
ISSN 1064-5624, Doklady Mathematics, 2020, Vol. 102, No. 2, pp. 376–379. © Pleiades Publishing, Ltd., 2020.
Russian Text © The Author(s), 2020, published in Doklady Rossiiskoi Akademii Nauk. Matematika, Informatika, Protsessy Upravleniya, 2020, Vol. 494, pp. 26–29.

MATHEMATICS
An Almost Exact Linear Algorithm for Transformation
of Chain-Cycle Graphs with Optimization

of the Sum of Operation Costs
K. Yu. Gorbunova,* and V. A. Lyubetskya,b,**

Presented by Academician of the RAS A.L. Semenov May 14, 2020

Received May 17, 2020; revised August 20, 2020; accepted August 28, 2020

Abstract—For weighted directed chain-cycle graphs, an algorithm transforming one graph into another is
constructed. The algorithm runs in linear time and yields a sequence of transformations with the smallest, up
to an additive error, total cost. The costs of the operations of inserting and deleting an edge segment may differ
from each other and from the costs of the other operations. The additive error is estimated in terms of the
operation costs.

Keywords: exact algorithm, graph transformation, 2-degree graph, chain-cycle graph, operation cost, DCJ-
operations, discrete optimization
DOI: 10.1134/S1064562420050324
In this work, we describe an algorithm that effec-
tively solves the following problem.

Problem. Suppose that a and b are given directed
graphs with vertex degrees 1 or 2 and each edge is
assigned a name, which is a positive integer. Any vertex
of the graph is regarded as obtained by gluing (identi-
fying) the ends of neighboring edges. There are six
fixed operations, each assigned a cost, which is a
strictly positive number.

The task is to find a sequence of operations of min-
imum total cost (called a shortest sequence) that
transforms a into b. The operations are as follows:

(i) Del deletes a connected edge segment with
names from a, but not from b, and vice versa.

(ii) Ins inserts an edge segment with names from b,
but not from a. If a deletion operation results in two
free ends (i.e., two vertices of degree 1), they are glued
together, while, in the case of insertion, the vertex is
first cut (unless it is terminal) and the resulting free
ends are then glued at two places.
37

a Institute for Information Transmission Problems
of the Russian Academy of Sciences (Kharkevich Institute),
Moscow, 127051 Russia
b Faculty of Mechanics and Mathematics, Lomonosov Moscow
State University, Moscow, 119991 Russia
*e-mail: gorbunov@iitp.ru
**e-mail: lyubetsk@iitp.ru
These operations are a usual deletion of a subword
and the insertion of a word as a subword.

(iii) Cut cuts a vertex or vice versa.
(iv) OM glues two free ends.
Operation (iii) applied to a single vertex of degree 2

yields two vertices of degree 1, while operation (iv)
applied to two vertices of degree 1 produces one vertex
of degree 2. The following two operations are compo-
sitions of the preceding ones.

(v) SM cuts a vertex and glues one of the resulting
free ends to a previously available free end.

(vi) DM cuts two vertices and glues the resulting
free ends.

The last four operations are collectively called DCJ
operations; they are defined in [1].

This completes the formulation of the problem.
Previous results concerning this problem, includ-

ing its applied aspects, are overviewed in [2, Chapter 10].
In all previous works by other authors, of which we note
the latest one [4], the problem was solved assuming
identical costs of DCJ-operations and identical costs
of Del and Ins operations, which substantially simpli-
fies the problem as compared with the assumptions
made in Theorem 1 below. Theorem 1 states that the
algorithm described after it runs in linear time and is
exact up to an additive constant. Let the costs of Del
and Ins operations be denoted by wd and wi, respec-
tively.

Theorem 1. If the DСJ-operations are assigned equal
costs w, then the algorithm generates a sequence with a
6

AN ALMOST EXACT LINEAR ALGORITHM FOR TRANSFORMATION 377
total cost different from its minimum value by at most an
additive constant k depending only on the operation
costs.

Namely, if max{wd, wi} ≤ w, then k = 0; if min{wd,
wi} ≥ w, then k = 2w; and if min{wd, wi} < w < max{wd,
wi}, then k = wi – 1 (if wd + wi ≤ 2w), k = 4wi + 2wd –
6 (if wd + wi > 2w and max{wd, wi} ≤ 2w), and k = 6wi +
2wd – 9 (if max{wd, wi} > 2w).

The proof of Theorem 1 implies that, in fact, k (if
nonzero) can be reduced noticeably, but the corre-
sponding more complicated expressions are omitted.

