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A generic extension L[x, y] of the constructible universe L by reals x, y is defined, in which the union of
E0-classes of x and y is a lightface �1

2 set, but neither of these two E0-classes is separately ordinal-definable.
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1 Introduction

Let a Groszek-Laver pair be any unordered OD (ordinal-definable) pair {X, Y } of sets X, Y ⊆ ωω such that neither
of X, Y is separately OD. As demonstrated in [4], if 〈x, y〉 is a Sacks×Sacks generic pair of reals over L, the
constructible universe, then their degrees of constructibility X = [x ]L ∩ ωω and Y = [y]L ∩ ωω form such a pair
in L[x, y]; the set {X, Y } is definable as the set of all L-degrees of reals, L-minimal over L.

As the sets X, Y in this example are obviously uncountable, one may ask whether there can consistently exist
a Groszek-Laver pair of countable sets. The next theorem answers this question in the positive in a rather strong
way: both sets are E0-classes in the example! (Recall that the equivalence relation E0 is defined on 2ω as follows:
x E0 y iff x(n) = y(n) for all but finite n.)

Theorem 1.1 It is true in a suitable generic extension L[x, y] of L, by a pair of reals x, y ∈ 2ω that the union
of E0-equivalence classes [x ]E0 ∪ [y]E0 is �1

2, but neither of the sets [x ]E0 , [y]E0 is separately OD.

The forcing we employ is a conditional product P ×E0 P of an “E0-large tree”1 version P of a forcing notion,
introduced in [14] to define a model with a �1

2 E0-class containing no OD elements. The forcing in [14] was a
clone of Jensen’s minimal �1

2 real singleton forcing [9] (cf. [8, § 28A]), but defined on the base of the Silver
forcing instead of the Sacks forcing. The crucial advantage of Silver’s forcing here is that it leads to a Jensen-type
forcing naturally closed under the 0-1 flip at any digit, so that the corresponding extension contains a �1

2 E0-class
of generic reals instead of a �1

2 generic singleton as in [9].
In another relevant note [13] it is demonstrated that a countable OD set of reals (not an E0-class), containing

no OD elements, exists in a generic extension of L via the countable finite-support product of Jensen’s [9] forcing
itself. The existence of such a set was discussed as an open question on mathoverflow [5] and on the Foundations
of Mathematics (FOM) mailing list [3], and the result in [13] was conjectured by Enayat [3] on the base of his
study of finite-support products of Jensen’s forcing in [2].

The remainder of the paper is organized as follows:
We introduce E0-large perfect trees in 2<ω in § 2, study their splitting properties in § 3, and consider E0-large-

tree forcing notions in § 4, i.e., collections of E0-large trees closed under both restriction and action of a group of
transformations naturally associated with E0.

∗ E-mail: golshani.m@gmail.com
∗∗ Corresponding author; e-mail: kanovei@googlemail.com.
∗∗∗ E-mail: lyubetsk@iitp.ru
1 An E0-large tree is a perfect tree T ⊆ 2<ω such that E0�[T ] is not smooth, cf. [11, 10.9].
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If P is an E0-large-tree forcing notion then the conditional product forcing P ×E0 P is a part of the full forcing
product P × P which contains all conditions 〈T, T ′〉 of trees T, T ′ ∈ P, E0-connected in some way. This key
notion, defined in § 5, goes back to early research on the Gandy-Harrington forcing [6, 7].

The basic E0-large-tree forcing P employed in the proof of Theorem 1.1 is defined, in L, in the form P =⋃
ξ<ω1

Uξ in § 10. The model L[x, y] which proves the theorem is then a (P ×E0 P)-generic extension of L; it is
studied in § 11. The elements Uξ of this inductive construction are countable E0-large-tree forcing notions in L.

The key issue is as follows: given a subsequence {Uη}η<ξ and accordingly the union P<ξ = ⋃
η<ξ Uη, to define

the next level Uξ . We maintain this task in § 7 with the help of a well-known splitting/fusion construction, modified
so that it yields E0-large perfect trees. Generic aspects of this construction lead to the c.c.c. of forcing notions P

and P ×E0 P and to rather simple reading of real names, but most of all to the crucial property that if 〈x, y〉 is a
pair of reals (P ×E0 P)-generic over L then any real z ∈ L[x, y] P-generic over L belongs to [x ]E0 ∪ [y]E0 . This is
Lemma 11.4, proved on the base of preliminary results of § 9.

