
ISSN 0005-1179, Automation and Remote Control, 2018, Vol. 79, No. 12, pp. 2203–2216. c© Pleiades Publishing, Ltd., 2018.
Original Russian Text c© K.Yu. Gorbunov, V.A. Lyubetsky, 2018, published in Avtomatika i Telemekhanika, 2018, No. 12, pp. 124–141.

OPTIMIZATION, SYSTEM ANALYSIS, AND OPERATIONS RESEARCH

A Linear Algorithm for Restructuring a Graph

K. Yu. Gorbunov∗,a and V. A. Lyubetsky∗,∗∗,b

∗Institute for Information Transmission Problems (Kharkevich Institute),
Russian Academy of Sciences, Moscow, Russia

∗∗Lomonosov State University, Moscow, Russia
e-mail: agorbunov@iitp.ru, blyubetsk@iitp.ru

Received January 31, 2017
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1. INTRODUCTION AND PROBLEM SETTING

We consider the graph transformation problem: we are given directed graphs a and b, for which
the degree of each vertex is � 2, and each edge is assigned a label in the form of a natural number,
well-known operations on graphs that preserve this condition on vertex degrees, and the cost of
each operation. Such graphs are called structures. The problem is to find the shortest sequence
of operations that converts a to b. The cost is a strictly positive rational number, and “shortest”
means a sequence that has minimal total cost; we call it the minimum cost . The above-mentioned
operations on such graphs include: re-gluing of chains and cycles at vertices (these operations are
called standard), inserting and removing connected sections of edges (they are called additional).
These operations are described in detail, for example, in [1, Fig. 1]; in essence, double intermerging
consists of cutting two vertices and identifying (gluing) the four edges together in a new way.
Sesquialteral intermerging consists in the same cutting, followed by gluing together one of the
new endpoints with some free endpoint. A splitting consists of cutting the vertex, merging is the
inverse operation. Removal means removing a connected section of edges whose labels belong to
the original but do not belong to the final structure; insertion means a substitution instead of the
vertex a connected part with edges whose labels belong to the final but not to the original structure,
or declaring this part to become a new component.

The problem has a long history and numerous applications, links to which can be found in [2–5];
it is NP-complete and therefore cannot be solved in general. The authors of the present work have
obtained linear algorithms, both in running time and in memory, for solving this problem for the
following cases: (1) when the costs of all operations are the same [6]; (2) when the costs of all
operations except insertion are equal to one, and the cost of the latter operation is from one to
two [1]. In this work we consider the case (3) when the cost w of insertion and removal is the
same and does not exceed the cost of other operations. For the sake of brevity, the statement is
proved under the following assumption: w does not exceed half of the costs of other operations

2203



2204 GORBUNOV, LYUBETSKY

which are the same (the second half of the statement will be verified in the next paper). Details
of some essentially obvious and purely technical calculations of the proof are given on the web site
http://lab6.iitp.ru/-/lagr17.

2. DEFINITIONS

For structures a and b, their combined graph, denoted a+ b, is an undirected graph consisting
of connected components, i.e., chains (including isolated vertices) and cycles, including loops. The
definition of a+ b has been given in detail in [1], but essentially a+ b is described below. We call
edges in structures a and b and in intermediate structures from a to b arcs, and for edges in a+ b
we keep the usual term. An arc is called ordinary if it is represented in both a and b, otherwise it
is called singular .

Vertices and edges in a+ b can be either ordinary or singular : an ordinary vertex is an endpoint
of an arc represented in both a and b, an ordinary edge connects two endpoints of arcs represented
in both a and b and glued in a or in b; a singular vertex is a connected maximal segment of singular
arcs in a or in b, a singular edge connects such a segment with the adjacent endpoint of an ordinary
arc, i.e., connects a singular vertex with an ordinary one. A loop in a+ b corresponds to a cycle of
singular arcs, that is, it connects a singular vertex with itself.

A pendant edge is an edge incident to a singular vertex of degree one; such an edge is located
at the end of a chain. This singular vertex is also called pendant . Non-pendant singular edges
occur in a+ b in pairs: these are edges incident to a common singular vertex. Any edge or singular
vertex has a source in a or b and is called respectively an a- or b-edge, a- or b-vertex. The size
of a component in a+ b is the sum of the number of its ordinary edges and half of the number of
its singular non-pendant edges. For isolated ordinary vertices and loops the size is assumed to be
zero, for isolated singular vertices (not loops), equal to negative one. A combined graph is called
final (of final type) if each of its components is an isolated ordinary vertex or cycle without singular
vertices of size (or length, which is the same in this case) two, one of them an a- and another a
b-edge; we call such cycles final . Cycles of size two are called 2-cycles.

The work [1] defines five operations on a combined graph: counterparts of standard operations,
which are also called standard , and one additional operation. The latter is called removal , and it
consists of removing a singular vertex: removing it, we merge two singular edges incident to it into
one ordinary edge. Counterparts of standard operations on the structure are also called splitting ,
merging , sesquialteral , and double intermerging. Double intermerging consists of the following:
remove two edges of a combined graph with the same label and connect the four resulting endpoints
with two new non-incident edges with the same label. A splitting is a removal of an edge from
the combined graph; merging means adding an edge to the graph, sesquialteral intermerging is a
splitting followed by merging one of the endpoints of the removed edge to a vertex of degree at most
one. The latter two operations are admissible if the resulting graph does not contain two identically
labeled edges incident to an ordinary vertex. If as a result of one of the last three operations there
appears an edge with singular endpoints (both a- or both b-vertices), then it is replaced by a single
singular vertex. Both splitting and removal can lead to an isolated vertex appearing if they are
applied to an end edge or vertex. On the contrary, in the case of a structure removal occurs along
with the endpoints of an edge.

