) ⊆2 TΦ

m(1) ⊆1 TΦ
m(0)

of trees TΦ
m(n) ∈ Colgn(P) such that for each j, if m ∈ |ϕ(j)| and n ≤ ν

ϕ(j)
m , then Tϕ(j)

m (n) = TΦ
m(n). If 

n < ω and s ∈ 2n, then let TΦ
m(s) = TΦ

m(n)(→ s); then TΦ
m(s) ∈ P because TΦ

m(n) ∈ Colgn(P).

(iii) In this case, by Lemma 5.3, every set

UΦ
m =

⋂
TΦ

m(n) =
⋂ ⋃

n TΦ
m(s)
n n s∈2
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belongs to ST, the same is true for all subtrees UΦ
m(→ s), and we have

UΦ
m(→ s) = UΦ

m ∩ TΦ
m(s) =

⋂
n≥lh(s) TΦ

m(n)(→ s) ,

by Lemma 5.3, and UΦ
m = UΦ

m(→ Λ) holds by definition. In addition if strings s, t ∈ 2<ω satisfy t ⊂ s, then 
TΦ

m(s) ⊆ TΦ
m(t)11 and UΦ

m(→ s) ⊆ UΦ
m(→ t), but if s, t are ⊆-incomparable, then [UΦ

m(→ s)] ∩ [UΦ
m(→ t)] =

[TΦ
m(s)] ∩ [TΦ

m(t)] = ∅.

(iv) Finally the set Q = {σ · UΦ
m(→ s) : m < ω∧σ, s ∈ 2<ω} is a countable ST-forcing by Lemma 6.4. �

10. Validation of the extension property

Here we prove that P �M Q in the context of Definition 9.3. We check all requirements of Definition 8.1.

8.1(A). If T ∈ P, then the set Δ(T ) of all systems ϕ ∈ Sys(P) ∩M such that Tϕ
m(0) = T for some m, 

belongs to M and is dense in Sys(P) by Lemma 9.2. Therefore ϕ(J) ∈ Δ(T ) for some J , by the choice of Φ. 
Then TΦ

m(0) = T for some m < ω. But UΦ
m(→ Λ) = UΦ

m ⊆ TΦ
m(0) and UΦ

m ∈ Q.

8.1(B). Let U = σ · UΦ
m(→ s) ∈ Q, where m < ω and s, σ ∈ 2<ω. We have to check U ⊆fin ⋃D. We can 

assume, as above, that σ = Λ, that is, U = UΦ
m(→ s). (Otherwise substitute σ · D = {σ · p : p ∈ D} for D. 

If D is pre-dense, then so is σ · D.) We can also assume that s = Λ, that is, U = UΦ
m, as UΦ

m(→ s) ⊆ UΦ
m. 

Thus let U = UΦ
m.

The set Δ ∈ M of all systems ϕ ∈ Sys(P) such that m ∈ |ϕ| and for every string t ∈ 2n, where n = νϕm, 
there is a tree St ∈ D with Tϕ

m(t) ⊆ St, is dense in Sys(P) by Lemma 6.6(iv) due to the pre-density of 
D itself. Therefore there is an index j such that ϕ(j) ∈ Δ. Let this be witnessed by trees St ∈ D, t ∈ 2n, 
where n = ν

ϕ(j)
m , so that Tϕ(j)

m (t) ⊆ St, ∀ t, and hence Tϕ(j)
m (n) ⊆fin D. Then U = UΦ

m ⊆ TΦ
m (n) =

T
ϕ(j)
m (n) ⊆fin ⋃

D.

8.1(C). Let T0 ∈ P, f , and U, V ∈ Q be as in 8.1(C). Then U = τ · UΦ
K(→ s0), where s0, τ ∈ 2<ω and 

K < ω. We can wlog assume that τ = Λ, that is, U = UΦ
K(→ s0), since the general case is reducible to this 

case by the substitution of τ · T0 for T0 and the function f ′(x) = f(τ · x) for f . Thus let U = UΦ
K(→ s0).

Similarly, generally speaking V = ρ · UΦ
L (→ t0), where t0, ρ ∈ 2<ω and L < ω. But this is reducible 

to the case ρ = Λ by the substitution of f ′(x) = ρ · f(x) for f . Thus let V = UΦ
L (→ t0). Finally, since 

UΦ
L (→ t0) ⊆ UΦ

L , we can assume that even V = UΦ
L . Now consider the set Δ ∈ M of all systems ϕ ∈ Sys(P)

such that there is a number m < ω satisfying the following:

(I) K, L ∈ |ϕ|, νϕK = νϕL = m, and lh(s0) ≤ m;
(II) if s ∈ 2m, then Tϕ

K(s) ⊆ T0 or [Tϕ
K(s)] ∩ [T0] = ∅;

(III) if s ∈ 2m and Tϕ
K(s) ⊆ T0, then [Tϕ

L (m)] ∩ (f”[Tϕ
K(s)]) = ∅.

Lemma 10.1. The set Δ is dense in Sys(P).

Proof. Let ψ ∈ Sys(P); we have to define a system ϕ ∈ Δ satisfying ψ � ϕ. By Lemma 9.2, we can assume 
that K, L ∈ |ψ| and νψK = νψL = m − 1 for some m ≥ lh(s0). Now we define a first preliminary version of 
ϕ, by νϕK = νψL = m and Tϕ

K(m) = Tψ
K(m − 1), Tϕ

L (m) = Tψ
L (m − 1), and keeping the other elements of ϕ

equal to those of the system ψ, so that ψ � ϕ. The trees S = Tϕ
K(m) and T = Tϕ

L (m) belong to Colgm(P).
The set D(T0) of all trees W ∈ P, such that W ⊆ T0 or [W ] ∩ [T0] = ∅, is open dense in P by 

6.1(A). Therefore by Lemma 6.6(iv) there is a tree S′ ∈ Colgm(P) satisfying S′ ⊆m S and if s ∈ 2m, then 

