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1. INTRODUCTION

A finite set of points with coordinates {a, b} is
called an (a, b)�cube over an arbitrary field �, and the
points themselves are called the vertices of the cube.
The set of cube vertices lying on the hyperplane xk = a
or xk = b, is called a cube side.

All forms of degree d in n variables (together with
the identically null form) create a liner space with the
dimension

The forms, equal to zero at each vertex of the cube,
make up a linear space, which is determined by the
linear relations for the coefficients of monomials cor�
responding to each vertex of the cube. However, calcu�
lation of the dimension of this subspace is complicated
by the fact that the number of vertices of the cube rap�
idly increases with the dimension and corresponding
relations contain many dependent ones.

2. HILBERT FUNCTIONS OF ±1�CUBES

Let the characteristic of the main field � be not
equal to two. Let us identify the pairs of opposite ver�
tices of the ±1�cube in the affine space �n with 2n – 1

points of the projective space ��n – 1. These points
make up the zero�dimensional set Un, whose Hilbert
polynomial is equal to constant 2n – 1. The codimen�
sion of the subspace of the forms of degree d in n vari�
ables, which are equal to zero at each vertex of the ±1�
cube, is the value of the Hilbert function χn(d) of the
set Un. Note that the values of the Gilbert function
coincide with the values of the Hilbert polynomial at
all sufficiently large values of degree d [1, 2].

Proposition 1. For the sets Un the following is ful�
filled:

χn(1) = n.
χn(d + 1) = χn(d).

χn + 1(d + 1) ≥ 2χn(d).

If d ≥ n – 1, then χn(d) = 2n – 1.

n d 1–+( )!
n 1–( )!d!

����������������������.

Proof. Linear forms can not become zero at each
vertex of the cube. Hence, χn(1) = n.

Let us consider linear operators on the spaces of
linear forms θk: f → xk ⋅ f. If the linear subspace L con�
sists of zero and some forms of degree d in n variables,
which do not become zero simultaneously at all verti�
ces of the cube, the subspace θ1(L) consists of the
forms of degree (d + 1) in n variables, which do not
become zero simultaneously at all vertices of the cube.
Since dimensions of L and θ1(L) coincide, χn(d + 1) ≥
χn(d).

Let us consider the direct sum of subspaces θ1(L) ⊕
θn + 1(L). This sum is direct, because the forms from
the first subspace do are independent of xn + 1 and each
nonzero form of the second subspace depends on it.
Let us show that each form from θ1(L) ⊕ θn + 1(L) is
not equal to zero simultaneously at all vertices of the
cube. Assume that f ∈ θ1(L), g ∈ θn + 1(L), and f + g is
equal to zero at each vertex. Let us associate each ver�
tex of the cube v with the vertex v with opposite sign of
the last coordinate:  = –vn + 1. Since f(v) = f(v')
and g(v) = –g(v'), we obtain g(v) = 0 for any v. The
contradiction proves that, for some vertex v, the value
of the form f(v) + g(v) ≠ 0. Hence, χn + 1(d + 1) ≥
2χn(d).

It is easy to show by induction on the number of
variable n that χn(n – 1) = 2n – 1. Since the Hilbert
functions do not decrease and the values of the Hilbert
function and the Hilbert polynomial coincide at large
values of d, χn(d) = 2n – 1 is fulfilled at all d ≥ n – 1.

3. PROPERTIES OF THE FORMS EQUAL
TO ZERO AT EACH VERTEX OF THE CUBE

Proposition 2. Let f(x) be a polynomial in n vari�
ables of degree d over an arbitrary field �. If a vertex of
the cube in �n does not lie on the hypersurface f(x) =
0, the portion of vertices lying on the hypersurface
does not exceed 1 – 2–min(d, n).

Proof. The upper boundary 1 – 2–n is evident,
because the cube has 2n vertices. Let us show by the
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double induction on degree d and dimension n that the
portion does not exceed 1 – 2–d.

Let d = 1. If n = 1, the cube has two vertices and the
hypersurface is one point.

The step at d = 1. If each vertex of a cube side lies
on the hyperplane, this hyperplane cannot pass
through vertices on the opposite side. In this case,
exactly a half of all vertices lie on the hyperplane. Oth�
erwise, there are vertices on each of two opposite sides
of the cube that do not lie on the hyperplane. Then, by
the assumption of induction, no more than a half of
vertices lie on each side on the hyperplane. Hence, the
same is true for the whole cube.

The step at d ≥ 2. If there are vertices on each of two
opposite sides of the cube that do not lie on the hyper�
surface, then, by assumption of induction, the por�
tions of vertices lying on the hypersurface do not
exceed 1 – 2–d on each side. Hence, the same is true
for the whole cube.

Otherwise, without loss of generality, we can
assume that all vertices with the coordinate x1 = a lie
on the hypersurface and a vertex with the coordinate
x1 = b does not lie on the hypersurface. The polyno�
mial f(x) = g(x2, …., xn) + (x1 – a) ⋅ h(x), where poly�
nomial g is equal to zero at each vertex of the cube and
the polynomial degree h does not exceed d – 1. The
vertices of the cube lying at the intersection of the
hyperplane x1 = b and the hypersurface f(x) = 0 lie at
the intersection of this hyperplane and hypersurface
h(x) = 0. By the assumption of induction, the portion
of vertices lying on it does not exceed 1 – 21 – d. Hence,
the portion of vertices of the whole cube does not
exceed (2 – 21 – d)/2 = 1 – 2–d.