The final § 12 briefly discusses some related topics.

2 E0-large trees

Let 2<ω be the set of all strings (finite sequences) of numbers 0,1, including the empty string �. If t ∈ 2<ω and
i = 0, 1 then t �i is the extension of t by i as the rightmost term. If s, t ∈ 2<ω then s ⊆ t means that t extends s,
s ⊂ t means proper extension, and s �t is the concatenation. If s ∈ 2<ω then lh(s) is the length of s, and we let
2n = {s ∈ 2<ω : lh(s) = n} (strings of length n).

Let any s ∈ 2<ω act on 2ω so that (s · x)(k) = x(k) + s(k) (mod 2) whenever k < lh(s) and simply (s · x)
(k) = x(k) otherwise. If X ⊆ 2ω and s ∈ 2<ω then, as usual, let s · X = {s · x : x ∈ X }. Similarly, if
s, t ∈ 2<ω and lh(s) = m ≤ n = lh(t), then define s · t ∈ 2n so that (s · t)(k) = t(k) + s(k) (mod 2) when-
ever k < m and (s · t)(k) = t(k) whenever m ≤ k < n. If m > n then let simply s · t = (s�n) · t . Note that
lh(s · t) = lh(t) in both cases. Let s · T = {s · t : t ∈ T } for T ⊆ 2<ω. If T ⊆ 2<ω is a tree and s ∈ T then put
T �s = {t ∈ T : s ⊆ t ∨ t ⊆ s}.

Let PT be the set of all perfect trees ∅ �= T ⊆ 2<ω (those with no endpoints and no isolated branches). If
T ∈ PT then there is a largest string s ∈ T such that T = T �s ; it is denoted by s = stem(T ) (the stem of T ); we
have s �1 ∈ T and s �0 ∈ T in this case. If T ∈ PT then

[T ] = {a ∈ 2ω : ∀ n (a�n ∈ T )} ⊆ 2ω

is the perfect set of all paths through T ; clearly [S] ⊆ [T ] iff S ⊆ T .
Let LT (large trees) be the set of all special E0-large trees: those T ∈ PT such that there is a double sequence

of non-empty strings qi
n = qi

n(T ) ∈ 2<ω, n < ω and i = 0, 1, such that

1. we have lh(q0
n ) = lh(q1

n ) ≥ 1 and qi
n(0) = i for all n;

2. the tree T consists of all substrings of strings of the form r �qi(0)
0

�qi(1)
1

� . . . �qi(n)
n in 2<ω, where

r = stem(T ), n < ω, and i(0), i(1), . . . , i(n) ∈ {0, 1}.

We let spl0(T ) = lh(r) and then by induction spln+1(T ) = spln(T ) + lh(qi
n), so that spl(T ) = {spln(T ) : n <

ω} ⊆ ω is the set of splitting levels of T . Then

[T ] = {a ∈ 2ω : a�lh(r) = r ∧ ∀ n
(
a�[spln(T ), spln+1(T )) = q0

n or q1
n )}.

Lemma 2.1 Assume that T ∈ LT and h ∈ spl(T ). Then

(i) if u, v ∈ 2h ∩ T then T �v = (u ·v) · T �u and (u ·v) · T = T ;
(ii) if σ ∈ 2<ω then T = σ · T or T ∩ (σ · T ) is finite.

P r o o f . (ii) Suppose that T ∩ (σ · T ) is infinite. Then there is an infinite branch x ∈ [T ] such that y = σ · x ∈
[T ], too. We can assume that lh(σ ) is equal to some h = spln(T ). (If spln−1(T ) < h < spln(T ) then extend σ by
spln(T ) − h zeros.) Then σ = (x�h) · (y�h). It remains to apply (i). �
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Example 2.2 If s ∈ 2<ω then T [s] = {t ∈ 2<ω : s ⊆ t ∨ t ⊂ s} is a tree in LT, stem(T [s]) = s, and qi
n(T [s]) =

〈i〉 for all n, i . Note that T [�] = 2<ω (the full binary tree), and T [�]�s = (2<ω)�s = T [s] for all s ∈ 2<ω.

3 Splitting of large trees

The simple splitting of a tree T ∈ LT consists of smaller trees T (→ 0) = T �stem(T ) �0 and T (→ 1) =
T �stem(T ) �1, so that [T (→ i)] = {x ∈ [T ] : x(h) = i }, where h = spl0(T ) = lh(stem(T )). Clearly T (→ i) ∈ LT
and spl(T (→ i)) = spl(T )\{spl0(T )}.