Cutting an ordinary edge (say, with label a) from a cycle of size strictly larger than two consists
of the following: replace two adjacent b-edges with two other b-edges; one of them forms, together
with the cut edge, the final 2-cycle, and the other connects the two “distant” ends of the replaced
edges. Obviously, this is a counterpart of double intermerging. Similarly, we define cutting from
a chain of a non-end ordinary edge, and for an end edge we use a counterpart of sesquialteral
intermerging. Inversion corresponds to double intermerging that keeps the segment in the same
place, but with reversed order of the edges.
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In [6, Corollary to Theorem 1], it has been proved that if the costs of all operations are equal,
then the transformation of a to b by the six operations on structures is equivalent with the same
total cost to a transformation of a+ b by the five specified operations to a final form where the
costs of operations are the same as over the structures, while the cost of removing an a-vertex
is equal to the removal cost of the arc segment, and the removal cost of a b-vertex equals to the
cost of inserting such a segment. This proof remains literally the same if the costs of only all
standard operations are equal, and the costs of removal and insertion are arbitrary. Therefore, we
will consider reducing a+ b to the final form instead of reducing a to b.

A chain of odd (even) size is called odd (even); zero is considered an even number, and (−1) is
odd. In [6], the notion of a type of a chain of a combined graph was defined; namely, if there are
no ordinary edges in a chain then 1a is an odd chain with one pendant b-edge, 2a—an odd chain
with two pendant b-edges or an isolated singular b-vertex (in the second case we are talking about
type 2a′), 3a—an odd chain without pendant edges with outermost a-edges, 1a—an even chain with
one pendant a-edge, 2—an even chain with two pendant edges, 3—an even chain without pendant
edges. We define the types with a replaced by b in a similar way. Type 1 is the union of types 1a
and 1b, type 0 corresponds to a chain without singular vertices. The alphabetical type of a chain
is the letter in its type’s notation. If there are ordinary edges in the chain, then the chain type is
equal to the type of a chain obtained by cutting these edges [6, Lemma 6].

3. ALGORITHM OF AUTONOMOUS REDUCTION, AUTONOMOUS COST
AND QUALITY OF A SET OF GRAPH COMPONENTS

Let M be any set of chains, cycles and loops from the combined graph a+ b. An autonomous
reduction of the set M to a final form is the following sequence of actions applied to each element
of M independently of each other: remove the loop; cut all ordinary edges out from the chain and
the cycle, close a chain of strictly positive size into a cycle. The latter is done by merging the
endpoints for an odd chain and sesquialteral intermerging with cutting the ordinary end vertex
for an even chain; if such a vertex does not exist, i.e., both edges of the chain are singular, then
with the same intermerging we remove the penultimate non-pendant edge and keep the pendant
edge. Then the cycle (already consisting only of singular edges) is divided into 2-cycles, namely:
suppose that we are talking about a segment abba in some large cycle; double intermerging re-
moves the left and right a-neighbors of a special vertex and replaces them with two edges, which
leads to two smaller cycles, and one of them is the cycle abb. In the cycle abb we delete the
singular vertex and get the final 2-cycle; we divide the larger cycle in the same way; for details,
see [6, § 2.2].

The autonomous cost C(M) of a set M is the total cost of the sequence of actions specified
above. For the set M we use the following notation: B is the total number of singular vertices; S is
the sum of whole parts of halves of the lengths of the maximal connected sections made of ordinary
edges (which we call segments) added to the number of extreme (on a chain) odd segments (i.e.,
consisting of odd number of edges) less the number of cyclic segments; D is the sum of component
defects, where the defect of a component is equal to one if it is a chain of types 1a, 1b, 3a, 3b or 3,
and zero in all other cases. The quality M is the number of cycles in M (but not loops) plus half
the number of even chains in M , see [6, § 3].

Lemma 1. Let M be the set of components (chains, cycles, loops) of a combined graph G; d,
the total size of the components; f , the number of odd chains in M ; c, the number of cycles in M .
Then the total cost of autonomous reduction of all components from M to the final form is equal to

C(M) = (1− w)(0.5d + 0.5f − c) + w(B + S +D).
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Proof. For each component K, we calculate the cost of its autonomous reduction to the fi-
nal form. It is easy to see (for more details see [6]) that the number of operations required is
B + S +D, where B, S, D are defined before the statement of Lemma 1 and are computed for K.
Denoting by U and Q the number of deletions of a singular vertex and standard operations, we
get: B + S +D = U +Q, U = B + S +D −Q. This means that the total cost of all operations is
Q+w(B + S +D −Q) = (1− w)Q+ w(B + S +D).

When autonomously reducing a component to the final form, a standard operation increases the
quality of the combined graph by one, and removal a special vertex does not change it. Let d be
the size of the component. The final form consists of a cycle for 0.5d final cycles, for an odd chain
of 0.5(d + 1) final cycles, and for an even chain of 0.5d final cycles and one isolated ordinary vertex.
Subtracting the quality of the initial graph from the quality of the final graph, we obtain that for a
cycle Q = 0.5d − 1, for an odd chain Q = 0.5(d + 1), and for an even chain Q = 0.5d. Recall that
an isolated singular vertex is considered an odd chain of size minus one. This completes the proof
of Lemma 1.

