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Recall that a topological space X is scattered. if every non-empty subspace of X has
an isolated point. If X is a scattered Boolean space and « is an ordinal, we denote
by I.(X) the at"-Cantor-Bendixson level of X, i.e. Io(X) = set of isolated points of
X\ U{Is(X) : B < a}. The height of X is defined by ht(X) = the least ordinal  such
that I,(X) is finite. And the cardinal sequence of X is defined by CS(X) = (|I.(X)] :
a < ht(X)).

If v is an ordinal, we put C(a) = {CS(X) : X is a scattered Boolean space of height
a}. If k is an infinite cardinal and « is an ordinal, we denote by (k) the constant
r sequence of length a. And if f and g are sequences of infinite cardinals, we denote
by f Tg the concatenation of f with g. If X is a scattered Boolean space and & is an
infinite cardinal, we say that X is k-thin-tall, if CS(X) = (k)a for some ordinal a > ™.
And we say that X is s-thin-thick, if CS(X) = (k). {A) for some cardinal A > k.

It is well-known that (w)s € C(«a) for every ordinal o < wo and that it is relatively
consistent with ZFC that (w)a € C(a) for every ordinal o < ws . Also, it was shown
by Baumgartner that (wi)w, {w2) & C(w1 + 1) in the Mitchell Model. And it was
shown by Koepke and Martinez that if V' = L holds then for every regular cardinal &,
(k) € C(k1) and (k). {x1) € C(k+1). However, no result is known on the existence
of k-thin-tall or k-thin-thick spaces where « is a singular cardinal.

Then, we shall present here a general construction of scattered Boolean spaces with
a large top. As consequences of this construction, we obtain the following results:

1. If k is a singular cardinal of cofinality w, then (k). {k“) € C(k + 1).
2. If k is an inaccessible cardinal, then (k). k") € C(k + 1).

3. If GCH holds, then for every infinite cardinal £ we have (k). A(/fo(“)) € C(k+1).

Also, we shall present some results and open problems on the existence of thin-tall
spaces in relation to large cardinals.
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Jensen [5] introduced a forcing notion P € L such that any P-generic real a over L
has minimal L-degree, is A} in L[a], and is the only P-generic real in L[a]. Further
applications of this forcing include iterations [1], finite products and finite-support
infinite products for symmetric choiceless models [2, 4], et cetera. We present some
new applications of finite-support infinite products of Jensen’s forcing and its variations.

THEOREM 1 (with V.Lyubetsky). There is a generic extension L[a] of L by a real
in which [a]g, is a countable lightface TT3 set not containing any ordinal-definable reals.

Recall that Eg is an equivalence relation on w® such that z Eg y iff (k) = y(k) for all
but finite k, and [a]g, = {b € w* : a Eq b} is the (countable) Eo-class of a real a € w®.

Let a Groszek — Laver pair be any OD (ordinal-definable) pair of sets X, Y C w® such
that neither of X,Y is separately OD. As demonstrated in [3], if (z,y) is a Sacksx Sacks
generic pair of reals over L then their L-degrees X = [z]L Nw® and Y = [y]L Nw* form
such a pair in L[z, y]; the sets X, Y is this example are obviously uncountable.
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THEOREM 2 (with M. Golshani and V. Lyubetsky). There is a generic extension
Lia,b] of L by reals a,b in which it is true that the countable sets [alg, and [b]g,
form a Groszek — Laver pair, and moreover the union [alg, U [ble, 45 a lightface IT3 set.

THEOREM 3 (with V.Lyubetsky). It is consistent with ZFC that there exists a light-
face II3 set § # Q C w® x w* with countable cross-sections Q. = {y: (x,y) € Q},
r € w¥, non-uniformizable by any ROD set. In fact each cross-section Q. in the
example is a Eg class.

ROD = real-ordinal-definable. Typical examples of non-ROD-uniformizable sets, like
{{z,y) : y ¢ L[z]} in the Solovay model, definitely have uncountable cross-sections.
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Paradoxes are interesting puzzles in philosophy and mathematics. They can be
more interesting when they turn into genuine theorems. For example, Russell’s para-
dox which collapsed Frege’s foundations of mathematics, is now a classical theorem in
set theory, implying that no set of all sets can exist. Or, as another example, the Liar
paradox has turned into Tarski’s theorem on the undefinability of truth in sufficiently
rich languages. This paradox also appears implicitly in the proof of Gédel’s first incom-
pleteness theorem. For this particular theorem, some other paradoxes such as Berry’s
([1, 2]) or Yablo’s ([7, 8]) have been used to give alternative proofs ([4, 6]). A more
recent example is the surprise examination paradox [3] that has turned into a beauti-
ful proof for Gédel’s second incompleteness theorem ([5]). In this talk, we transform
Yablo’s paradox into a theorem in the Linear Temporal Logic (LTL). This paradox,
which is the first one of its kind that supposedly avoids self-reference and circularity
has been used for proving an old theorem ([4, 6]) but not a new theorem had been
made out of it. Here, for the very first time, we use this paradox (actually its argu-
ment) for proving some genuine mathematical theorems in LTL. The thought is that
we can make progress by thinking of the sentences in the statement of Yablo’s paradox
not as an infinite family of atomic propositions but as a single proposition evaluated in
lots of worlds in a Kripke model. Thus the derivability of Yablo’s paradox should be
the same fact as the theoremhood of a particular formula in the linear temporal logic.
This temporal treatment also unifies other versions of Yablo’s paradox.
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