11 To prove TΦ

m(s) ⊆ TΦ

m(t), note that by construction TΦ

m(s) = TΦ

m(n)(→ s) and TΦ

m(t) = TΦ

m(k)(→ t), where n = lh(s) > k =
lh(t) However TΦ

m(n) ⊆k TΦ

m(k) by construction, part (ii). Therefore TΦ

m(k)(→ s) ⊆ TΦ

m(k)(→ t) ⊆ TΦ

m(n)(→ t), as required.
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S′(→ s) ∈ D(T0). We modify ϕ by putting Tϕ
K(m) = S′ instead of S. It is clear that the new system still 

satisfies ψ � ϕ, and in addition (II) holds by construction.
Further modification of ϕ towards (III) depends on whether K = L.
Case 1: K �= L. If s, t ∈ 2m, then by Lemma 7.2(i) there exist trees C, D ∈ P such that C ⊆ S′(→ s), 

D ⊆ T ′(→ t), and [D] ∩ (f”[C]) = ∅. Applying Lemma 6.6(iii), we get trees S′′, T ′′ ∈ Colgm(P) satisfying 
S′′ ⊆m S′, T ′′ ⊆m T ′, C = S′′(→ s), D = T ′′(→ t), so that [T ′′(→ t)] ∩ (f”[S′′(→ s)]) = ∅. Iterate this 
construction by exhaustion of all pairs s, t ∈ 2m. We get trees S∗, T ∗ ∈ Colgm(P) such that S∗ ⊆m S′, 
T ∗ ⊆m T ′, and [T ∗(→ t)] ∩ (f”[S∗(→ s)]) = ∅ for all s, t ∈ 2m, that is [T ∗] ∩ (f”[S∗]) = ∅. Modify ϕ by 
Tϕ
K(m) = S∗ instead of S′ and Tϕ

L (m) = T ∗ instead of T ′. Now (III) holds for the modified ϕ.
Case 2: K = L, and then S′ = T ′ = Tϕ

K(m) = Tϕ
L (m). It suffices to show that if s, t ∈ 2m (strings of length 

m) and S′(→ s) ⊆ T0, there is a tree S′′ ∈ Colgm(P ) such that S′′⊆mS′ and [S′′(→ t)] ∩(f”[S′′(→ s)]) = ∅. 
Then the iteration by exhaustion of all those pairs of strings s, t yields a tree S∗ ∈ Colgm(P) such that S∗⊆m

S′ and [S∗(→ t)] ∩ (f”[S∗(→ s)]) = ∅ for all s, t ∈ 2m with S′(→ s) ⊆ T0, that is, [S∗] ∩ (f”[S∗(→ s)]) = ∅

whenever s ∈ 2m satisfies S′(→ s) ⊆ T0. To achieve (III), it remains to modify the system ϕ by Tϕ
K(m) = S∗

instead of S′.
Thus let us carry out the construction of S′′ for a pair of strings s, t ∈ 2m with S(→ s) ⊆ T0. It follows 

that f is regular on S′(→ s) inside P. By Lemma 5.1(i), we have S′(→ s) = S′�u and S′(→ t) = S′�v, 
where u, v ∈ S′ are strings of length h = lh(u) = lh(v), and S′(→ s) = τ · (S′(→ t)), where τ = u · v, 
by Lemma 4.3(ii). Lemma 7.2(ii) yields a pair of trees U, V ∈ P satisfying U ⊆ S′(→ s), V ⊆ S′(→ t), 
V = τ · U , and [V ] ∩(f”[U ]) = ∅. Now, twice reducing the tree S′ by means of Lemma 6.6(iii), we get a tree 
S′′ ∈ Colgm(P ) such that S′′⊆mS′ and S′′(→ s) = U , S′′(→ t) = V , so that [S′′(→ t)] ∩(f”[S′′(→ s)]) = ∅, 
as required. � (Lemma)

Now return to the verification of 8.1(C). By the lemma, at least one system ϕ(j) belongs to Δ, that is, 
conditions (I), (II), (III) are satisfied for ϕ = ϕ(j). The tree V = UΦ

L satisfies V ⊆ T = T
ϕ(j)
L (m). Moreover, 

the tree U = UΦ
K(→ s0) satisfies U ⊆ S =

⋃
s∈Σ T

ϕ(j)
K (s), where Σ = {s ∈ 2m : S(→ s) ⊆ T0}, by (I), (II). 

However [T ] ∩ (f”[S]) = ∅ by (III), thus [V ] ∩ (f”[U ]) = ∅, as required. � (Theorem 8.3)

11. The blocking sequence of ST-forcings

We argue in the constructible universe L in this section.
The forcing to prove Theorem 1.2 will be defined as the union of a ω1-sequence of countable ST-forcings, 

increasing in the sense of a relation � (Definition 8.1). We here introduce the notational system to be used 
in this construction.

Let STF be the set of all countable ST-forcings. If P = 〈Pξ〉ξ<λ is a transfinite sequence of countable 
ST-forcings, of length domP = λ < ω1, let 

⋃
P =

⋃
ξ<λ Pξ, and let M(P) be the least transitive model of 

ZFC− of the form Lϑ, containing P, in which λ and 
⋃

P are countable.

Definition 11.1. If α ≤ ω1, let STFα be the set of all α-sequences P = 〈Pξ〉ξ<α of forcings Pξ ∈ STF, 
satisfying the following:

(*) if γ < α = domP ,
⋃

(P�γ) �M(P�γ) Pγ .

Let STF =
⋃

α<ω1
STFα. �

The set STF ∪ STFω1 is ordered by the extension relations ⊂ and ⊆.

Lemma 11.2. Assume that κ < λ < ω1, and P = 〈Pξ〉ξ<κ ∈ STF. Then:



V. Kanovei, V. Lyubetsky / Annals of Pure and Applied Logic 169 (2018) 851–871 863
(i) the union P =
⋃

P is a countable ST-forcing;
(ii) there is a sequence Q ∈ STF such that dom(Q) = λ and P ⊂ Q.