4. MAXIMAL REGION IN A SET OF CHAINS AND A DESCRIPTION
OF THE MAIN ALGORITHM

Let L be the set of chains consisting of singular edges. We call a pair in L two chains from L
that have the following types: {2a, 3b}, {2b, 3a}, {1a, 1b}, {1a, 2b}, {1b, 2a}, {1a, 3b}, {1b, 3a}; each
pair of types is tied to one specific action from the list 1–7 (see below); the entry in braces is called
the type of a pair. The set of pairs in L is called a region if the pairs do not intersect. A region
is divided into subregions with the same type of pairs. One specific action out of the seven below
is applied to all pairs from the subregion independently of each other; thus, the choice of action
is uniquely determined by the type of subregion. So, each of the seven actions is associated with
its type: in their descriptions below, equality joins the types of the two arguments in the left-hand
side with the type of their value in the right-hand side. The + sign in the list of actions 1–7 is
non-commutative.

1. 2a+ 3b = 1b: two chains of types 2a and 3b are replaced with a chain of type 1b; for this,
in 3b we remove the extreme edge and glue the singular b-vertex incident to it (from the inside)
with the extreme b-vertex in the 2a-chain; in all items 1–7, an isolated ordinary vertex is formed
and a sesquialteral intermerging is applied.

2. 2b+ 3a = 1a: replace chains of types 2b and 3a with a chain of type 1a; for this, in 3a we
remove the extreme edge and glue the incident a-vertex with the extreme a-vertex in the 2b-chain.

3. 1a+ 1b = 1b: replace chains of types 1a and 1b with a chain of type 1b; for this, we delete
the outermost edge in the 1a-chain and glue the incident a-vertex with the extreme a-vertex in the
1b-chain.

4. 1a+ 2b = 2: replace chains of types 1a and 2b with a chain of type 2; for this, in the 1a-chain
we remove the extreme non-pendant edge and glue the incident a-vertex with the extreme a-vertex
in the 2b-chain.

5. 1b+ 2a = 2: replace chains of types 1b and 2a with a chain of type 2; for this, in the 1b-chain
we remove the extreme non-pendant edge and glue the incident b-vertex with the extreme b-vertex
in the 2a-chain.

6. 1a+ 3b = 3: replace chains of types 1a and 3b with a chain of type 3; for this, in the 3b-chain
we remove the extreme non-pendant edge and glue the incident b-vertex with the extreme b-vertex
in the 1a-chain.

7. 1b+ 3a = 3: replace chains of types 1b and 3a with a chain of type 3; for this, in the 3a-chain
we remove the extreme non-pendant edge and glue the incident a-vertex with the extreme a-vertex
in the 1b-chain.
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The quality of action P (s) is equal to the difference between autonomous costs C(s) and C({t}),
where t is the result of the action on its argument s, and from this difference we also deduct the
cost of the action.

The following are some obvious results of calculating the quality P (j) for each of the actions j,
j = 1, 7. The value d, the total size of the components in the set, is increased by one after a merging
and does not change with sesquialteral or double intermerging.

1, 2. 2a+ 3b = 1b, 2b+ 3a = 1a. The values of B and D decrease by one, f is reduced by two,
P (1) = P (2) = (1− w) + 2w − 1 = w.

3. 1a+ 1b = 1b. The value of B is decreased by one, f and D decrease by two, P (3) = (1−w)+
3w − 1 = 2w.

4, 5. 1a+ 2b = 2, 1b+ 2a = 2. The values B and D decrease by one, f decreases by two,
P (4) = P (5) = (1− w) + 2w − 1 = w.

6, 7. 1a+ 3b = 3, 1b+ 3a = 3. The values of B and D decrease by one, f is reduced by two,
P (6) = P (7) = (1− w) + 2w − 1 = w.

We use that, according to the calculations above, P is a multiple of w.

Consider a set L of chains along with its region of maximum total quality of actions compared
to any other region for L. Such a region is called maximal . Since the pairs do not intersect in a
region, actions can be performed simultaneously for all pairs of the region in an arbitrary order.

We now describe the main algorithm, which brings the graph a+ b to its final form.

The algorithm starts with the initial combined graph a+ b and includes 4 steps: 1) delete all
loops; 2) cut all ordinary edges; we denote the resulting set of chains made of singular edges by L
and denote the set of chains and cycles by M ; 3) for L, find the maximal region N and apply
actions 1–7 to 〈L,N〉; to the resulting set of chains L1 add all the cycles that were present in M ;
and, finally, 4) perform an autonomous reduction of the remaining components to the final form.

The algorithm for constructing a maximal region N is trivial: we define a linear order on the
types of pairs defined by items 1–7, and then for each type we sequentially add to N pairs from L
of this type that do not intersect already added pairs, as long as possible (it does not matter which
chains of a given type make up the next pair).

This completes the description of the main algorithm.

The justification for stage 3 is non-trivial: to find the region N we use Lemma 2, and the
statement about the algorithm’s accuracy is contained in the final theorem of this section, which
uses Lemma 1.

Denote by T (G) the total cost of operations in the final sequence that the proposed algorithm
builds, applied to the combined graph G. Let us prove that

T (G) = C(G)− P (G), (1)

where P (G) is the total quality of actions for any maximum region N(G) and the specified L(G);
the notation C(G) was introduced before the statement of Lemma 1, where the set of connected
components of the graph G was taken as M . Denote by T ′(R) the total cost of operations in the
final sequence, starting from some intermediate R.

The equality T (R) = T ′(R) follows from the fact that T (R) is the minimum cost for the graph R,
which will be proved in the theorem.