Remark 1. It follows from the results obtained by
Erdös [3] that boundary 1/2 is reachable over the field
of characteristic zero only for linear functions depend�
ing on a small number of variables. If the function
depends nontrivially on each of n variables, i.e., the
corresponding hyperplane is not parallel to any coordi�
nate axis, the portion of cube vertices lying on this
hyperplane tends to zero as n increases. A similar result
was obtained in [4] for second�degree polynomials hav�
ing many monomials. On the contrary, over the field of
characteristic two, the linear form x1 +… + xn becomes
zero at a half of all vertices of the (0, 1)�cube. This
means that boundary 1/2 is true in each dimension. For
the same form, this portion is close to 1/p over the field
of simple characteristic p, i.e., it does not tend to zero as
the dimension increases.

Proposition 3. If a polynomial of degree d in n vari�
ables is equal to zero at each vertex of the n�dimen�
sional (a, b)�cube, it does not have monomials in d dif�
ferent variables.

Proof. The proposition is evident if the number of
variables n is strictly smaller than degree d. Let us con�

sider the case of n = d. Any polynomial of degree d in
d variables can be written as:

where polynomial g does not have monomials in d
variables. Note that, when x = a and x = b, the values
of the monomial xm coincide with the values of the lin�
ear function

By replacing multiple occurrences of variables in
monomials g by linear functions, we obtain a polyno�
mial of degree no higher than d – 1 whose values coin�
cide with the values of polynomial g at the vertices of
the (a, b)�cube. According to Proposition 2, the por�
tion of the cube vertices at which polynomial g
becomes zero does not exceed 1 – 21 – d. On the other
hand, the portion of the cube vertices at which the
polynomial

becomes zero is equal to 1 – 2–d. Hence, α = 0.
It is easy to see that, when n ≥ d + 1, if there is a

polynomial in n variables of degree d with a monomial
in d different variables x1, …, xd, substitution of vari�
able x1 for variable xi gives a polynomial in d variables
with a monomial in d different variables for all indices
i ≥ d + 1. This is impossible.

4. EXPLICIT APPEARANCE
OF SMALL�DEGREE FORMS EQUAL TO ZERO 

AT EACH VERTEX OF THE ±1�CUBE

Proposition 4. Quadratic forms equal to zero at
each vertex of the ±1�cube can be written as:

Moreover, for the sets Un, the values of the Hilbert
function

Proof. It follows from Proposition 3 that quadratic
forms equal to zero at each vertex of the ±1�cube can
be written as

and make up a subset of dimension (n – 1). The
dimension of the space of all quadratic forms is

f x1 ⋅⋅⋅, xd,( ) α xi a–( ) g x1,⋅⋅⋅, xd( )+
i 1=

d

∏= ,

am

a b–
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Hence,

Proposition 5. If the cubic form f(x1, ⋅⋅⋅, xn) is equal to
zero at each vertex of the ±1�cube, it can be written as

(1)

where, for each index i, the condition

(2)

is met.
Moreover, for the sets Un, the values of the Hilbert

function

Proof. According to Proposition 3, if a cubic form is
equal to zero at each vertex of the ±1�cube, it has form
(1). It is evident, that form f meeting condition (2) is
equal to zero at each vertex of the cube. For each index
i, the values of form f at two vertices of the cube that do
not coincide only at the ith coordinate differ by

Hence, if form f is equal to zero at each vertex of the
cube, condition (2) is met. All forms of type (1) meet�
ing condition (2) make up a subspace of the dimension
n(n – 1). The dimension of the linear space of all cubic
forms is

Since this space can be expanded into the direct sum
of subspaces of dimensions n(n – 1) and χn(3), then:

Proposition 6. If the forth�degree form f(x1, ⋅⋅⋅, xn)
is equal to zero at each vertex of the ±1�cube, it can be
written as

(3)

where the condition

(4)

is met for each pair of different indexes i < j,

χn 2( ) n2 n+
2

����������� n 1–( )– n2 n–
2
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n
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and, in addition, the condition

(5)

is also met.
Moreover, for the sets Un, the values of the Hilbert

function

Proof. According to Proposition 3, if the forth�
degree form is equal to zero at each vertex of the
±1�cube, it can be expressed as (3). It is evident that,
when conditions (4) and (5) are met, form f is equal
to zero at each vertex of the cube. Let us designate

for a pair of indexes i < j.
For each index i < n, the values of form f at two ver�

tices of the cube that do not coincide only at the ith
coordinate differ by

Hence, if form f is equal to zero at each vertex of the
cube, the sum

Similarly, for each index j ≥ 2, the sum

Thus, numbers Aij are the solution to the system of
homogeneous linearly independent equations in
which the number of variables is equal to the number
of equations. Hence, all Aij = 0. Condition (4) is met.
Now form f is equal to the sum of two summands, one
of which is equal to zero at each vertex of the cube.
Hence, the second summand, assuming a constant
value at all vertices of the cube, is also equal to zero;
i.e., the sum

Condition (5) is fulfilled. The forms of type (3) meet�
ing conditions (4) and (5) make up a subspace of the
dimension

where the first summand is equal to the number of lin�
early independent coefficients aijk, and the second
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summand is equal to bij. The dimension of the linear
space of all forth�degree forms is

Hence,

Remark 2. Propositions 1, 4, 5, and 6 allow one to
completely describe the Hilbert functions for U1, U2,
U3, U4, U5, and U6.

χ1(d) = 1
χ2(d) = 1
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