Proof. To prove (ii) apply Theorem 8.3 by induction on λ. �
Definition 11.3 (Key definition). A sequence P ∈ STF blocks a set W ⊆ STF if either P ∈ W (the positive 
block case) or there is no sequence Q ∈ W satisfying P ⊆ Q (the negative block case). �

Approaching the next blocking sequence theorem, we recall that HC is the set of all hereditarily countable
sets, so that HC = Lω1 in L. See [1, Part B, Chap. 5, Section 4] on definability classes ΣX

n , ΠX
n , ΔX

n for any 
set X, and especially on ΣHC

n , ΠHC
n , ΔHC

n for X = HC in [13, Sections 8, 9] or elsewhere.
In particular, ΣHC

n consists of all sets U ⊆ HC, definable in HC by a parameter-free Σn-formula, ΠHC
n

is defined similarly, and ΔHC
n = ΣHC

n ∩ΠHC
n . In addition, we define ΣHC

n (HC) to contain all sets U ⊆ HC, 
definable in HC by a Σn-formula with arbitrary parameters in HC, ΠHC

n (HC) is defined similarly, and 
ΔHC

n (HC) = ΣHC
n (HC) ∩ΠHC

n (HC).

Theorem 11.4 (Blocking sequence theorem, in L). If n ≥ 3, then there is a sequence P = 〈Pξ〉ξ<ω1 ∈ STFω1

satisfying the following two conditions:

(i) P, as the set of pairs 〈ξ, Pξ〉, belongs to the definability class ΔHC
n−1;

(ii) (genericity of P w.r.t. ΣHC
n−2(HC) sets) if W ⊆ STF is a ΣHC

n−2(HC) set (that is parameters from HC
are admitted), then there is an ordinal γ < ω1 such that the restricted sequence P�γ = 〈Pξ〉ξ<γ ∈ STF
blocks W .

Proof. Let �L be the canonical Δ1 wellordering of L; thus its restriction to HC = Lω1 is ΔHC
1 . As n ≥ 3, 

there exists a universal ΣHC
n−2 set U ⊆ ω1 × HC. That is, U is ΣHC

n−2 (parameter-free Σn−2 definable in HC), 
and for every set X ⊆ HC of class ΣHC

n−2(HC) (sets definable in HC by a Σn−2 formula with arbitrary 
parameters in HC) there is an ordinal α < ω1 such that X = Uα, where Uα = {x : 〈α, x〉 ∈ U}. The choice of 
ω1 as the domain of parameters in the universality property is validated by the assumption V = L, which 
implies the existence of a ΔHC

1 surjection ω1
onto−→ HC.

Coming back to Definition 11.3, note that for any sequence P ∈ STF and any set W ⊆ STF there is a 
sequence Q ∈ STF which satisfies P ⊂ Q and blocks W . This allows us to define Qα ∈ STF by induction 
on α < ω1 so that Q0 = ∅, Qλ =

⋃
α<λ Qα, and each Qα+1 is equal to the �L-least sequence Q ∈ STF

which satisfies Qα ⊂ Q and blocks Uα. Then P =
⋃

α<ω1
Qα ∈ STFω1 .

Condition (ii) holds by construction, while (i) follows by a routine verification, based on the fact that 
STF ∈ ΔHC

1 . �
Definition 11.5 (in L). We fix a natural number n ≥ 3, for which Theorem 1.2 is to be established. We also 
fix a sequence P = 〈Pξ〉ξ<ω1 ∈ STFω1 , given by Theorem 11.4 for this n.

If α < ω1, then let Mα = M(P�α) and P<α =
⋃

ξ<α Pξ.
Let P =

⋃
ξ<ω1

Pξ. �
12. CCC and some other forcing properties

The ST-forcing P defined by 11.5 will be the forcing notion for the proof of Theorem 1.2. Here we establish 
some forcing properties of P, including CCC.

We continue to argue in the conditions and notation of Definition 11.5.

Lemma 12.1. P and all sets Pξ, P<α are ST-forcings. In addition:
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(i) if α < ω1, then P<γ �Mγ
Pγ ;

(ii) if α < ω1 and the set D ∈ Mα, D ⊆ P<α is pre-dense in P<α, then it is pre-dense in P, too;
(iii) every set Pα is pre-dense in P;
(iv) if Q ⊆ ST belongs to ΣHC

n−2(HC) and Q− = {T ∈ ST : ¬ ∃S ∈ Q (S ⊆ T )}, then P ∩ (Q ∪Q−) is dense 
in P;

(v) if c ∈ CCF is a code of continuous function and

CBc = {T ∈ ST : fc�[T ] is a constant or a bijection},

then the set P ∩CBc is dense in P;
(vi) let D = {T ∈ ST : spl(T ) is co-infinite} (see Definition 4.1 on spl(T )), then the set P ∩D is dense 

in P.

Proof. (i) holds by (*) of Definition 11.1.
(ii) We use induction on γ, α ≤ γ < ω1, to check that if D is pre-dense in P<γ , then it remains pre-dense 

in P<γ ∪ Pγ = P<γ+1 by (i) and 8.1(B). Limit steps, including the final step to P (γ = ω1) are routine.
(iii) Pα is dense in P<α+1 = P<α ∪ Pα by 8.1(A). It remains to refer to (ii).
(iv) Let T0 ∈ P, that is, T0 ∈ P<α0 , α0 < ω1. The set W of all sequences P ∈ STF, such that P�α0 ⊆ P

and ∃T ∈ Q ∩ (
⋃

P) (T ⊆ T0), belongs to ΣHC
n−2(HC) along with Q. Therefore there is an ordinal α < ω1

such that P�α blocks W . We have two cases.
Case 1: P�α ∈ W . Then the related tree T ⊆ T0 belongs to Q ∩ P.
Case 2: there is no sequence in W which extends P�α. Let γ = max{α, α0}. Then P<γ �Mγ

Pγ by (i). As 
α0 ≤ γ, there is a tree T ∈ Pγ , T ⊆ T0. We claim that T ∈ Q−, which completes the proof in Case 2.