Thus, for (1) to hold it suffices that all graphs R in the final sequence, which by the proposed
algorithm leads a+ b to the final form, satisfy that

C(R)− T ′(R) = K ′(R), (2)
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where K ′(R) is the total quality of all actions in this sequence starting from R. Equality (2)
can be proved by induction from the end of the sequence. The induction base is obvious. For
operations that are not actions, the inductive step is obvious; for action operations, it follows from
the definition of the quality of action (the order of pairs within one type is arbitrary). Note that
K ′(G) = P (G), and we get that

T (G) = C(G)− P (G),

and now using Lemma 1 we find that

T (G) = (1− w)(0.5d + 0.5f − c) + w(B + S +D)− P (G). (3)

Lemma 2. For any set of chains L, the maximum region N can be constructed in linear time.

Proof. Suppose that we have constructed a nonmaximal region N of pairs which is included in
some maximal region N ′. Let us verify that any pair l of the smallest type that does not intersect
with any pair from N is such that N ∪ {l} is also contained in some maximum region N ′′. To prove
this, let us consider as l pairs of all possible types.

1, 2. Let l be of type {2a, 3b} or {3a, 2b}. Consider the first case. If l is contained in N ′, we
assume N ′′ = N ′. Otherwise, let S be the set of partners of chains from pairs in N ′ \N such that
the pair intersects with l. A partner chain in a pair is the other chain in this pair. A partner is
marked with ∗ in the pair type. Looking ahead, we note that N ′′ specified below have the same
action quality as N ′, and therefore represent maximum regions (the first and last cases where the
quality of N ′′ is strictly greater than the quality of N ′ are impossible, i.e., such pair l does not
exist).

If S is empty, then N ′′ = N ′ ∪ {l}; if S = {3b∗}, then N ′′ = {N ′ \ {2a, 3b∗}} ∪ {l}; if S = {1b∗},
then N ′′ = {N ′ \ {1b∗, 2a}} ∪ {l}; if S = {2a∗}, then N ′′ = {N ′ \ {2a∗, 3b}} ∪ {l}; if S = {1a∗},
then N ′′ = {N ′ \ {1a∗, 3b}} ∪ {l}; if a S = {3b∗, 2a∗}, then N ′′ = {N ′ \ {2a, 3b∗} \ {2a∗, 3b}}∪
{l} ∪ {2a∗, 3b∗}; if S = {1b∗, 2a∗}, then N ′′ = {N ′ \ {1b∗, 2a} \ {2a∗, 3b}} ∪ {l} ∪ {1b∗, 2a∗}; if
S = {3b∗, 1a∗}, then N ′′ = {N ′ \ {2a, 3b∗} \ {1a∗, 3b}} ∪ {l} ∪ {1a∗, 3b∗}; if S = {1b∗, 1a∗}, then
N ′′ = {N ′ \ {1b∗, 2a} \ {1a∗, 3b}} ∪ {l} ∪ {1a∗, 1b∗}.

3. Let l be of type {1a, 1b}. The reasoning is similar.

4, 5. Let l be of type {1a, 2b}. A number of cases is impossible: for example, the intersection of
pairs in 1a with a partner 1b∗ and an intersection in 2b with a partner 3a∗ would correspond to a
smaller type. The remaining cases are treated similarly.

6, 7. Types {1b, 2a}, {1a, 3b} and {1b, 3a} are treated similarly.

Linear running time of this algorithm is obvious. This completes the proof of Lemma 2.

Theorem. Let w be the cost of insertion and removal, w � 0.5, and suppose that the costs of
other operations are equal to one. The algorithm proposed above constructs a sequence of operations
with a minimum total cost. Its running time and memory are linear in the total size of the original
structures.

Proof. Let c(G) denote the minimal total cost of the sequence of operations leading the combined
graph G to the final form.

Let us show that T (G) = c(G) for any combined graph G. It suffices to check that

T (G) � c(G). (4)

Consider the shortest sequence that reduces G to the final form. Suppose that in this sequence,
o is the first operation with cost c(o), which applied to G, and o(G) is the result of applying it.
Then c(o(G)) < c(G), and we can prove by induction on c(G).
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In what follows we will verify the key inequality for any operation o and any G:

c(o) � T (G) − T (o(G)). (5)

Then (5) will imply (4). Indeed, by the induction hypothesis we have: T (o(G)) � c(o(G)).
Using (5), we get that T (G) � T (o(G)) + c(o) � c(o(G)) + c(o) = c(G), i.e., (4).

Thus, we can proceed to checking inequality (5), which essentially uses equality (3); let us
consider all possible operations o. As already mentioned, P is always a multiple of w. Denote by
T (G)1 and T (G)2 the first and second terms in T (G) from (3).

1. o is a removal of a singular vertex. When passing from G to o(G), the value of B decreases
by one. Let us consider the possible cases.

1.0. An isolated singular vertex is removed, which is considered to be a chain of type 2a or 2b. In
the transition from G to o(G), the values S, D, c do not change, d is increased by one, f decreases
by one. The value of P does not change or decreases by w; indeed, by removing the chain P ,
by definition, it does not increase, and cannot decrease by more than w since all pairs containing
type 2a or 2b have quality w. Thus, T either does not change or decreases by w.

1.1. A singular vertex is removed from the cycle, or a loop is deleted. When passing from G
to o(G), the value of S does not change (if both segments are adjacent to the deleted vertex,
are even, or if the deleted vertex is the only one in the cycle) or increases by one, and the other
quantities do not change. Thus, T does not change or decreases by w.

1.2. An internal singular vertex is removed from the chain, i.e., there are other singular vertices
on both sides of it. The type of the chain does not change: it is determined by the size of the
chain, the types of endpoints (pendant or non-pendant) and (in case of a non-pendant endpoint)
the length of the outermost segment (if it is odd, after cutting it a pendant edge appears; otherwise
it does not appear). Now we can repeat the argument from 1.1.