Lemma 3.1 If R, S, T ∈ LT, S ⊆ R(→ 0), T ⊆ R(→ 1), σ ∈ 2<ω, T = σ · S, and lh(σ ) ≤ lh(stem(S)) =
lh(stem(T )) then U = S ∪ T ∈ LT, stem(U) = stem(R), and S = U(→ 0), T = U(→ 1).

The splitting can be iterated, so that if s ∈ 2n then we define T (→ s) = T (→ s(0))(→ s(1))(→ s(2)) . . .

(→ s(n − 1)). We separately define T (→ �) = T , where � is the empty string as usual.

Lemma 3.2 In terms of Example 2.2, for all s, we have T [s] = (2<ω)(→ s) = (2<ω)�s . Generally if T ∈ LT
and 2n ⊆ T then T (→ s) = T �s for all s ∈ 2n.

If T, S ∈ LT and n ∈ ω then let S ⊆n T (S n-refines T ) mean that S ⊆ T and splk(T ) = splk(S) for all k < n.
In particular, S ⊆0 T iff simply S ⊆ T . By definition if S ⊆n+1 T then S ⊆n T (and S ⊆ T ), too.

Lemma 3.3 Suppose that T ∈ LT, n < ω, and h = spln(T ). Then

(i) we have T = ⋃
s∈2n T (→ s) and [T (→ s)] ∩ [T (→ t)] = ∅ for all s �= t in 2n;

(ii) if S ∈ LT then S ⊆n T iff S(→ s) ⊆ T (→ s) for all strings s ∈ 2�n iff S ⊆ T and S ∩ 2h = T ∩ 2h ;
(iii) if s ∈ 2n then lh(stem(T (→ s))) = h and there is a string u[s] ∈ 2h ∩ T such that T (→ s) = T �u[s];
(iv) if u ∈ 2h ∩ T then there is a string s[u] ∈ 2n s.t. T �u = T (→ s[u]);
(v) if s0 ∈ 2n and S ∈ LT, S ⊆ T (→ s0), then there is a unique tree T ′ ∈ LT such that T ′ ⊆n T and

T ′(→ s0) = S.

P r o o f . (iii) Define u[s] = stem(T )�qs(0)
0 (T )�qs(1)

1 (T )� . . . �qs(n−1)
n−1 (T ).

(iv) Define s = s[u] ∈ 2n by s(k) = u(splk(T )) for all k < n.
(v) Let u0 = u[s0] ∈ 2h . Following Lemma 2.1, define T ′ so that T ′ ∩ 2h = T ∩ 2h , and if u ∈ T ∩ 2h then

T ′�u = (u · u0) · S; in particular T ′�u0
= S. �

Lemma 3.4 (Fusion) Suppose that · · · ⊆5 T4 ⊆4 T3 ⊆3 T2 ⊆2 T1 ⊆1 T0 is an infinite decreasing sequence of
trees in LT. Then

(i) we have T = ⋂
n Tn ∈ LT;

(ii) if n < ω and s ∈ 2n+1 then T (→ s) = T ∩ Tn(→ s) = ⋂
m≥n Tm(→ s).

P r o o f . Both parts are clear, just note that spl(T ) = {spln(Tn) : n < ω}. �

4 Large-tree forcing notions

Let a large-tree forcing notion be any set P ⊆ LT such that

(4.1) if u ∈ T ∈ P then T �u ∈ P;
(4.2) if T ∈ P and s ∈ 2<ω then s · T ∈ P.

We shall typically consider large-tree forcing notions P containing the full tree 2<ω. In this case, P contains
all trees T [s] of Example 2.2 by Lemma 3.2. Any large-tree forcing notion P can be viewed as a forcing notion
(if T ⊆ T ′ then T is a stronger condition), and then it adds a real in 2ω. If P ⊆ LT, T ∈ LT, n < ω, and all split
trees T (→ s), s ∈ 2n , belong to P, then we say that T is an n-collage over P. Let LCn(P) be the set of all trees
T ∈ LT which are n-collages over P, and LC(P) = ⋃

n LCn(P). Note that LCn(P) ⊆ LCn+1(P) by (4.1).
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Lemma 4.1 Assume that P ⊆ LT is a large-tree forcing notion and n < ω. Then