In the rest of this paper, we describe the algorithm
and its properties. Let us begin with auxiliary defini-
tions.

Recall the definition of the graph a + b from [5].
Other versions can be found in earlier works, for
example, in [6].

Definition [5]. The vertices in a + b are all ends of
edges that belong to both a and b and, additionally,
vertices that are uniquely assigned to each maximum
connected edge segment (“block”) in a\b or b\a; the
vertices are labeled a or b, respectively.

The edges in a + b join vertices if the latter are glued
in a or b or the end of a block is glued to a vertex in a
or b; the edges are labeled a or b, respectively.

In a + b, a singular vertex is a vertex inside the pair
of edges aa or bb, a labeled end of a chain, or a labeled
isolated vertex; the other vertices are call ordinary. An
edge with a singular end is called singular; the other
edges are referred to as ordinary.

A graph is said to be of final form if it consists of
ordinary isolated vertices and cycles of length 2, each
having one edge labeled a and the other labeled b. In
a + b, the cost of a deletion becomes the cost wa of
deleting an a-singular vertex, while the cost of an
insertion becomes the cost wb of deleting a b-singular
vertex. The DCJ-operations remain the same, except
the deletion of a segment is replaced by the deletion of
an a-singular vertex and the insertion of a segment is
replaced by the deletion of a b-singular vertex.

An edge is called pendant if it is incident to a singu-
lar vertex of degree 1. The size of a component in the
graph a + b is the number of its ordinary edges plus
half the number of its singular nonpendant edges. The
size is equal to 0 for ordinary isolated vertices and
loops and is equal to –1 for singular isolated vertices.
A chain of odd (even) size is called odd (even). Sup-
pose that a chain does not contain ordinary edges. The
types of such chains are defined as follows. Type 1a is
an odd chain with a single pendant b-edge. Type 2a* is
an odd chain with two pendant b-edges. Type 2a' is a
b-singular isolated vertex. Type 2a is type 2a* or 2a'.
Type 3a* is an odd chain without pendant edges with
two terminal a-edges and a b-singular vertex. Type 3a'
is an aa chain. Type 3a is type 3a* or 3a'. Type is an
even chain with a single pendant a-edge and a b-sin-

*1a
DOKLADY MATHEMATICS Vol. 102 No. 2 2020
gular vertex. Type is a pendant a-edge. Type 1a is
type or . The notation with a replaced by b is sim-
ilar. Type 2* is an even chain with two pendant nonin-
cident edges. Type 2' is two pendant edges incident to
a common ordinary vertex. Type 2 is type 2* or 2'.
Type 3 is an even chain without pendant edges, but
with singular vertices. Type 0 is a chain without singu-
lar vertices. The type of a chain with ordinary edges is
defined as the type of the chain obtained after deleting
these edges; this definition does not depend on the
order of these deletions [5, Lemma 6]. An (a, b)-cycle
is a cycle with singular a- and b-vertices. An a-cycle is
a cycle with singular a-vertices, but without singular b-
vertices. A b-cycle is defined in a similar manner.

The algorithm starts with the graph a + b and
sequentially generates graphs G until a graph of final
form is obtained. All G in this sequences have the form
of c + d for their graphs c and d. A sequence starting
with a + b and ending with a graph of final form is
called reducing. After the shortest reducing sequence
was found for a + b, the desired shortest transforma-
tion of a into b is constructed from it in linear time.

The algorithm consists of eight stages.
Stage 0. Transform the initial pair of graphs a and

b into a new (breakpoint) graph a + b. The original
problem is equivalent to the problem of reducing this
graph a + b to a final form by applying analogues of the
original operations with a and b. The proof of the
equivalence of these two problems repeats word for
word the proof of Corollary 5 in [5], which assumes
only the equality of the costs of DCJ-operations.

Stage 1. Delete ordinary edges from all compo-
nents of nonfinal form, i.e., apply DM to a pair of
neighboring edges, apply SM if one of the neighboring
edges is absent, or apply OM if both neighboring edges
are absent.