We call a pendant edge not only the edge of a chain that ends with a pendant edge, but also an
edge incident to an odd segment.

1.3. A pendant vertex is removed from the chain. Let us consider the possible cases.

1.3.1. The removed singular vertex is the only singular vertex in the chain. A chain can have
the type 2a, 2b or 1, because after cutting ordinary edges we obtain a chain with one singular
vertex, pendant or isolated. Therefore P does not change or decreases by w. Other values do not
change. Thus, T does not change or decreases by w.

1.3.2. The removed singular vertex is not the only singular vertex in the chain. If during the
transition from G to o(G) the value of S does not change (i.e., the segment adjacent to the pendant
edge is even), then the pendant edge becomes non-pendant, and one of the following chain type
changes may occur: 1a → 3a, 1b → 3b, 2 → 1, 2a → 1a, 2b → 1b, 1 → 3. In the first three cases D
does not change, P does not change or decreases by w. Indeed, P cannot decrease by more than w,
since the only pair {1a, 1b}, having quality 2w, after, say, 1a → 3a turns into a pair with quality w.
In the last three cases, D is increased by one, P does not change or increases by w (this can be
proved by considering the replacement). Other values do not change. Thus, T does not change or
decreases by w. If S is incremented by one (that is, the segment adjacent to the pendant edge is
odd), then the pendant edge remains pendant and the type of the chain does not change. Therefore,
D and P do not change. Thus, T does not change.

1.4. A non-pendant extreme singular vertex is removed from the chain, i.e., there are no other
singular vertices on the right or left of it. Let us consider possible cases.

1.4.1. The deleted vertex is the only singular vertex in the chain. A chain can have the type 3a,
3b, 2a, 2b or 1, because after cutting ordinary edges we obtain a chain with one singular vertex. The
value P does not change or decreases by w. If the chain is of type 3a or 3b, then S is increased by
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one (since both segments adjacent to the vertex to be deleted are even, and the resulting segment
is odd), D decreases by one. Thus, T either does not change or decreases by w. If the chain has
type 2a, 2b or 1, then D and S do not change (in case of types 2a or 2b two odd segments are
replaced by one odd segment, in case of type 1, even and odd segments are replaced by one even
segment). Thus, T does not change or decreases by w.

1.4.2. The deleted vertex is not the only singular vertex in the chain. If during the transition
from G to o(G) the value of S does not change (i.e., the extreme segment is odd, and the next is
even), then the pendant edge becomes non-pendant, and one of the following chain type changes
may occur: 1a → 3a, 1b → 3b, 2 → 1, 2a → 1a, 2b → 1b, 1 → 3. The argument here is the same
as in 1.3.2. If S is increased by one, then the type of the chain does not change (then T does
not change) or (if both segments adjacent to the removed vertex are even), the non-pendant edge
changes into a pendant edge. Then one of the following chain type changes may occur: 1a → 2a,
1b → 2b, 3 → 1, 3a → 1a, 3b → 1b, 1 → 2. In the latter three cases D decreases by one, P does
not change or decreases by w. In the last three cases D does not change, P does not change or
increases by w. Thus, in all cases the value of T either does not change or decreases by w.

2. o—merging (adding an edge).

2.1. Consider the case when endpoints of the same chain are merged together, which is possible
only for odd chains. In this case d increases by one, f decreases by one, c increases by one or does
not change (the latter case occurs if the chain has type 2a′ or 2b′, then the operation results in
a loop), so T (G)1 decreases by 1 − w or does not change. Consider different chain types. For a
chain of type 0, the value of S is reduced by one, because the odd segment is converted to a cyclic
one with length increased by one. Thus, T is reduced by one (recall that now c(o) = 1). For the
chain type 1a or 1b, the values B and S do not change, D decreases by one, P does not change
or decreases by w or 2w. Thus, T changes by at most one. For chain type 2a or 2b, the value D
does not change, P does not change or decreases by w. If at both endpoints of the chain there are
pendant edges, then when merging their ends together, B decreases by one, S does not change. If
at least on one side the pendant edge is “replaced” with an odd segment, then B does not change,
S decreases by one. If the chain has type 2a′ or 2b′, then B and S do not change. In all cases T will
change by at most one. For chain type 3a or 3b, the values B and S do not change, D decreases
by one, P does not change or decreases by w. Thus, T will change by at most one.

2.2. Consider the case when endpoints of different chains are merged together. The table shows
the result of merging the ends of non-pendant edges marked with a or pendant edges marked with b
(thus, the added edge is marked with b). We will call such merging a-merging (symmetrically,
b-merging). The result of a b-merging is equal to the result of a symmetric a-merging, which is
obtained by swapping the labels a and b in merged chains.

Notation for endpoint types: 0a—the endpoint of an odd chain of type 0, 0—the endpoint of
an even chain of type 0, 1a—the pendant endpoint of a chain of type 1a, 1a′—non-pendant end of
a chain of type 1a, 2a—the end of a chain of type 2a, 3a—the end of a chain of type 3a, 1—the
pendant end of a chain of the type 1, 1′—a non-pendant end of a chain of type 1, 2—the endpoint
of a chain of type 2, 3—the endpoint of a chain of type 3.

We enumerate possible pairs of chain endpoint types. Each cell in the table shows in parentheses
the changes T when moving from G to o(G), where 0 means “does not change,” (−w)—“decreases
by w,” w—“increases by w,” (1− w)—“increases by 1− w” and so on; no other changes are possible.
Corresponding changes of P with the same notation are given in square brackets. At the end of a
cell we indicate the type of a chain resulting from merging original chains. The table is symmetric
with respect to the main diagonal.

