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INTRODUCTION

The problem of regulatory signal recognition is a
classical problem of computational biology. It has
become particularly popular within the recent years,
after, on the one hand, initiation of mass experiments
on gene expression analysis (e.g., [1, 2]; reviewed in
[3, 4]) and, on the other hand, publication of complete
genomes of many bacteria and some eukaryotes,
which allowed comparative analysis of the control
processes ([5, 6]; reviewed in [7]). Despite its impor-
tance, this problem is far from being solved. Accurate
(that is, exhaustion) methods are so time-consuming
as to be hardly practicable with real tasks.

The available approaches and algorithms for rec-
ognizing regulatory signals in a set of potential regu-
latory regions have been reviewed [8–11].

These algorithms can be divided into two groups:
optimization and combinatorial. Optimization algo-
rithms are organized as follows. First, a quality (e.g.,
information content) of sets of the potential sites is
described. Then such sets are generated, and selection
of representatives in each sequence is gradually
refined to maximize the quality. Thus, the entire pro-
cedure is reduced to the search of an extremum of the
quality function in the space of sets. In this case
greedy algorithms [12, 13], expectation maximizing
algorithms [14–17], DMS [18], MEME [19–21], as
well as stochastic algorithms of heat annealing simu-
lation [22] and Gibbs sampler [23, 24] can be applied.

Exhaustion algorithms also work with word sets;
however, in this case they aim at building a word
present in each sequence in the sample with least devi-
ation (i.e., the quality function is a measure of com-

pactness of the generated set, such as its diameter).
Such algorithms include ConsInd and MatInd
[25, 26]; ITB [27]; WORDUP [28, 29]; CONSENSUS
[30]; WINNOWER [31]; suffix trees [32–34]; and
other algorithms [35–43].

Here we propose and test a 

 

new algorithm for sig-
nal recognition in a set of unaligned nucleotides
sequences

 

 (see also [44]). It is intermediate in terms
of the above classification: a quality function is opti-
mized, but it is defined as a pairwise similarity
between words rather than as information content of a
set.
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Problem statement.

 

 We are given a set of 

 

k

 

 nucle-
otide sequences, the length of which is not fixed or is
about the same (in the latter case it equals certain 

 

n

 

 in
each case). Let 

 

system

 

 denote a set of words of fixed
length 

 

l

 

, one word per sequence (or several words per
sequence; here we consider the first case for short-
ness); the system includes a set of some 

 

not predefined
part of the initial sequences

 

; the system should be
composed of the most pairwise-similar words (and of
the largest number of the sequences). We consider
similarity as, e.g., total pairwise Hamming distance
between the words included in the system or as some
other fixed metric between these words or, stated dif-
ferently, as maximization of a fixed “quality of the
system.” The quality of the system is defined as, e.g.,
total pairwise “distance” between its words calculated
from function 

 

F

 

(

 

x

 

, 

 

y

 

)

 

 reflecting the similarity between
words 

 

x

 

 and 

 

y

 

 of length 

 

l

 

 as well as other desired prop-
erties in such a pair of words. Intuitively, such system
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can be considered as a 

 

signal

 

, while a word represent-
ing the signal in one of the source sequences can be
considered as a 

 

regulatory region (site)

 

 in this
sequence.

A serious algorithmic and theoretic problem is the
possible absence of regulatory sites related to the con-
sidered signal from some sequences of the initial sam-
ple. Hence, it is important that the described algorithm
can find the signal present in a relatively small frac-
tion of the initial sequences.