Suppose to the contrary that T /∈ Q−, thus there is a tree S ∈ Q, S ⊆ T . The set R = Pγ∪{σ · (S(→ t)) :
t, σ ∈ 2<ω} is a countable ST-forcing and P<γ �Mγ

R by Lemma 8.2(iv). It follows that the sequence R
defined by domR = γ+1, R�γ = P�γ, and R(γ) = R, belongs to STF, and also R ∈ W because S ∈ Q ∩R. 
Yet P�α �Mγ

R by construction, which contradicts to the Case 2 hypothesis.
(v) A routine verification gives CBc ∈ ΣHC

1 ({c}). The set CBc is dense in ST by Corollary 5.4, thus 
(CBc)− is empty. Now the result follows from (iv).

(vi) Similarly to (v), D ∈ ΣHC
1 and D is dense in ST. �

Corollary 12.2. If α < ω1 and trees T, T ′ ∈ P<α are incompatible in P<α, then T, T ′ are incompatible in P, 
too.

Proof. Prove by induction on γ that if α < γ ≤ ω1, then T, T ′ are incompatible in P<γ , using Lemma 12.1(i), 
and Lemma 8.2(iii) on limit steps. �

To prove CCC we’ll need the following lemma.

Lemma 12.3 (in L). If X ⊆ HC = Lω1 , then the set OX of all ordinals α < ω1 such that the model 
〈Lα; X∩Lα〉 is an elementary submodel of 〈Lω1 ; X〉 and X∩Lα ∈ Mα, is unbounded in ω1. More generally, 
if Xn ⊆ HC for all n, then the set O of all ordinals α < ω1 such that 〈Lα; 〈Xn ∩Lα〉n<ω〉 is an elementary 
submodel of 〈Lω1 ; 〈Xn〉n<ω〉 and 〈Xn ∩ Lα〉n<ω ∈ Mα, is unbounded in ω1.

Proof. Let α0 < ω1. There is a countable elementary submodel M of 〈Lω2 ; ∈〉 which contains α0, ω1, X and 

is such that the set M ∩ Lω1 is transitive. Consider the Mostowski collapse φ : M onto−→ Lλ. Let α = φ(ω1). 
Then α0 < α < λ < ω1 and φ(X) = X ∩ Lα by the choice of M . We conclude that 〈Lα; X ∩ Lα〉 is an 
elementary submodel of 〈Lω1 ; X〉. And α is uncountable in Lλ, hence Lλ ⊆ Mα. It follows that X∩Lα ∈ Mα, 
as X ∩ Lα ∈ Lλ by construction.
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The more general claim is proved similarly. �
Corollary 12.4 (in L). P is a CCC forcing. Therefore P-generic extensions preserve cardinals.

Proof. Consider any maximal antichain A ⊆ P. By Lemma 12.3 there is an ordinal α such that 〈Lα; P′, A′〉
is an elementary submodel of 〈Lω1 ; P, A〉, where P′ = P ∩Lα and A′ = A ∩P<α, and in addition P′, A′ ∈ Mα. 
By the elementarity, we have P′ = P<α and A′ = A ∩ P<α ∈ Mα, and A′ is a maximal antichain, hence a 
pre-dense set, in P<α. But then A′ is a pre-dense set, hence, a maximal antichain, in the whole set P by 
Lemma 12.1(ii). Thus A = A′ is countable. �
13. Generic model

This section presents some properties of P-generic extensions L[G] of L obtained by adjoining a P-generic 
set G ⊆ P to L. Recall that the forcing notion P ∈ L was introduced by Definition 11.5, along with some 
related notation.

The next lemma involves the coding system for continuous maps introduced in Section 7. If G ⊆ P is 
generic over L and c ∈ CCF ∩ L, then define c[G] = fc(a[G]) ∈ 2ω ∩ L[G]; for the definition of a[G] see 
Remark 6.2.

Lemma 13.1 (Continuous reading of names). If a set G ⊆ P is generic over L and x ∈ 2ω ∩L[G], then there 
exists a code c ∈ CCF ∩ L such that x = c[G].

Proof. One of basic forcing lemmas (Lemma 2.5 in [1, Chap. 4]) claims that there is a P-name t ∈ L for x, 
satisfying x = t[G] (the G-valuation of t), and it can be assumed that P forces that t is valuated as a real 
in 2ω. Then the sets Fni = {T ∈ P : T |= t(n) = i} (n < ω and i = 0, 1) satisfy the following:

(1) the indexed set 〈Fni〉n<ω∧i=0,1 belongs to L;
(2) if n < ω, S ∈ Fn0, T ∈ Fn1, then S, T are incompatible in P;
(3) if n < ω, then the set Fn = Fn0 ∪ Fn1 is open dense in P.

We argue in L. Pick a maximal antichain An ⊆ Fn in each Fn. Then all sets An are maximal antichains 
in P by (3), and all An are countable by Corollary 12.4. Therefore there is an ordinal α < ωL

1 such that the 
set 

⋃
n An ⊆ P<α and the sequence 〈An〉n<ω belong to Mα. Note that G ∩ Pα �= ∅ by Lemma 12.1(iii); let 

U ∈ G ∩ Pα. As P<α �Mα
Pα by Lemma 12.1(i), we have U ⊆fin ⋃

An for all n, hence there is a finite set 
A′

n ⊆ An such that U ⊆
⋃

A′
n.