Let us check the cell (1a, 1a); the rest are filled in the same way. If both source chains are even,
then T (G)1 increases by 1− w, otherwise it does not change. After merging, we get a chain of
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type 3a. If both chains contain pendant edges, B decreases by one and S does not change. If at
least one of the source chains has an odd extreme segment instead of a pendant edge, then, on the
contrary, B does not change and S decreases by one. The value of D decreases by one, P does not
change or decreases by w, by 2w, or 3w. Let us show that P cannot decrease by 4w and more.
Consider the partners of two chains of type 1a in the maximum region. The only case when the
sum of the qualities of two pairs is 4w corresponds to partners of type 1b. Then one of them can
become the partner of a “new” chain of type 3a, which gives an increase in quality by w. The value
of P will not increase, otherwise it would have decreased during the reverse replacement, which is
impossible since any partner of a chain of type 3a is a partner of 1a.

So, the initial statement regarding merging follows from the fact that, according to the table,
T changes by at most one.

3. o is a splitting . The operation is inverse to merging, so the result follows from item 2.

4. o is a sesquialteral intermerging . We distinguish three cases.

4.1. The operation is applied to one chain, i.e., gluing is carried out with an endpoint of the
same chain where degluing is done. There are two cases.

4.1.1. There is an inversion of the extreme part of the chain. Consider an intermediate state
when the cut is made, and the gluing has not yet been done. From this state, one can go to the
initial state by merging, and one can pass to the final state by merging together with another
endpoint of the same chain. Both mergings are a- or b-mergings. In the latter case, consider the
a-mergings that are symmetric to b-mergings. We iterate over pairs of cells from the table that are
adjacent horizontally and correspond to the pair of above-mentioned mergings (these are pairs of
columns where one endpoint of the chain differs by the “stroke”), or pairs of matching cells (where
endpoints of the chain are the same). We have to check that it is impossible for the absolute value
of the difference between changes in T during the transition from the intermediate to the initial
and final state to exceed one.

Consider, for example, a pair of cells (1a, 1a) and (1a, 1a′); other pairs are treated similarly.
When switching to the initial state corresponding to the first cell, the change in T is equal
to (−2w + iw), where i = 0, 1, 2, 3. When switching to the final state corresponding to the second
cell, the change T is equal to (−w + jw), where j = 0, 1, 2. The difference of these expressions (final
minus initial) is w − (i− j)w. The corresponding difference between changes in P is 0 + (i− j)w.
Under the considered replacement 3a → 1a, the value of P either does not change or increases by w.
Therefore, i− j = 0 or i− j = 1. Then the first expression is w or zero, which does not exceed one
in absolute value.

4.1.2. There is a looping in the extreme part of the chain. It is a composition of two operations:
splitting the original chain into two chains and closing one of them into a cycle or loop by merging
it together. Consider an intermediate state when the splitting is made, and the merging has not
yet been done. From this state, it is possible to pass to the initial state by merging, or to the
final state by merging that loops the chain. Both are a- or b-mergings, and further consideration
is similar to the previous case.

4.2. The operation is applied to the cycle (or loop) and a chain, i.e., a cycle (or loop) is cut and
the resulting chain is lengthened. This operation is inverse to the previous one, so here again the
change in T does not exceed one in absolute value.

4.3. The operation is applied to two chains: the first one being cut and the second one being
glued together. We denote by C the chain which is that part of the cut chain that is glued to the
second chain, which we denote C2. The other part of the cut chain is denoted by C1. When we have
three chains C, C1, C2, the initial state (before the operation) is achieved by merging C together
with C1, and the final state (after the operation)—by merging together C with C2. In order to show
that T in the initial and final states differs by at most one, we have to check that the difference of
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its changes during the transitions does not exceed one in absolute value. We enumerate triples of
types of endpoints to be merged. Since both mergings are a- or b-mergings, it is enough to consider
the case of a-merging.

If in the initial and final states the value of P is the same, then the assertion follows from the
fact that for the considered sesquialteral intermerging T (G)1 changes by at most 1−w, and T (G)2
changes by at most w. In particular, this condition is satisfied if the types of merged endpoints of
C1 and C2 coincide. It remains to enumerate such triples of endpoints of chains C, C1, C2 that the
latter two types are different. This means that we need to enumerate pairs of different cells that
are in the same row of the table. Here the row corresponds to the endpoint of the chain C, and the
two columns to the endpoints of chains C1 and C2. For each such pair we consider the differences
between the changes in T and P (as in item 4.1.2). The replacement type 〈left cell type, right
column type〉 → 〈right cell type, left column type〉 limits the latter difference. Let us check that
under this constraint, the first difference does not exceed one in absolute value.

Consider a pair of cells (1a, 0) and (1a, 1a); all other pairs are treated in the same way. When
switching to the initial state (merging with respect to the first cell), the change in T is equal to
0 + iw, where i = 0, 1, 2. In the transition to the final state (merging with respect to the second
cell), it is equal to (−2w + jw), where j = 0, 1, 2, 3. The difference between these expressions
(the final less the initial) is (−2w − (i− j)w). The corresponding difference in the change of P is
0 + (i− j)w. The transition from the initial state to the final state corresponds to the replacement
{3, 1a} → {3a, 0}. Since types 3 and 0 do not participate in actions, P either does not change or
decreases by w. Therefore, i− j is zero or negative one. Then the first difference is equal to (−2w)
or (−w), which does not exceed one in absolute value.