If necessary, the structural properties of the signal
can be considered. For instance, if there are grounds
to believe that the signal is a (complementary) palin-
drome (in particular, if the regulatory protein is known
to bind DNA as a dimer), one can use function

 

F

 

(

 

x

 

,

 

 

 

y

 

)

 

 

 

= 

 

S

 

(

 

x

 

, 

 

y

 

) + 0.5 [

 

max

 

(

 

S

 

(

 

x

 

, 

 

pal

 

(

 

x

 

)), 

 

S

 

(

 

x

 

', 

 

pal

 

(

 

x

 

'))) +

 

max

 

(

 

S

 

(

 

y

 

, 

 

pal

 

(

 

y

 

)), 

 

S

 

(

 

y

 

', 

 

pal

 

(

 

y

 

')))]

 

, where 

 

S

 

(

 

x

 

, 

 

y

 

)

 

 is the
number of matching characters in words 

 

x

 

 and 

 

y

 

, 

 

pal

 

(

 

x

 

)

 

is the word derived from 

 

x

 

 by inversion of each char-
acter to the complementary one, and 

 

x

 

'

 

 is the word 

 

x

 

without the last character. This weighting function
was largely selected at random, and the algorithm is
independent of the function 

 

F

 

 type except that the
extreme complexity of its calculation clearly increases
the algorithm calculation time. However, there are no

grounds to expect biologically informative and hard-
to-calculate functions 

 

F

 

 that could considerably affect
the calculation time of the algorithm.

The proposed algorithm solves the initial problem
within the time of 

 

squared number of the initial
sequences 

 

k

 

 and cubed length 

 

n

 

 of each of them

 

. An
algorithm with a better calculation time estimate is
hardly imaginable.

 

Qualitative description of the algorithm.

 

 First
let us form an auxiliary graph 

 

G

 

 fixed during the algo-
rithm execution. Graph 

 

G

 

 is composed of 

 

k

 

 nodes and
the edges appearing during the next procedure execu-
tion as exemplified in the figure where 

 

k

 

 = 7. At the
first step all nodes of graph 

 

G

 

 are divided into two
equal (accurate to unity for odd 

 

k

 

) parts and two edges

 

(

 

A

 

, 

 

B

 

)

 

 and 

 

(

 

C

 

, 

 

D

 

)

 

 not going beyond any node are laid
(e.g., let 

 

A

 

 and 

 

C

 

 be in one part while 

 

B

 

 and 

 

D

 

 be in
the other part). Each of these edges, e.g., 

 

(

 

A

 

, 

 

B

 

)

 

 can be
denoted as 

 

the main relative to this division

 

 while the
other one is 

 

auxiliary

 

. 

 

(

 

A

 

, 

 

B

 

) = (

 

1

 

, 

 

2

 

)

 

 and 

 

(

 

C

 

, 

 

D

 

) = (

 

3

 

, 

 

4

 

)

 

in the figure. In addition two 

 

diagonal

 

 edges (A, D)
and (C, B) are laid (not shown in figure). Later such
division is iterated “inside” the graph G. Namely, each
of the parts of graph G is redivided (in the same sense)
into equal parts so that A and C as well as B and D fall
in different parts of these divisions. The main edges
are unambiguously defined relative to these new divi-
sions, namely, (A, C) and (B, D), while the auxiliary
edges (if possible not going beyond the same node as
the main ones) are arbitrarily selected (edges (5, 6)
and (4, 7) in figure). So forth each not single-node part
P appeared in this procedure is divided into two equal
parts P1 and P2 so that the main edges of the new parts
link the termini of the main and auxiliary edges of the
previous part P. Of course, in this case each P equals
its merged parts P1 and P2.

The division procedure is over when all P parts are
single-node; in reality it can be stopped when these
parts are just small (1–3 nodes).

The essence of the main algorithm cycle can be
described as follows: in the case of small parts head-
on solutions (exhaustive search) are used for any prob-
lem, otherwise inductive transition from the calcu-
lated (available) data for P1 and P2 to homogeneous
data on P is used. Stated differently, f data for P1 and
g for P2 can be used for easy calculation of homoge-
neous (as compared to f and g) h for P. Of course, this
is just a brief description detailed below.