Let A′
ni = A′

n∩Fni and Xni = [U ] ∩
⋃

T∈A′
ni

[T ], i = 0, 1. We claim that Xn0∩Xn1 = ∅. Indeed otherwise 
there exist trees Ti ∈ Fni such that Z = [U ] ∩ [T0] ∩ [T1] is non-empty. By Lemma 8.2(i), Z is clopen in 
[U ]. Therefore there is a tree U ′ ∈ Pα such that [U ′] ⊆ Z, hence, T0 and T1 are compatible in P, which 
contradicts (2) by construction. Thus indeed Xn0 ∩Xn1 = ∅.

As clearly Xn0 ∪Xn1 = [U ], the sets Xni are relatively clopen in [U ]. Therefore the map g : [U ] → 2ω, 
defined so that g(x)(n) = i iff x ∈ Xni, is continuous. By the Tietze extension theorem, the map g can be 
extended to a continuous f : 2ω → 2ω, that is f(x)(n) = i whenever x ∈ Xni — for all n < ω and i = 0, 1. 
We have f = fc, where c ∈ CCF ∩ L.

We argue in L[G]. Prove that x = c[G] = fc(a[G]). Suppose that e.g. x(n) = 0. As U ∈ G, we have 
a[G] ∈ [U ]. Therefore a[G] ∈ [T ] for some T ∈ A′

n, and then T ∈ G as well. If T ∈ A′
n1, then by definition 

T |= t(n) = 1, and hence x(n) = 1 because x = t[G] is the G-valuation of t. The contradiction obtained 
shows that T ∈ A′

n1 is impossible. It follows that T ∈ A′
n0. Then any a ∈ [T ] satisfies g(a)(n) = 0, hence, 

f(a)(n) = 0, thus we have fc(a[G])(n) = 0, as required. �
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Lemma 13.2. If G ⊆ P is generic over L, then a[G] is not OD in L[G].

Proof. Assume to the contrary that ϑ(x) is a formula with ordinal parameters, and a tree T ∈ G P-forces 
that a[G] is the only real x ∈ 2ω satisfying ϑ(x). Let s = stem(T ) and n = lh(s). Then T contains both 
s�0 and s�1. Then either s�0 ⊂ a[G] or s�1 ⊂ a[G]. Let say s�0 ⊂ a[G].

Let σ = 0n�1, so that the strings s�0, s�1, σ belong to 2n+1, s�1 = σ · s�0, and σ · T = T by 
Lemma 4.3(ii). As P is invariant under the action of σ, the set G′ = σ · G = {σ · S : S ∈ G} is P-generic 
over L, and T = σ · T ∈ G′. We conclude that it is true in L[G′] = L[G] that a[G′] = σ · a[G] is still the 
unique real in 2ω satisfying ϑ(a[G′]). But a[G′] �= a[G]! �
14. Definability of the set of generic reals

We continue to argue in the context of Definition 11.5. The goal of this section is to study the definability 
of the set of all P-generic reals x ∈ 2ω in P-generic extensions of L.

Lemma 14.1. In a transitive model of ZF extending L, it is true that a real x ∈ 2ω is P-generic over L iff 
x belongs to the set GENP =

⋂
α<ωL

1

⋃
T∈Pα

[T ].

Proof. All sets Pα are pre-dense in P by Lemma 12.1(iii). Therefore all P-generic reals belong to GENP. 
On the other hand, any maximal antichain A ∈ L, A ⊆ P is countable in L by Corollary 12.4, and hence 
A ⊆ P<α and A ∈ Mα for some index α < ωL

1 . But then every tree T ∈ Pα satisfies T ⊆fin ⋃
A by 

Lemma 8.2(ii). We conclude that 
⋃

T∈Pα
[T ] ⊆

⋃
S∈A[S]. �

According to the next lemma, P-generic extensions do not contain P-generic reals, except the real a[G]
itself and reals connected to a[G] in terms of the equivalence relation E0 (see Footnote 7). We observe that 
the E0-class

[x]E0 = {y ∈ 2ω : xE0y} = {y ∈ 2ω : ∃ s ∈ 2<ω(y = s · x)}

of any real x ∈ 2ω is a countable set.

Lemma 14.2. Let G ⊆ P be a P-generic set over L. Then it is true in L[G] that GENP = [a[G]]E0 .

Proof. The real a[G] is P-generic, hence a[G] ∈ GENP by Lemma 14.1. Yet every set Pα is a ST-forcing, 
that is by definition it is closed under the action s · T of any string s ∈ 2<ω. This implies [a[G]]E0 ⊆ GENP.

To prove in the other direction, assume to the contrary that x ∈ L[G] ∩ 2ω, x ∈ GENP � [a[G]]E0 . By 
Lemma 13.1, there is a code c ∈ L ∩ CCF such that x = c[G]. By the contrary assumption there is a tree 
T0 ∈ G which forces

c[G] ∈ GENP � [a[G]]E0 ,

where G is the name of G in the P-forcing language.
Fix an ordinal α < ωL

1 such that c ∈ Mα. We claim that (in L) the function f = fc is regular on T0
inside P<α.

Indeed otherwise there exist σ ∈ 2<ω and T ∈ P<α such that T ⊆ T0 and σ · f(x) = x for all x ∈ T . 
Then T forces σ · c[G] = a[G], that is, forces c[G] ∈ [a[G]]E0 , contrary to the choice of T0. The regularity 
is established.

Recall that P<α �Mα
Pα by Lemma 12.1(i). Therefore by 8.1(A), there is a tree U ∈ Pα, U ⊆ T0. And by 

8.1(C) if V ∈ Pα, then [V ] ∩ (f”[U ]) = ∅. By Shoenfield absoluteness, the equality [V ] ∩ (f”[U ]) = ∅ holds 
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in any generic extension. It follows that if V ∈ Pα, then U forces c[G] /∈ [V ], hence forces c[G] /∈ GENP, 
which contradicts to the choice of T0. �
Corollary 14.3. Let G ⊆ P be a P-generic set over L. Then the E0-class [a[G]]E0 is a Π1

n set in L[G].