(i) if T ∈ LT and s0 ∈ 2n then T (→ s0) ∈ P iff T ∈ LCn(P);
(ii) if P ∈ LCn(P), s0 ∈ 2n, S ∈ P, and S ⊆ P(→ s0), then there is a tree Q ∈ LCn(P) such that Q ⊆n P and

Q(→ s0) = S;
(iii) if P ∈ LCn(P) and a set D ⊆ P is open dense in P, then there is a tree Q ∈ LCn(P) such that Q ⊆n P

and Q(→ s) ∈ D for all s ∈ 2n;
(iv) if P ∈ LCn(P), S, T ∈ P, s, t ∈ 2n, S ⊆ P(→ s �0), T ⊆ P(→ t �1), σ ∈ 2<ω, and T = σ · S, then there

is a tree Q ∈ LCn+1(P), Q ⊆n+1 P, such that Q(→ s �0) ⊆ S and Q(→ t �1) ⊆ T .

Recall that a set D ⊆ P is open dense in P iff, first, if S ∈ P then there is a tree T ∈ D, T ⊆ S, and, secondly,
if S ∈ P, T ∈ D, and S ⊆ T , then S ∈ D, too.

P r o o f . (i) If T ∈ LCn(P) then by definition T (→ s0) ∈ P. To prove the converse, let h = spln(T ), and
let h[s] ∈ 2h ∩ T satisfy T (→ s) = T �u[s] for all s ∈ 2n by Lemma 3.3(iii). If T (→ s0) ∈ P then T (→ s) =
T �u[s] = (u[s] ·u[s0]) · T �u[s] by Lemma 2.1, so T (→ s) ∈ P by (4.2). Thus T ∈ LCn(P).

(ii) By Lemma 3.3(v) there is a tree Q ∈ LT such that Q ⊆n P and Q(→ s0) = S. We observe that Q belongs
to LCn(P) by (i).

(iii) Apply (ii) consecutively 2n times (all s ∈ 2n).
(iv) We first consider the case when t = s. If lh(σ ) ≤ L = lh(stem(S)) = lh(stem(T )) then by Lemma 3.1

U = S ∪ T ∈ LT, stem(U) = stem(P(→ s)), and U(→ 0) = S, U(→ 1) = T . Lemma 3.3(v) yields a tree
Q ∈ LT such that Q ⊆n P and Q(→ s) = U , hence stem(Q(→ s)) = stem(P(→ s)) by the above. This im-
plies spln(Q) = spln(P) by Lemma 3.3(iii), and hence Q ⊆n+1 P . And finally Q ∈ LCn+1(P) by (i) since
Q(→ s �0) = S ∈ P.

Now suppose that lh(σ ) > L . Take any string u ∈ S with lh(u) ≥ lh(s). The set S′ = S�u ⊆ S belongs to P and
obviously lh(stem(S′)) ≥ lh(σ ). It remains to follow the case already considered for the trees S′ and T ′ = σ · S′.

Finally consider the general case s �= t . Let h = spln(P), H = spln+1(P). Let u = u[s] and v = u[t ] be
the strings in P ∩ 2h defined by Lemma 3.3(iii) for P , so that P�u = P(→ s) and P�v = P(→ t), and let
U, V ∈ 2H ∩ P be defined accordingly so that P�U = P(→ s �1) and P�V = P(→ t �1). Let � = u ·v. Then
P(→ s) = � · P(→ t) by Lemma 2.1. However we have U = u �τ and V = v�τ for one and the same string τ ,
see the proof of Lemma 3.3(iii). Therefore U · V = u ·v = � and P(→ s �1) = � · P(→ t �1) still by Lemma 2.1.

It follows that the tree T1 = � · T satisfies T1 ⊆ P(→ s �1). Applying the result for s = t , we get a tree Q ∈
LCn+1(P), Q ⊆n+1 P , such that Q(→ s �0) ⊆ S and Q(→ s �1) ⊆ T1. Then by definition splk(P) = splk(Q)
for all k ≤ n, and Q(→ s) ⊆ P(→ s) for all s ∈ 2n+1 by Lemma 3.3(ii). Therefore the same strings u, v satisfy
Q�u = Q(→ s) and Q�v = Q(→ t). The same argument as above implies Q(→ t �1) = � · Q(→ s �1). We
conclude that Q(→ t �1) ⊆ � · T1 = T , as required. �

5 Conditional product forcing

Along with any large-tree forcing notion P, we shall consider the conditional product P ×E0 P, which by definition
consists of all pairs 〈T, T ′〉 of trees T, T ′ ∈ P such that there is a string s ∈ 2<ω satisfying s · T = T ′. We order
P ×E0 P componentwise so that 〈S, S′〉 ≤ 〈T, T ′〉 (〈S, S′〉 is stronger) iff S ⊆ T and S′ ⊆ T ′.2

Remark 5.1 The conditional product P ×E0 P forces a pair of P-generic reals. Indeed if 〈T, T ′〉 ∈ P ×E0 P with
s · T = T ′ and S ∈ P, S ⊆ T , then there is a tree S′ = s · S ∈ P (we make use of (4.2)) such that 〈S, S′〉 ∈ P ×E0 P

and 〈S, S′〉 ≤ 〈T, T ′〉.
But (P ×E0 P)-generic pairs are not necessarily generic in the sense of the true forcing product P × P. Indeed,

if say P = Sacks (all perfect trees) then any P ×E0 P-generic pair 〈x, y〉 has the property that x, y belong to same
E0-invariant Borel sets coded in the ground universe, while for any uncountable and co-uncountable Borel set U
coded in the ground universe there is a P × P-generic pair 〈x, y〉 with x ∈ U and y /∈ U .

2 Conditional product forcing notions of this kind were considered in [6,7,10] and some other papers with respect to the Gandy-Harrington
and similar forcings, and recently in [15] with respect to many forcing notions.
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Lemma 5.2 Assume that P is a large-tree forcing notion, n ≥ 1, P ∈ LCn(P), and a set D ⊆ P ×E0 P is open
dense in P ×E0 P. Then there is a tree Q ∈ LCn(P) such that Q ⊆n P and 〈Q(→ s), Q(→ t)〉 ∈ D whenever
s, t ∈ 2n and s(n − 1) �= t(n − 1).

P r o o f . (Compare to Lemma 4.1(iii).) Let s, t ∈ 2n be any pair with s(n − 1) �= t(n − 1). By the density
there is a condition 〈S, T 〉 ∈ D such that S ⊆ P(→ s) and T ⊆ P(→ t). Note that T = σ · S for some s ∈ 2<ω

since 〈S, T 〉 ∈ P ×E0 P. Applying Lemma 4.1(iv) (n + 1 there corresponds to n here) we obtain a tree P ′ ∈ LCn(P)
such that P ′ ⊆n P and P ′(→ s) ⊆ S, P ′(→ t) ⊆ T . Then 〈P ′(→ s), P ′(→ t)〉 ∈ D, as D is open. Consider all
pairs s, t ∈ 2n with s(n − 1) �= t(n − 1) one by one. �

Lemma 5.3 Assume that P is a large-tree forcing notion, 〈T, T ′〉 ∈ P ×E0 P, n < ω, s, t ∈ 2n. Then
〈T (→ s), T ′(→ t)〉 ∈ P ×E0 P.

P r o o f . Let σ ∈ 2<ω satisfy σ · T = T ′. Note that spl(T ) = spl(T ′), hence we define h = spln(T ) =
spln(T ′). By Lemma 3.3(iii), there are strings u ∈ 2h ∩ T and v ∈ 2h ∩ T ′ such that T (→ s) = T �u and
T ′(→ t) = T ′�v . Then obviously σ · T �u = T ′�v′ , where v′ = σ ·u. On the other hand T ′�v = (v ·v′) · T ′�v′

by Lemma 2.1. It follows that T ′�v = (v ·v′ ·σ ) · T �u , as required. �

Corollary 5.4 Assume that P is a large-tree forcing notion. Then P ×E0 P forces ẋleft � E0 ẋright, where
〈ẋleft, ẋright〉 is a name of the (P ×E0 P)-generic pair.

P r o o f . Otherwise a condition 〈T, T ′〉 ∈ P ×E0 P forces ẋright = σ · ẋleft, where σ ∈ 2<ω. Find n and s, t ∈ 2n

such that T ′(→ t) ∩ (σ · T (→ s)) = ∅ and apply the lemma. �

6 Multitrees

Let a multitree be any sequence ϕ = {〈τϕ

k , hϕ

k 〉}k<ω such that

(6.1) if k < ω then hϕ

k ∈ ω ∪ {−1}, and the set |ϕ| = {k : hϕ

k �= −1} (the support of ϕ) is finite;
(6.2) if k ∈ |ϕ| then τ

ϕ

k = 〈T ϕ

k (0), T ϕ

k (1), . . . , T ϕ

k (hϕ

k )〉, where each T ϕ

k (n) is a tree in LT and
T ϕ

k (n) ⊆n T ϕ

k (n − 1) whenever 1 ≤ n ≤ hϕ

k , while if k /∈ |ϕ| then simply τ
ϕ

k = � (the empty sequence).