The external cycle of the algorithm is one-to-one
assignment of the source sequences to the nodes of
graph G. Let us denote one of such (current but fixed
for each individual iteration of the cycle) arrange-
ments of sequences by the nodes of graph G as r. Then
r(A) is the sequence assigned to node A where the sig-
nal is searched as well as in all other assigned

5

1 2

7

4
3

6

P1 P2

The procedure of graph G partitioning. Partitioning of graph
G at k = 7 is exemplified. Step 1: graph G is divided into two
parts P1 and P2 so that P1 = {1, 3, 5, 6} and P2 = {2, 4, 7},
(1, 2) and (3, 4) are the main and auxiliary edges of this
division, respectively; step 2: part P1 is divided into P11 =
{1, 5} and P12 = {3, 6} with (1, 3) and (5, 6) as the main and
auxiliary edges, respectively, while part P2 is divided into
P21= {2, 7} and P22 = {4} with (2, 4) and (4, 7) as the main
and auxiliary edges, respectively; step 3: part P11 is divided
into P111 = {1} and P112 = {5} with (1, 5) as the main edge,
part P12 is divided into P121 = {3} and P122 = {6} with
(3, 6) as the main edge, and part P21 is divided into P211 =
{2} and P212 = {7} with (2, 7) as the main edge. 
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sequences. Graph G helps to organize this search. This
cycle body is organized as follows.

Let us call sequence r(A) a sequence over A.

A new cycle (called assembly) is executed for the
fixed r; it performs transition from the data on two
“neighboring” (and smaller) parts P1 and P2 of graph
G to the data on their merging into a (larger) part P of
graph G or, to be precise, transition from the data on
merged sequences over B (where B runs P2 part) to the
data on merged sequences over C (where C runs
P part).

Let sequences over P denote merged sequences
r(A), where A runs P part. The system of words (no
more than) one per each sequence over P is called a
signal (system of words) over P. Of course, we search
for a signal over P = G which is called the signal; how-
ever, we search this signal as a special case over an
arbitrary P.

Finally, the best possible system of words (no more
than one per each sequence over P) with the signal
value over the main edge of P part equal to two pre-
defined (arbitrary in the general case) words x and y
from the corresponding sequences is called an exten-
sion of words x and y to the signal over P. Clearly,
extension of some words x and y to the signal over P
can be not a (sensible) signal over P due to these
“fixed” x and y values.

Thus, the above-mentioned transition (inductive
step) consists in the following.

Assume we have determined two sets of t best sig-
nals (systems) all over the parts P1 and P2, respec-
tively; these parts with the main edges (A, C) and
(B, D), respectively, were obtained by dividing sub-
graph P (of the initial graph G) with the main edge
(A, B). Clearly, simple merging of the best signal over
P1 and the best signal over P2 is not even a (sensible)
signal over P (in the general case).

Hence we will use a more delicate solution. The
above set, e.g., for P1 consists of “best (possible) sig-
nals with fixed ends” over P1 rather than of the best
signals over P1; i.e., the first set consists of extensions
of any two words x and y from the sequences over A
and C, respectively (where the mutual quality of x and
y exceeds certain fixed threshold u), to the P1 set. In a
similar way, the second set is composed of t best
extensions to the whole set P2 of words x and y arbi-
trarily selected over nodes B and D.

For example (figure), let P1 = {1, 5, 6, 3} and P2 =
{2, 7, 4}; (Ä, ë) = (1, 3) and (Ç, D) = (2, 4); while P
equals merged sets P1 and P2 (coincidence of P and G
in this case is clearly a random event; it always hap-
pens at the end of this induction rather than at the pre-
ceding steps). Let t = 1 (by the way, this was true for
the biological cases used for the algorithm testing). At
the previous iterations of the considered cycle two

functions f(x, y) and g(x, y) were calculated. Function
f(x, y) on any pair of words (similarity between x and
y from sequences over A and C exceeds certain fixed
threshold u) outputs the best signal in the sample
{r(1), r(3), r(5), r(6)} corresponding to the P1 set (at
the fixed r). In a similar way, function g(x, y) on any
pair of words (x and y from sequences over B and D
are similar enough in the same sense) outputs the best
signal in the sample {r(2), r(4), r(7)} corresponding to
the P2 set (at the same fixed r). This iteration underlies
the building function h(x, y) outputting analogous
information for a larger set P.