Proof. A routine verification of GENP ∈ Π1
n in L[G] using the Property 11.4(i) of the sequence P is left to 

the reader. �
15. Auxiliary forcing relation

Here we introduce a key tool for the proof of Claim (i) of Theorem 1.2. This is a forcing-like relation forc . 
It is not explicitly connected with the forcing notion P (but rather connected with the full Silver forcing 
ST), however it will be compatible with P for formulas of certain quantifier complexity (Lemma 17.1). The 
crucial advantage of forc will be its invariance under two certain groups of transformations (Lemma 16.1), 
a property that cannot be expected for P. This will be the key argument in the proof of Theorem 17.2
below.

We argue in L.
We consider a language L containing variables i, j, k, . . . of type 0 with the domain ω and variables 

x, y, z, . . . of type 1 with the domain 2ω. Terms are variables of type 0 and expressions like x(k). Atomic 
formulas are those of the form R(t1, . . . , tn), where R ⊆ ωn is any n-ary relation on ω in L. A formula is 
arithmetic if it does not contain quantifiers with variables of type 1. Formulas of the form

∃x1 ∀x2 ∃x3 . . . ∃ (∀ )xn Ψ and ∀x1 ∃x2 ∀x3 . . . ∀ (∃ )xn Ψ ,

where Ψ is arithmetic, are of types LΣ1
n, resp., LΠ1

n.
In addition we allow codes c ∈ CCF to substitute free variables of type 1. The semantics is as follows. 

Let ϕ := ϕ(c1, . . . , ck) be an L -formula, with all codes in CCF explicitly indicated, and let x ∈ 2ω. By 
ϕ[x] we denote the formula ϕ(fc1(x), . . . , fck

(x)), where all fci
(x) are reals in 2ω, of course.

Arithmetic formulas and those in LΣ1
n∪LΠ1

n, n ≥ 1, will be called normal. If ϕ is a formula in LΣ1
n or 

LΠ1
n, then ϕ− is the result of canonical transformation of ¬ ϕ to LΠ1

n, resp., LΣ1
n form. For arithmetic 

formulas, let ϕ− := ¬ ϕ.

Definition 15.1 (in L). We define a relation Tforcϕ between trees T ∈ ST and closed normal L -formulas 
by induction on the complexity of the formulas:

(I) if ϕ is a closed L -formula, arithmetic or in LΣ1
1 ∪LΠ1

1 , then Tforcϕ iff ϕ[x] holds for all x ∈ [T ]12;
(II) if ϕ := ∃x ψ(x) is a closed LΣ1

n+1 formula, n ≥ 1 (ψ being of type LΠ1
n), then Tforcϕ iff there is 

a code c ∈ CCF such that Tforcψ(c);
(III) if ϕ is a closed LΠ1

n formula, n ≥ 2, then Tforcϕ iff there is no tree S ∈ ST such that S ⊆ T and 
Sforcψ−. �

12 One may consider it somewhat confusing that the base of induction contains both arithmetic formulas and those of classes LΣ1
1

and LΠ1
1 . The key issue here is the complexity of the forcing relation for LΠ1

1 -formulas in Lemma 15.2. The given definition 
maintains it to be Π1

1, hence, ΔHC
1 (HC), then we estimate it to be ΣHC

1 (HC) for LΣ1
2 -formulas by (II), ΠHC

1 (HC) for LΠ1
2 -formulas 

by (III), and so on. If alternatively we keep (I) only for arithmetic formulas, and handle LΣ1
1 by (II) and LΠ1

1 by (III), then we 
get class ΔHC

1 (HC) for arithmetic formulas by (I), ΣHC
1 (HC) for LΣ1

1 -formulas by (II), and ΠHC
1 (HC) for LΠ1

1 -formulas by (III), 
then again ΣHC

2 (HC) for LΣ1
2 -formulas and ΠHC

2 (HC) for LΠ1
2 -formulas by (II), (III) — which is essentially worse than we have 

now by Lemma 15.2.
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If ϕ(x1, . . . , xn) is a normal L -formula then let

Forc(ϕ) = {〈c1, . . . , cn, T 〉 ∈ CCFn × ST : Tforcϕ(c1, . . . , cn)}

and Des(ϕ) = Forc(ϕ) ∪ Forc(ϕ−). In particular, Forc(ϕ) = {T ∈ ST : Tforcϕ} for closed formulas ϕ.

Lemma 15.2 (in L). If ϕ is a formula in LΠ1
1 , then the set Forc(ϕ) belongs to ΔHC

1 (HC). If m ≥ 2 and ϕ
is a formula in LΣ1

m, resp., LΠ1
m, then the set Forc(ϕ) belongs to ΣHC

m−1(HC), resp., ΠHC
m−1(HC).

Proof. For LΠ1
1 formulas, Definition 15.1(I) implies Forc(ϕ) ∈ Π1

1.
It follows that Forc(ϕ) belongs to ΔHC

1 (HC). Indeed, to get a ΣHC
1 definition from a Π1

1 definition, 
recall that the latter can be represented in the form of the well-foundedness of a certain tree in ω<ω, which 
is equivalent to the existence of a map from the tree onto a countable ordinal, which (map) witness the 
well-foundedness. This yields a Σ1

HC definition required.
As soon as the result for LΠ1

1 -formulas is established, the inductive proof for higher levels goes on 
straightforwardly by Definition 15.1(II), (III), the inductive hypothesis for any step m �→ m + 1 (m ≥ 1) 
being that Forc(ϕ) belongs to ΔHC

m (HC) (m = 1) or ΠHC
m−1(HC) (m ≥ 2), for any formula ϕ ∈ LΠ1

m. �
Recall that a number n ≥ 3 is fixed by Definition 11.5.

Lemma 15.3 (in L). Let ϕ be a closed normal L -formula. Then the set Des(ϕ) is dense in ST. If ϕ is of 
type LΣ1

m, m < n, then Des(ϕ) ∩ P is dense in P.