In this context, if n ≤ hϕ

k and s ∈ 2n then let T ϕ

k (s) = T ϕ

k (n)(→ s).
Let ϕ,ψ be multitrees. Say that ϕ extends ψ , symbolically ψ � ϕ, if |ψ | ⊆ |ϕ|, and, for every k ∈ |ψ |, we

have hϕ

k ≥ hψ

k and τ
ϕ

k extends τ
ψ

k , so that T ϕ

k (n) = T ψ

k (n) for all n ≤ hψ

k ;
If P is a large-tree forcing notion, then let MT(P) (multitrees over P) be the set of all multitrees ϕ such that

T ϕ

k (n) ∈ LCn(P) whenever k ∈ |ϕ| and n ≤ hϕ

k .

7 Jensen’s extension of a large-tree forcing notion

Let ZFC′ be the subtheory of ZFC including all axioms except for the power set axiom, plus the axiom saying that
℘(ω) exists. (Then ω1, 2ω, and sets like PT exist as well.)

Definition 7.1 Let M be a countable transitive model of ZFC′. Suppose that P ∈ M, P ⊆ LT is a large-tree
forcing notion. Then MT(P) ∈ M. A set D ⊆ MT(P) is dense in MT(P) iff for any ψ ∈ MT(P) there is a multitree
ϕ ∈ D such that ψ � ϕ.

Consider any �-increasing sequence 
 = {ϕ( j)} j<ω of multitrees

ϕ( j) = {〈τϕ( j)
k , hϕ( j)

k 〉}k<ω ∈ MT(P),

generic over M in the sense that it intersects every set D, D ⊆ MT(P), dense in MT(P), which belongs to M.
Then in particular 
 intersects every set

Dkp = {ϕ ∈ MT(P) : k ∈ |ϕ| ∧ hϕ

k ≥ p}
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for k, p < ω. Therefore if k < ω then by definition there is an infinite sequence

· · · ⊆5 T 

k (4) ⊆4 T 


k (3) ⊆3 T 

k (2) ⊆2 T 


k (1) ⊆1 T 

k (0)

of trees T 

k (n) ∈ LCn(P), such that, for any j , if k ∈ |ϕ( j)| and n ≤ hϕ( j)

k then T ϕ( j)
k (n) = T 


k (n). If n < ω

and s ∈ 2n then we let T 

k (s) = T 


k (n)(→ s); then T 

k (s) ∈ P since T 


k (n) ∈ LCn(P). Then it follows from
Lemma 3.4 that

U

k = ⋂

n T 

k (n) = ⋂

n

⋃
s∈2n T 


k (s) (1)

is a tree in LT (not necessarily in P), as well as the trees U

k (→ s), and still by Lemma 3.4,

U

k (→ s) = U


k ∩ T 

k (s) = ⋂

n≥lh(s) T 

k (n)(→ s) = ⋂

n≥lh(s)
⋃

t∈2n , s⊆t T 

k (t) , (2)

and obviously U

k = U


k (→ �).
Define a set of trees U = {σ ·U


k (→ s) : k < ω ∧ s ∈ 2<ω ∧ σ ∈ 2<ω} ⊆ LT.

The next few simple lemmas show useful effects of the genericity of 
; their common motto is that the
extension from P to P ∪ U is rather innocuous.

Lemma 7.2 Both U and the union P ∪ U are large-tree forcing notions; P ∩ U = ∅.

P r o o f . To prove the last claim, let T ∈ P and U = U

k (→ s) ∈ U. (If U = σ ·U


k (→ s), σ ∈ 2<ω, then
replace T by σ · T .) The set D(T, k) of all multitrees ϕ ∈ MT(P), such that k ∈ |ϕ| and T \T ϕ

k (n)(→ s) �= ∅,
where n = hϕ

k , belongs to M and obviously is dense in MT(P). Now any multitree ϕ( j) ∈ D(T, k) witnesses that
T \U


k (→ s) �= ∅. �

Lemma 7.3 The set U is dense in U ∪ P. The set U ×E0 U is dense in (P ∪ U) ×E0 (P ∪ U).