Namely, search for all words x1 and y1 from the
sequences over C and D, respectively, with the pair-
wise quality of words x and x1 as well as y and y1 above
this threshold (to be precise, with defined extensions)
allows us to select (using f and g, respectively) sepa-
rate x–x1 and y–y1 extensions on P1 and P2 giving us t
best signals over the whole P upon merging all P.

If the threshold condition cannot be satisfied, the
corresponding value of the signal over P is set to zero;
stated differently, the threshold condition can provide
for partially defined signals over G, which is, however,
natural in terms of statement of the initial problem.

In addition, a list S of the obtained signals is main-
tained. As soon as a next signal s appears it is tested
for similarity to the signals already included in S
(within the same determination area). This is done in
the following way: if s signal has no new words as
compared to relatively large fraction of signals from S,
we assume that significant portion of these not new
words from s are the real sites; in this case we evaluate
how close is each of the words remained in s to this
signal set. If no similar words have been found, this
signal s is not included in S.

The external cycle arranging the sequences by
graph G nodes provides for at least single assignment
of each sequence pair to the nodes of graph G so that
they are linked by an edge; in this case the next
arrangement is selected to increase the number of
linked sequence pairs not linked in previous iterations.
This provides for sensible amount of iterations of the
external cycle and sufficient diversity of the calculated
arrangements r.

The latter is important for generating representa-
tive statistics during the next final cycle of the algo-
rithm execution.

Namely, each position in each sequence (e.g., con-
taining character i) is assigned to a measure of charac-
ter i occurrence in the desired site. In the second vari-
ant such measure and each word are juxtaposed,
which reflects the occurrence of this word in the
desired site (below we consider this variant). This
measure equals total quality by all revealed signals
including this word. Here the quality states for quality
of the word from the signal (containing it) relative to
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the whole signal rather than quality of the whole sig-
nal, i.e., total F(x, y), where x is the above word while
y runs all other words of this signal. Thus, the words
from the “real” signal will be marked by significantly
higher values as compared to other words.

The algorithm idea is as follows. The notion of the
best signal (pretending to be real) requires considering
all sequence pairs (carrying the signal). The signals
corresponding to the best signal definition are selected
for each arrangement r for the sequence pairs linked
by an edge in (the current arrangement of) graph G
and the number of such edges is by far less than the
number of all possible sequence pairs. However,
selection of the appropriate arrangements chain
allows us to obtain representative statistics for the
subsequent signal recognition. This paragraph intu-
itively explains the idea of the algorithm; the proof
problem is not discussed here.

IMPLEMENTATION OF THE ALGORITHM
AND COMPUTATIONAL EXPERIMENT

The algorithm was implemented as a computer
program mostly used for signal search in the sample

of genetic sequences with representative length from
100 to 200 nucleotides; in this particular case the sig-
nal was a system of individual words with representa-
tive length from 15 to 30. In this variant the program
was composed in object-oriented Pascal language in
Delphi programming environment. The input was a
text file containing a set of genetic sequences, and the
output was a file containing the function relating each
word with the confidence of its occurrence in the sig-
nal. A 300 MHz Celeron with 64 MB processed 19
and 9 sequences of length 200 in 12 and 1.2 min,
respectively.

Calculation of many examples demonstrated that
the algorithm suggested at least one site in each sig-
nal-carrying sequence in the great majority of cases.

We used the following procedure to test if a given
sequence carries other signal words. Each character of
the revealed word in a given sequence was replaced by
asterisk sign considered by the program as different
from all other characters including itself. After that
the algorithm found another signal word (if present),
etc.