Proof. It suffices to establish the density of Des(ϕ) for formulas ϕ as in (I). If ϕ is such, then the set 
X(ϕ) = {x ∈ [T ] : ϕ[x]} belongs to Σ1

1 ∪Π1
1, that is, it has the Baire property inside [T ]. Therefore at least 

one of the two complimentary sets X(ϕ), X(ϕ−) is not meager in [T ]. It remains to apply Corollary 5.4.
The second claim follows from the first one by Lemmas 15.2 and 12.1(iv). �

16. Invariance

It happens that the relation forc is invariant under two rather natural groups of transformations of ST. 
Here we prove the invariance. We still argue in L.

First group. Let h ⊆ ω. If x ∈ 2ω, then a real h · x ∈ 2ω is defined by (h · x)(j) = 1 − x(j) for 
j ∈ h, but (h · x)(j) = x(j) for j /∈ h. If X ⊆ 2ω, then let h · X = {h · x : x ∈ X}. Accordingly, if 
s ∈ 2<ω and n = lh(s), then a string h · s ∈ 2<ω is defined by dom(h · s) = n = doms and if j < n, then 
(h · x)(j) = 1 − x(j) for j ∈ h, but (h · x)(j) = x(j) for j /∈ h. If T ⊆ 2<ω, then let h · T = {h · s : s ∈ T}. 
Then obviously T ∈ ST iff h · T ∈ ST.

If f : 2ω → 2ω, then a function h · f : 2ω → 2ω is defined by (h · f)(x) = f(h · x), equivalently, 
(h · f)(h · x) = f(x). If f is continuous, then f = fc, where c ∈ CCF, and there is a canonical definition 
of a code h · c ∈ CCF such that h · (fc) = fh · c.

Finally if ϕ := ϕ(c1, . . . , ck) is a L -formula, then let hϕ be the formula ϕ(h · c1, . . . , h · ck). Then 
(hϕ)[h · x] coincides with ϕ[x].

Second group. Let IB be the set of all idempotent bijections b : ω
onto−→ ω, that is, we require that 

b(j) = b−1(j), ∀ j. If x ∈ 2ω, then define b · x ∈ 2ω by (b · x)(j) = x(b(j)), ∀ j. Let b · X = {b · x : x ∈ X}, 
for X ⊆ 2ω. If T ∈ ST, then put b · T = {x�m : x ∈ (b · [T ]) ∧m < ω}. Clearly T ∈ ST iff b · T ∈ ST.

If f : 2ω → 2ω, then a function b · f : 2ω → 2ω is defined similarly to the above by (b · f)(x) = f(b · x), 
equivalently, (b · f)(b · x) = f(x). If f is continuous, then f = fc, where c ∈ CCF, and still there is a 
canonical definition of a code b · c ∈ CCF such that b · (fc) = fb · c.
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And finally if ϕ := ϕ(c1, . . . , ck) is a L -formula, then let bϕ be the formula ϕ(b · c1, . . . , b · ck). Then 
(bϕ)[b · x] coincides with ϕ[x].

Lemma 16.1 (in L). Let T ∈ ST and ϕ be a closed normal L -formula. Then

(i) if h ⊆ ω, then Tforcϕ iff (h · T )forchϕ;
(ii) if b ∈ IB, then Tforcϕ iff (b · T )forc bϕ.

Proof. (i) If ϕ is of type 15.1(I), then it suffices to note that, first, [h · T ] = {h · x : x ∈ [T ]}, and second, if 
x ∈ [T ], then ϕ[x] coincides with (hϕ)[h · x]. A routine induction based on Definition 15.1(II), (III) is left 
to the reader. �
Corollary 16.2. Let ϕ be a closed normal L -formula, such that: if a code c occurs in ϕ, then fc is a 
constant. Assume that S, T ∈ ST and the splitting sets spl(S), spl(T ) (see Section 4) are both co-infinite. 
Then Sforcϕ iff Tforcϕ.

Proof. Assume that Sforcϕ. As both spl(S) and spl(T ) are co-infinite (and they are infinite anyway), 
there is a bijection b ∈ IB such that b”(spl(S)) = spl(T ). Then the tree S′ = b ·S satisfies spl(S′) = spl(T ), 
and still S′forcϕ by Lemma 16.1(ii), as all occurring codes define constant functions, and hence bϕ and 
ϕ essentially coincide. Now, as spl(S′) = spl(T ), there is a set h ⊆ ω � spl(S′) = ω � spl(T ) such that 
T = h · S′. Then Tforcϕ by Lemma 16.1(i) and the hypothesis, that all codes involved are codes of 
constant functions, just as above. �
17. The final argument

Recall that n ≥ 3 is fixed by Definition 11.5.
The last part of the proof of Theorem 1.2 will be Lemma 17.2. Note the key ingredient of the proof: 

we surprisingly approximate the forcing P, definitely non-invariant under the transformations considered in 
Section 16, by the invariant relation forc , using the next lemma.

Lemma 17.1. Assume that 1 ≤ n < n, ϕ ∈ L is a closed formula in LΠ1
n ∪ LΣ1

n+1, and a set G ⊆ P is 
generic over L. Then the sentence ϕ[a[G]] is true in L[G] if and only if ∃T ∈ G (Tforcϕ).

Proof. Base of induction: ϕ is arithmetic or belongs to LΣ1
1 ∪ LΠ1

1 , as in 15.1(I). If T ∈ G and Tforcϕ, 
then ϕ[a[G]] holds by the Shoenfield absoluteness theorem, as a[G] ∈ [T ]. The inverse holds by Lemma 15.3.

Step LΠ1
n =⇒ LΣ1

n+1. Let ϕ be ∃x ψ(x) where ψ is of type LΠ1
n. Assume that T ∈ G and Tforcϕ. 

Then by Definition 15.1(II) there is a code c ∈ CCF∩L such that Tforcψ(c). By the inductive hypothesis, 
the formula ψ(c)[a[G]], that is, ψ[G](fc(a[G])), is true in L[G]. But then ϕ[a[G]] is obviously true as well.