Stage 2. Perform the found compositions of the
original operations, which are called interactions.
These compositions are applied to chains, whose type
is indicated on the left-hand side of one of the follow-
ing equalities; the type of the result is indicated on the
right-hand side of the equality. Thus, 2-interactions
are SM with the following equalities of terms (the
chain to be cut is everywhere indicated the first; ordi-
nary isolated vertices are not presented on the right-
hand side):

1a + 1b = , 3a + 2b = 1a, 3b + 2a = 1b, 3 + 2 = ,
(1a + 2b) + 3 = , (1b + 2a) + 3 = , (3a + 1b) + 2 =

, (3b + 1a) + 2 = , 1a + 2 = 2a*, 1b + 2 = 2b*, 3 +
1a = 3a*, 3 + 1b = 3b*, (3b + 1a) + (1a + 2b) = ,
(3a + 1b) + (1b + 2a) = , 1a + (1a + 2b) = 2a*, 1b +
(1b + 2a) = 2b*, (3b + 1a) + 1a = 3a*, (3a + 1b) +
1b = 3b*, 1a + 2b = 2, 1b + 2a = 2, 3a + 1b = 3, 3b +
1a = 3, 3 + ((3 + 2b) + 2a) = , (3a + (3b + 2)) + 2 =

, (3a + 2) + 2 = 2a*, (3b + 2) + 2 = 2b*, 3 + (3 + 2a) =

'1a

*1a '1a

*1b *1b

*1b *1b

*1b *1b

*1b

*1b

*1b

*1b

378 GORBUNOV, LYUBETSKY
3a*, 3 + (3 + 2b) = 3b*, (3 + 2b) + 2a = 2*, 3a + (3b +
2) = 3 and OM with the equality 1a + 1a = 3a* or 1b +
1b = 3b*. If min{wd, wi} < w, then perform two more
2-interactions defined as SM: 3a* + 3b = 3 or 2a +
2b* = 2* + .

Each 2-interaction is applied as long as min{wd, wi} ≥
w; otherwise, a maximum set of interactions with no
common arguments is constructed.

These interactions and the ones indicated below
strictly reduce the complexity of the current graph G,
which is measured by the minimum number t(G) of
operations required for the reduction of G. Impor-
tantly, t(G) is expressed in terms of simple characteris-
tics of G (except for one, denoted by Р(G), which we
were nevertheless able to compute, see below), so
overall t(G) is easily computed. This is the basic idea
underlying both the algorithm and the proof of its
exactness.

At Stages 3 and 5–7, each interaction is applied as
long as possible.

Stage 3. If max{wd, wi} > w, then perform the fol-
lowing 3-interactions, which decrease the number of
components in G and reduce its complexity: DM (but
SM for an isolated vertex): b-loop + “component with
a b-singular vertex” = the same component; SM: 2 +
2 = 2 + (SM cuts off a pendant a-edge and glues the
resulting end to an terminal b-singular vertex of
another chain); OM: 2a + 2a = 2a, 2b* + 2b* = 2b*
(gluing of pendant vertices of two chains); OM
and DM:

3a* + 3a* = 3a*, 3b + 3b = 3b (OM is followed by
the deletion of an ordinary edge); SM: 3a* + 2 = 1a,
3b + 2 = 1b; 3 + 2a = 1a, 3 + 2b* = 1b; OM and DM:
1a + 3a* = 1a, 1b + 3b = 1b (as above); OM: 1a + 2a =
1a, 1b + 2b* = 1b; OM and DM: 3a* + 3 = 3, 3b + 3 =
3 (as above); OM: 2a + 2 = 2, 2b* + 2 = 2*; SM: 3 +
3 = 3; + = , 1b + 1b = 1b; 1b + 1a = 1a, + 1b =
1b; 1a + = 1a, 1b + 1b = 1b; 1b + 2a = 2a, + 2b* =
2b*; 3a* + = 3a*, 3b + 1b = 3b; 3 + = 3, 3 + 1b =
3; + 2 = 2*, 1b + 2 = 2.

3-Interactions are depicted in [3, pp. 8–9].
Stage 4. Close chains of strictly positive size into

cycles by applying OM operations (if a chain is odd) or
SM operations (if a chain is even; there remains a ter-
minal isolated ordinary vertex or a terminal isolated
pendant edge).

Stage 5. If wi + wd > 2w, then perform the following
5-interactions. Twice DM: (a, b)-cycle + (a, b)-cycle =
(a, b)-cycle = (a, b)-cycle + cycle of length 2 (the sec-
ond DM deletes an ordinary edge); twice DM: (a, b)-
cycle of size strictly larger than 2 = (a, b)-cycle of the
same size with an ordinary edge = (a, b)-cycle of
smaller size + cycle of length 2 (deletion of an ordinary
edge). They are shown in figures in [3, p. 9]. If wi +
wd ≤ 2w, then apply DM to each cycle of size strictly

'1a

'1a

*1a *1a *1a *1a

*1a *1a

*1a *1a

*1a
larger than 2 to cut off a cycle of size 2 with a singular
a-vertex (if wi ≥ wd) or with a b-vertex (if wi < wd).