In rare cases the algorithm found no signal word in
a sequence (although it was there). This is due to the

Table 1.  Results of the testing on artificial sequences

0, 1, 2 3 4 5 6

0 XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX 1061011555 1220021000

1 XXXXXXXXXX XXXXXXXXXX XXXXX9XXXX 0063 –

2 XXXXXXXXXX XXXXXXXXXX XXXX97XX7X 0053 –

3 XXXXXXXXXX XXXXXXXXXX X9X478XX9X 0065 –

4 XXXXXXXXXX XXXXXXXXXX 799286X96X 1000 –

5 XXXXXXXXXX XXXXXXXXXX 3498168858 0020 –

6 XXXXXXXXXX XXXXXXXXXX 05X0477052 0000 –

7 XXXXXXXXXX XXXXXXXXXX 0330053404 0000 –

8 XXXXXXXXXX XXXXXXXXXX 2240004025 0000 –

9 XXXXXXXXXX XXXXXXXX9X 2650427021 0000 –

10 XXXXXXXXXX XXXXXXXXXX 8423552057 – –

0, 1 2 3 4

0 5 5555555555 5555555555 554530255

1 5 5555555555 5555555555 255413144

2 5 5555555555 5555555555 514330023

3 5 5555555555 5555453541 005000030

4 5 5555555555 5535255554 003020011

5 5 4555555555 3403535443 000300013

Note: The number of correctly recognized sites is given, each character corresponds to single independent test (X states for 10), upper table,
sample of ten sequences; lower table, sample of five sequences; rows indicate the number of sequences lacking the site added to the
initial set (from 0 to 10 and from 0 to 5, respectively); columns indicate the number of changed characters (from 0 to 6 and from 0
to 4, respectively).
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“garbage”—a set of quite similar but not signal words.
Such garbage featured relatively high values and
could be easily recognized (particularly, using biolog-
ical considerations). After such “garbage” words were
replaced by asterisks the program was re-executed and
found not previously revealed signal words.

RESULTS AND DISCUSSION

Artificial sample. The algorithm was described by
its testing on artificial sample under controlled condi-
tions. The same word of length 16 was substituted into
artificial sequences of length 200 in the four-letter
code. Then several characters were “spoiled” in each
of these words (to simulate attenuation of the signal)
and sequences without the signal were added (to sim-
ulate sample pollution).

The results of testing are presented in Table 1.

The signals are stably found after introduction of
up to two errors in the signal in a 5-sequence sample,
up to three errors in a 10-sequence sample, and when
the fraction of irrelevant sequences (lacking the site)
was up to 50% of the sample. The 10-sequence case
was studied in detail. In the case of errors in four posi-
tions in the signal the result depends on the sample
purity: acceptable results can be obtained when the
number of the sequences lacking the site do not
exceed 3 or 4 (in most tests the sites were correctly
recognized in virtually all sequences). The signal can
be missed upon further pollution of the sample; the
proportion of such tests increases with the number of
irrelevant sequences. Only single tests reveal weaker
signals.

Natural samples. An analogous approach was
used to consider three sequence samples containing
Escherichia coli regulatory sites. Sample pollution by
the irrelevant sequences was stimulated as follows:
the best site found at the current stage of testing was