5. o is a double intermerging. We distinguish three cases.

5.1. Both degluings occur in the same chain or in the same cycle. We consider the case of a
chain, the case of a cycle is treated similarly.

5.1.1. Inversion of a segment in a chain. The value of T (G)1 and the size of the chain do not
change. The case when there are no singular vertices in the inverted segment is obvious. Otherwise,
consider two possibilities.

1. Two singular vertices are identified, that is, B is decremented by one. If both degluings are
internal (i.e., there are singular vertices on both sides of each degluing), then the type of the chain
does not change, and D and P do not change as well. Instead of two segments adjacent to the
degluings (the absence of a segment is assumed to be a segment of length zero), one segment appears
of length one greater than the sum of the lengths of the initial segments. The segments are not
extreme, therefore S either does not change or increases by one. Let one degluing internal and the
other external. If the parity of the extreme segment does not change, then the previous argument
holds. If an even extreme segment is replaced by an odd one, then S increases by one. Possibilities
for changing the chain type are: 3a → 1a, 1 → 2, 1a → 2a, 3 → 1. In the first two cases, D does not
change, P does not change or increases by w. In the latter two cases, D decreases by one, P does
not change or decreases by w. If an odd extreme segment is replaced by an even one, S does not
change. Possibilities for changing the chain type are: 1a → 3a, 2 → 1, 2a → 1a, 1 → 3. In the first
two cases D does not change, P does not change or decreases by w. In the last two cases, D is
incremented by one, P does not change or increases by w. In all cases, T changes by at most w.
The case when both degluings are external is impossible when identifying singular vertices.

2. There is no identification of two singular vertices, that is, B does not change. If both degluings
are internal, the type of the chain does not change, as well as D and P . Two segments adjacent to
the degluings are replaced by two other segments of the same total length, S changes by at most one.
Let one degluing be internal and the other external. If the parity of the outermost segment does
not change, then the argument from the previous case holds (when both degluings are internal). If
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an even extreme segment is replaced by an odd one, then S does not change or is increased by one.
Possibilities for changing the chain type: 3a → 1a, 1 → 2, 1a → 2a, 3 → 1. In the first two cases
D does not change, P does not change or increases by w. In the last two cases D decreases by one,
P does not change or decreases by w. If an odd extreme segment is replaced by an even one, then
S does not change or decreases by one. Possibilities for changing the chain type: 1a → 3a, 2 → 1,
2a → 1a, 1 → 3. In the first two cases D does not change, P does not change or decreases by w. In
the last two cases, D is incremented by one, P either does not change or increases by w. Suppose
now that both degluings are external. If both extreme segments had the same parity and preserved
it, then only S can change and by at most one. If both segments were even and became odd, then
S is increased by one. Possibilities for changing the chain type: 3a → 2a, 3 → 2. The value of D is
decremented by one, P changes by at most w. If both segments were odd and became even, then
S decreases by one. Possibilities for changing the chain type: 2a → 3a, 2 → 3. The value of D is
incremented by one, and P changes by at most w. If one segment was even, and the other was odd,
and these properties are preserved, then no values change. In all cases, T changes by at most w.

5.1.2. Splitting a cycle into two cycles or into a cycle and a loop (cutting a cycle or loop from
a cycle): T (G)1 decreases by 1− w or does not change, T (G)2 changes by at most w, P does not
change. Therefore, T changes by at most one.

5.1.3. Cutting a section from a chain and looping it: T (G)1 is reduced by 1 − w or does not
change. Similarly to item 5.1.1, although there may be a case when two singular vertices are
identified, and both degluings are external. Then the two extreme segments of the chain merge
into one, the length of which is one more than the sum of the lengths of the original segments.
If both segments are even, then S is increased by one, and the chain is of type 3a or 3b. Therefore,
D decreases by one, P does not change or decreases by w. If one or both of the segments are
odd, then S does not change, and the chain is of type 2a, 2b or 1. Therefore, D does not change,
P either does not change or decreases by w. Thus, the difference T (G)2 − P changes by at most w,
and T by at most one.

5.2. One degluing occurs in a chain, the other in a cycle or loop, i.e., a cycle or loop breaks and
is inserted into the chain. The value of T (G)1 either increases by 1− w or does not change. If two
singular vertices are not identified, then the operation is inverse to that considered in item 5.1.2.
Otherwise, B decreases by one. If the degluing of the chain is internal, then the argument from
item 5.1.1 holds, referring to the case when the two degluings considered there are internal. If the
degluing of the chain is external, then the argument from item 5.1.1 holds, referring to the case
when one of the degluings considered there is external.

5.3. Each degluing occurs in its own chain.

5.3.1. Both degluings are internal. As before, B + S changes by at most one. To track changes
in D and P , consider the types of both chains.

1. Both chains are odd and both are a- or b-chains. The value of T (G)1 does not change. If
both chains are of type 1a, then the only non-identical type change is the transition of this pair
into a pair of chains of types 2a and 3a: the value of D decreases by one. Then P either does not
change or decreases by w or 2w. Any other pair of types of source chains (except 2a and 3a, giving
the reverse transition) leads to the same result. Type 1b is treated similarly.