Stage 6. If wi + wd > 2w, then perform 6-interac-
tions between an (a, b)-cycle of size 2 and chains of
size 0. Twice SM: (a, b)-cycle + 2a' = 1b and then 1b +
2b' = 2'. Twice DM: (a, b)-cycle + 2' = 2' with an ordi-
nary edge = 2' + cycle of length 2 (deletion of an ordi-
nary edge). They are shown in figures in [3, pp. 9–10].

Stage 7. If max{wd, wi} > 2w, then perform the fol-
lowing 7-interactions with cycles of size 2 and chains
of size 0. Twice DM: (a, b)-cycle + a-cycle = (a, b)-
cycle of size 4 with two ordinary edges = (a, b)-cycle +
cycle of length 2 (deletion of an ordinary edge). Twice
DM: a-cycle + a-cycle = a-cycle of size 4 with three
ordinary edges = a-cycle + cycle of length 2 (deletion
of an ordinary edge). Twice SM: a-cycle + 2' = 2' with
a single terminal ordinary edge = 2' + cycle of length 2
(deletion of an ordinary edge). SM and OM: (a,b)-
cycle + 2b' = 1b = (a, b)-cycle. Twice SM: (a, b)-cycle +

 = 3 = (a, b)-cycle. Twice SM: a-cycle + 2b' = 2b'
with a single terminal ordinary edge = 2b' + cycle
of length 2 (deletion of an ordinary edge). Twice SM:
a-cycle + = with a single terminal ordinary edge =

 + cycle of length 2 (deletion of an ordinary edge).
Depictions of 7-interactions can be found in [3, p. 10].
With the use of 7-interactions, the deletion of a singu-
lar vertex is replaced by two DCJ-operations, which is
beneficial if max{wd, wi} > 2w. These interactions are
applied to the case wd > 2w. If wi > 2w, they are applied
with a and b interchanged; if both inequalities hold,
then interactions of both types are applied.

Stage 8. Delete the singular vertices.
The linear running time of the algorithm follows

from the fact that the graph a + b is constructed by
searching once through the components in a and b.
Additionally, Stage 1 requires that the components in
a + b be searched through once. The number of oper-
ations executed in the algorithm is linear, since each
interaction consisting of at most three operations
reduces the number of vertices in a + b and does not
increase the number of its edges or reduces the number
of edges in the nonfinal part of a + b and does not
increase the number of its vertices. Each operation is
executed in a constant time.

Let T(G) be the total cost of the operations in the
sequence generated by the algorithm on G. The exact-
ness in Theorem 1 is proved using inequalities of the
following type: for any initial operation o and any
graph G, it is true that c(o) ≥ T(G) – T(o(G)), where
c(o) is the cost of the operation o and o(G) is the result
of applying o to G.

FUNDING

This work was supported by the Russian Foundation for
Basic Research, project no. 18-29-13037.

'1a

'1a '1a

'1a
DOKLADY MATHEMATICS Vol. 102 No. 2 2020

AN ALMOST EXACT LINEAR ALGORITHM FOR TRANSFORMATION 379
REFERENCES

1. S. Yancopoulos, O. Attie, and R. Friedberg, Bioinfor-
matics 21, 3340–3346 (2005).
https://doi.org/10.1093/bioinformatics/bti535

2. Bioinformatics and Phylogenetics: Seminal Contributions
of Bernard Moret, Ed. by T. Warnow (Springer Nature,
Switzerland AG, 2019).

3. K. Yu. Gorbunov and V. A. Lyubetsky, arXiv:2004.14351
[math.CO] (2020).

4. P. H. da Silva, R. Machado, S. Dantas, and M. D. V. Bra-
ga, J. IEEE/ACM Trans. Comput. Biol. Bioinf. 14 (3),
1–6 (2017).

5. K. Yu. Gorbunov and V. A. Lyubetsky, Probl. Inf.
Transm. 53 (1), 55–72 (2017).
https://doi.org/10.1134/S0032946017010057

6. M. A. Alekseyev and P. A. Pevzner, Theor. Comput.
Sci. 395 (2–3), 193–202 (2008).
https://doi.org/10.1016/j.tcs.2008.01.013

Translated by I. Ruzanova
DOKLADY MATHEMATICS Vol. 102 No. 2 2020

	REFERENCES

		2020-12-29T19:36:47+0300
	Preflight Ticket Signature