Table 2.  Recognition of PurR binding sites

0 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 11 13

Operon C M C M C M C M C M C M C M C M C M C M C M C M C M C M

purR-1 88 8 * 8 * 8 * 14 * 7 * 6 * 6 * 6 * 13 * 7 * 12 * 12 * 7 * 7

purR-2 0 72 63 41 27 24 24 23 23 15 7 7 7 7

purEK 88 0 88 0 * 12 * 7 * 18 * 12 * 12 * 19 * 12 * 7 * 7 * 7 * 7 * 7

CvpApurF 88 0 88 0 76 0 * 22 * 22 * 21 * 14 * 14 * 13 * 7 * 7 * 7 * 7 * 7

purC 87 0 80 0 70 0 59 0 29 0 18 6 18 6 22 6 24 7 15 7 15 7 8 7 8 7 7 7

purMN 88 0 88 0 70 0 60 0 30 0 28 0 * 22 * 42 * 13 * 13 * 13 * 6 * 7 * 12

purL 88 0 88 0 75 0 60 6 * 24 * 24 * 28 * 20 * 13 * 7 * 12 * 12 * 12 * 12

purB 80 0 80 0 59 7 45 6 27 6 17 6 17 6 16 6 16 7 13 7 13 7 8 7 8 7 6 11

guaBA 79 0 80 0 67 0 54 0 27 0 17 7 17 6 23 14 24 7 * 14 * 14 * 14 * 14 * 21

purHD 88 0 88 0 70 0 59 0 30 0 27 7 27 7 24 7 24 7 7 13 8 7 8 6 7 7 0 14

glyA 80 0 80 0 70 0 59 0 29 0 26 6 26 8 25 7 17 7 8 7 8 7 8 7 8 12 0 8

pyrD 88 0 88 0 70 0 49 0 29 0 26 0 26 0 * 12 * 12 * 7 * 7 * 7 * 7 * 11

prsA 88 0 88 0 70 0 60 0 30 0 * 28 * 21 * 19 * 7 * 12 * 7 * 7 * 7 * 12

glnB 80 0 80 0 63 0 53 0 27 0 16 8 15 8 14 7 7 6 13 6 13 6 13 6 * 6 * 7

purA-1 80 0 80 0 63 0 53 0 27 0 24 6 24 6 31 5 22 6 7 7 7 7 11 7 11 7 * 7

purA-2 0 0 0 0 0 0 0 7 6 6 6 0 0 0

codBA 88 0 88 0 75 0 60 0 30 0 27 0 26 0 32 6 17 8 15 8 * 8 * 10 * 8 * 8

pyrC 80 0 80 0 69 0 59 0 29 0 18 5 18 5 9 7 24 7 15 6 7 7 7 6 7 7 7 7

purT 88 0 88 0 76 0 61 0 30 0 27 0 27 0 26 5 * 7 * 12 * 12 * 12 * 7 * 12

GcvTHP 72 0 72 0 63 0 45 7 26 7 15 0 14 7 14 6 15 7 15 6 15 6 7 6 7 6 7 7

speAB 70 8 70 8 54 5 45 6 18 5 17 8 17 8 23 5 16 7 15 7 15 7 * 7 * 11 * 13

Note: First row indicates the number of sequences lacking the site and total number of masked sites (indicated by asterisks); second row:
C, weight of a true site; M, maximum weight of a false site; boldface marks missed true site or best false site with the value equal or
higher than that of the best true one (except zero weight).
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masked (its nucleotides were replaced by asterisk
signs). This both introduced the sequences lacking the
signal and gradually weakened the signal.

The regulatory site signals were taken from the
dpinteract database [45], while sequence fragments
containing these sites were extracted from the com-
plete E. coli genome using GenomeExplorer [46].

Purine regulon. The sample of the regulatory
regions of the genes controlled by purine repressor
PurR included 19 sequences 200 nucleotides long
containing 21 sites 16 nucleotides long. Two
sequences carried two sites while the other ones car-
ried single site each. Table 2 presents the results of the
testing. First errors appear when 8–9 sites are masked;
however, even when the sample included more than a
half sequences lacking the site, most sites were cor-
rectly recognized. When two sites are present in the
same sequence, the second one is found after masking
of the already revealed one. The purine sample con-
tains two such sequences.

Arginine regulon. The sample of regulatory
regions of the genes controlled by arginine repressor
ArgR included 9 sequences 200 nucleotides long con-
taining 19 sites 18 nucleotides long. One sequence

contained three sites while the other ones contained
two sites each. Table 3 presents the results of testing.
Arginine box is a weak signal and specificity of the
control is due to cooperative recognition of site pairs
at a fixed distance by the multimeric repressor com-
plexes [47]. Nevertheless, the arginine repressor bind-
ing sites is reliably found even when considerable
number of the best sites was masked: the first loss is
observed after masking five sites (two of them falling
in the same sequence; the second one is found after
masking the first one as with the purine sample). In the
case of triple sites the procedure is the same: the third
site is found after masking two previously found ones.