2. Both chains are odd, and one is an a-chain and another is a b-chain. If their types pair is
(1a, 1b), then during the gluing it transitions into a pair (1, 1) or a pair (2, 3): T (G)1 decreases by
1 − w. In the first case, D decreases by 2, P decreases by 2w. In the second case, D decreases by
one, P decreases by 2w. If the pair of source types was (1a, 2b), then under gluing it transitions
into a pair (1, 2): T (G)1 decreases by 1− w, D decreases by one, P decreases by w or 2w. We can
consider the pair (1a, 3b) similarly. If a pair of source types (2a, 2b), then when gluing it goes into
a pair (2, 2): T (G)1 decreases by 1− w, D does not change, P either does not change or decreases
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by w or by 2w. We consider the pair (3a, 3b) in a similar way. If this pair is (2a, 3b), then during
gluing it goes into a pair (1, 1): T (G)1 decreases by 1− w, D decreases by one, P decreases at w.
The pair (3a, 2b) is treated similarly.

3. Both chains are even: T (G)1 does not change. The only non-trivial transition refers to pairs
(1, 1) and (2, 3), the remaining transitions are identical or inverse to those considered in item 2.
When the pair (2, 3) transforms into the pair (1, 1), the value of D decreases by one, and P does
not change.

4. One chain is odd and the other is even: T (G)1 does not change. If the pair (1a, 1) goes
to (2a, 3), then D does not change, P does not change or decreases by w. Transition to the pair
(3a, 2) is treated similarly. If the pair (1a, 2) goes to (2a, 1), then D decreases by one, P does
not change or decreases by w, and the same goes for the transition of pair (1a, 3) to (3a, 1). The
transition of the pair (2a, 1) to (1a, 2) is inverse to the above. For the pair (2a, 2), only the identical
transition is possible. If the pair (2a, 3) goes to (3a, 2), then D does not change and P changes
by at most w. Transitions (2a, 3) → (1a, 1), (3a, 1) → (1a, 3), (3a, 2) → (1a, 1) are inverse to those
discussed above. For the pair (3a, 3) only the identical transition is possible.

5.3.2. At least one of the degluings is external: the problem is now reduced to the case of a
sesquialteral intermerging or merging. We will call the mentioned degluing and the edge of the
chain to which it is adjacent external . We call the other degluing in o internal , like the edge that
it deletes. If the external degluing is not on the extreme edge and not on the edge adjacent to it,
then we remove two ordinary edges from the outer endpoint. At the same time, T will decrease
by one in both the original graph and the resulting transformation: T (G)1 will decrease by 1− w,
T (G)2—by w. Therefore, it suffices to consider the cases when the external degluing is on the
extreme edge of a chain or on the penultimate edge.

1. External degluing is on the penultimate edge from the boundary. If it is ordinary, we will
remove the two extreme edges along with the external degluing, replacing the double intermerging
with sesquialteral. Then T decreases by one both in the initial graph and in the resulting one,
which reduces the problem to that considered with sesquialteral intermerging. If the edge with the
external degluing is singular, then we will remove the extreme edge along with its ends, replacing
the odd extreme segment of length one by a pendant edge (the singular vertex becomes an endpoint
of the pendant edge). We again replace the double intermerging with a sesquialteral with a decrease
in the value of T in both graphs.

2. External degluing is on the extreme edge and it is ordinary. If the internal edge is ordinary
or its singular vertex is from the side that is glued to the external edge, then we move the external
degluing beyond the endpoint of the chain (i.e., make it “fictitious”), and the internal degluing, to
the adjacent edge in the side opposite from the possible singular vertex (and if this edge is absent,
then beyond the endpoint of the chain). Thus, double intermerging is replaced by a sesquialteral
(or correspondingly identical operation). The result of the operation will not change. If a singular
vertex is located on the other side, then we move the outer degluing from the edge to the adjacent
edge and, accordingly, move the inner degluing to an adjacent edge. The result of the operation
will not change, and the problem reduces to the degluing discussed in item 1.

3. External degluing is on the extreme edge, and it is singular. If the inner edge is ordinary or its
singular vertex is from the side that is glued to the outer endpoint, then we argue the same way as
in item 2. Otherwise, we will shift the external degluing beyond the endpoint of the chain, and the
internal degluing—to the adjacent edge in the direction opposite from the singular vertex (and if
this edge is absent, then beyond the endpoint of the chain). Thus, double intermerging is replaced
by sesquialteral intermerging or merging. In order to obtain the result of the first operation (double
intermerging) from the result of the second operation (sesquialteral intermerging or merging), we
glue the two singular vertices, removing the common edge that separates them, and either add a
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chain from one ordinary edge (in case of merging), add two extreme ordinary edges (if the internal
degluing has shifted to an ordinary edge), or replace the pendant edge with an extreme segment
of length one (if the internal degluing has shifted to a singular edge). In all cases, the conversion
does not change T , which completes the enumeration of possible cases.

The linearity of running time and memory for this algorithm is obvious. This completes the
proof of the theorem.

5. CONCLUSION

In this work, we have presented an algorithm for constructing a sequence of fixed operations
with given costs that is minimal with respect to the total cost and transforms one graph to another.
Such a sequence is called the shortest one. Regarding graphs we have assumed that the degree of
each vertex is at most two; such graphs are called structures. Since the problem is NP-complete, it
cannot be solved by any polynomial algorithm without any restrictions on the cost of operations. In
this work, we have obtained a linear algorithm for solving the problem for the case when the cost c2
of insertion and deletion operations does not exceed half the cost c1 of standard operations (double
and sesquialteral intermerging, splitting and merging). We have already prepared for publication
a paper where we obtain a linear algorithm for solving this problem for the case 0.5c1 � c2 � c1,
which together covers the case c2 � c1, and the case c1 � c2 is being investigated (for the case
c1 = c2 the algorithm was previously published in [6]). All algorithms are accompanied by rigorous
proofs of the fact that they find minima in the corresponding graph optimization problems.
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