Conversely assume that ϕ[a[G]] is true. Then there is a real y ∈ L[G] ∩ 2ω such that ψ[a[G]](y) is true. 
By Lemma 13.1, y = fc(a[G]) for a code c ∈ CCF∩L. But then ψ(c)[a[G]] is true in L[G]. By the inductive 
hypothesis, there is a tree T ∈ G satisfying Tforcψ(c). Then Tforcϕ as well.

Step LΣ1
n =⇒ LΠ1

n. Let ϕ be a LΠ1
n formula, n ≥ 2. By Lemma 15.3, there is a tree T ∈ G such 

that either Tforcϕ or Tforcϕ−. If Tforcϕ−, then ϕ−[a[G]] is true by the inductive hypothesis, hence 
ϕ[a[G]] is false. Now assume that Tforcϕ. We have to prove that ϕ[a[G]] is true. Suppose otherwise. Then 
ϕ−[a[G]] is true. By the inductive hypothesis, there is a tree S ∈ G such that Sforcϕ−. But the trees 
S, T belong to the same generic set G, hence they are compatible, which leads to a contradiction with the 
assumption Tforcϕ, according to Definition 15.1(III). �
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Lemma 17.2. If a set G ⊆ P is P-generic over L, then it is true in L[G], that every countable Σ1
n set Y ⊆ 2ω

satisfies Y ∈ L.

Proof. We work in the context of Definition 11.5. The first part of the proof is to show that Y ⊆ L. 
Suppose to the contrary that it holds in L[G] that Y ⊆ 2ω is a countable Σ1

n set, but Y �⊆ L. We have 
Y = {y ∈ 2ω : ϕ(y)} where ϕ(y) := ∃ z ψ(y, z) is a Σ1

n formula, that is, LΣ1
n formula without codes in 

CCF. There is a tree T0 ∈ G which P-forces that “{y ∈ 2ω : ϕ(y)} is a countable set and ∃ y(ϕ(y) ∧y /∈ L)”. 
Our goal is to derive a contradiction.

By Lemma 13.1, there exist codes c, d ∈ CCF ∩ L such that the real y0 = c[G] = fc(a[G]) belongs 
to Y , so that y0 /∈ L and ϕ(c)[a[G]] holds, that is, ∃ z ψ(c, z)[a[G]], and finally d witnesses the existence 
quantifier, so that the sentence ψ(c, d)[a[G]] holds in L[G]. By Lemma 17.1 as ψ is a LΠ1

n−1 formula, there 
is a tree T1 ∈ G satisfying T1forcψ(c, d).

We can wlog assume that T1 ⊆ T0 and that, in L, the map fc is either a constant or a bijection on [T1], 
by Lemma 12.1(v).

Case 1: fc�[T1] is a constant, that is, there exists a real y1 ∈ 2ω ∩L such that fc(x) = y1 for all x ∈ [T1]. 
But then y1 = fc(a[G]) = y0, however y0 /∈ L while y1 ∈ L, which is a contradiction.

Case 2: fc�[T1] is a bijection. As T1 is a Silver tree, the set H = spl(T1) ⊆ ω of all its splitting 
levels is infinite (Definition 4.1). Let h ∈ L, h ⊆ H. Then h · T1 = T1, and we have T1forcψ(h · c, h ·
d) By Lemma 16.1. Therefore the formula ψ(h · c, h · d)[a[G]] is true in L[G] by Lemma 17.1. But 
this formula coincides with ψ(fh · c(a[G]), fh · d(a[G])), hence we have ϕ(fh · c(a[G])) in L[G]. This implies 
fh · c(a[G]) ∈ Y , or equivalently, fc(h · a[G]) ∈ Y .

However, if sets h, h′ ∈ L, h ∪h′ ⊆ H, satisfy h �= h′, then h · a[G] �= h′ · a[G], and hence fc(h · a[G]) �=
fc(h′ · a[G]), as fc is a bijection on [T1] (and a[G] ∈ [T1]). Thus picking different sets h ∈ L ∩ P(H) we 
get uncountably many different elements of the set Y in L[G], which contradicts to the choice of Y .

The proof of Y ⊆ L is accomplished.
To prove Y ∈ L, a stronger statement, it suffices now to show that if y0 ∈ 2ω ∩ L, then y0 ∈ Y iff 

∃T ∈ ST (Tforcϕ(c0)), where c0 ∈ CCF ∩ L is the code of the constant function fc0(x) = y0, ∀x ∈ 2ω.
If y0 ∈ Y , then the formula ϕ(y0), equal to ϕ(c0)[x] for any x, is true in L[G] by the choice of ϕ. It 

follows by Lemma 17.1 that there is a tree T ∈ G satisfying Tforcϕ(c0), as required.
Now suppose that T ∈ ST (not necessarily ∈ P!) and Tforcϕ(c0). As the set D = {T ∈ ST :

spl(T ) is co-infinite} (see Lemma 12.1(vi)) is open dense in ST, we can assume that spl(T ) is co-infinite. 
On the other hand, it follows from Lemma 12.1(vi) that there is a tree S ∈ G ∩ D, so that spl(S) is 
co-infinite as well. Now we have Sforcϕ(c0) by Corollary 16.2, and then ϕ(c0)[a[G]] is true in L[G] by 
Lemma 17.1, that is, ϕ(y0) holds in L[G], and y0 ∈ Y , as required. �
Proof (Theorem 1.2, the main theorem) We assert that any P-generic extension L[G] = L[a[G]] satisfies 
conditions (i), (ii), (iii) of the theorem. That a[G] /∈ OD in (i) follows by Lemma 13.2. The minimality follows 
from Lemma 12.1(v) by Lemma 13.1 (continuous reading of names). We further have (ii) by Corollary 14.3, 
and we have (iii) by Lemma 17.2. �
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