Catabolite repressor regulon. The sample of reg-
ulatory regions of the genes controlled by CRP
included 31 sequences 2 hundred nucleotides long
containing 48 sites 22 nucleotides long. Sixteen
sequences carried single site while the other ones car-
ried from 2 to 4 sites. The sample of CRP binding sites
includes numerous weak sites; many of them have not
been found even in the primary search (Table 4). That
is why no tests with the sites masking were carried
out. Note that the interaction between CRP and the

Table 3.  Recognition of ArgR binding sites

0 0 0 1 0 2 0 3 0 4 1 5 1 6 1 7 1 8 0 9

Operon C M C M C M C M C M C M C M C M C M C M

argR-1 33 0 36 0 * 0 * 8 * 8 * 0 * 13 * 18 * 9 * 18

argR-2 0 0 24 34 18 8 0 8 8 8

argA-1 33 0 32 0 19 0 19 0 17 8 9 7 9 8 0 16 0 16 * 16

argA-2 0 0 9 26 17 9 9 9 0 9

argCBH-1 0 0 2 6 18 0 37 7 27 7 16 8 8 8 8 8 0 9 10 18

argCBH-2 39 * * * * * * * * *

argD-1 0 0 0 0 0 0 0 0 8 7 7 7 7 8 8 8 8 7 8 16

argD-2 35 35 30 51 * * * * * *

argE-1 0 0 0 0 9 0 10 0 10 0 8 0 0 8 0 9 0 9 10 18

argE-2 39 27 22 43 38 8 9 9 8 *

argF-1 36 0 36 0 31 0 21 0 19 0 6 14 10 8 * 17 * 8 * 18

argF-2 0 0 0 30 27 6 0 7 7 10

argG-1 11 0 0 0 10 0 10 0 19 0 8 8 8 7 9 16 0 9 10 16

argG-2 0 0 0 0 0 0 8 0 0 0

argG-3 24 36 22 42 29 10 * * * *

argI-1 36 0 35 0 31 0 * 0 * 0 * 15 * 8 * 16 * 8 * 16

argI-2 0 0 0 47 44 * * * * 10

carAB-1 30 0 16 0 24 0 18 0 19 0 9 8 9 8 17 8 * 8 * 16

carAB-2 0 7 0 9 8 8 8 0 0 8

Note: For designations see Table 2. The best sites masked in each sequence in the last pair of columns.
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regulatory regions is complex and includes dynamic
switch between the sites [48].

Hence, it is possible that some of the erroneously
recognized sites are actually functional.

CONCLUSIONS

The testing demonstrated eligibility of the pro-
posed algorithm. Presently it is applied to study con-
trol interactions, particularly, it is involved in the anal-
ysis of unknown sugar metabolism regulons in γ-pro-
teobacteria and systematic investigation of regulation
in pyrococci.

Several trends of further development of the algo-
rithm can be proposed. Increased resistance to noise
and, particularly, to the sample pollution is the topical
problem. We intend to modify the algorithm to explic-
itly consider possible pollution, while the expected
number of irrelevant sequences should be a parameter
set from a priory considerations or adjusted automat-
ically.

In addition, statistical peculiarities of the studied
genomes should be considered, particularly, heteroge-
neity of the nucleotide composition and the frequen-
cies of oligonucleotides (a word nonrandom relative
to the whole genome can hardly be a specific regula-
tory signal).

We should accurately investigate possible applica-
tion of various types of symmetry (palindromes,
director repeat, etc.). Finally, the algorithm should
more specifically allow for possible appearance of
several sites in a sequence as well as several different
signals in a sample.
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