P r o o f . Suppose that T ∈ P. The set D(T ) of all multitrees ϕ ∈ MT(P), such that T ϕ

k (0) = T for some k,
belongs to M and obviously is dense in MT(P). It follows that ϕ( j) ∈ D(T ) for some j , by the choice of 
.
Then T 


k (�) = T for some k. However by construction U

k (→ �) = U


k ⊆ T 

k (�).

Now suppose that 〈T, T ′〉 ∈ P ×E0 P, so that T ′ = σ · T , σ ∈ 2<ω. By Lemma 7.2 (P ∩ U = ∅) it is impossible
that one of the trees T, T ′ belongs to P and the other one to U. Therefore we can assume that T, T ′ ∈ P. By
the first claim of the lemma, there is a tree U ∈ U, U ⊆ T . Then U ′ = σ ·U ∈ U and still U ′ = σ ·U , hence
〈U, U ′〉 ∈ U ×E0 U, and it extends 〈T, T ′〉. �

Lemma 7.4 If k, � < ω, k �= �, and σ ∈ 2<ω then U

k ∩ (σ ·U


� ) = ∅.

P r o o f . The set D′(k, �) of all multitrees ϕ ∈ MT(P), such that k, � ∈ |ϕ| and T ϕ

k (n) ∩ (σ · T ϕ

� (m)) = ∅

for some n ≤ hϕ

k , m ≤ hϕ

� , belongs to M and is dense in MT(P). So ϕ( j) ∈ D′(k, �) for some j < ω. But then

for some n, m we have U

k ∩ (σ ·U


� ) ⊆ T ϕ( j)
k (n) ∩ (σ · T ϕ( j)

� (m)) = ∅. �

Corollary 7.5 If 〈U, U ′〉 ∈ U ×E0 U then there exist: k < ω, strings s, s ′ ∈ 2<ω with lh(s) = lh(s ′), and strings
σ, σ ′ ∈ 2<ω, such that U = σ ·U


k (→ s) and U ′ = σ ′ ·U

k (→ s ′).

P r o o f . By definition, we have U = σ ·U

k (→ s) and U ′ = σ ′ ·U


k ′ (→ s ′), for suitable k, k ′ < ω and
s, s ′, σ, σ ′ ∈ 2<ω. As 〈U, U ′〉 ∈ U ×E0 U, it follows from Lemma 7.4 that k ′ = k, hence U ′ = σ ·U


k (→ s ′).
Therefore σ ·U


k (→ s) = τ ·σ ′ ·U

k (→ s ′) for some τ ∈ 2<ω. In other words, U


k (→ s) = τ ′ ·U

k (→ s ′),

where τ ′ = σ ·σ ′ · τ ∈ 2<ω. It easily follows that lh(s) = lh(s ′). �

The two following lemmas show that, due to the generic character of extension, those pre-dense sets which
belong to M, remain pre-dense in the extended forcing.

Let X ⊆fin ⋃
D mean that there is a finite set D′ ⊆ D with X ⊆ ⋃

D′.

Lemma 7.6 If a set D ∈ M, D ⊆ P is pre-dense in P, and U ∈ U, then U ⊆fin ⋃
D. Moreover D is pre-dense

in U ∪ P.

P r o o f . We can assume that D is in fact open dense in P. (Otherwise replace it with the set
D′ = {T ∈ P : ∃ S ∈ D (T ⊆ S)} which also belongs to M.)

We can also assume that U = U

k (→ s) ∈ U, where k < ω and s ∈ 2<ω. (The general case, when U =

σ ·U

k (→ s) for some σ ∈ 2<ω, is reducible to the case U = U


k (→ s) by substituting the set σ · D for D.)
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The set � ∈ M of all multitrees ϕ ∈ MT(P) such that k ∈ |ϕ|, lh(s) < h = hϕ

k , and T ϕ

k (h)(→ t) ∈ D for all
t ∈ 2h , is dense in MT(P) by Lemma 4.1(iii) and the open density of D. Therefore there is an index j such that

ϕ( j) ∈ �. Let h( j) = hϕ( j)
k . Then the tree St = T ϕ( j)

k (h( j))(→ t) = T 

k (h( j))(→ t) = T 


k (t) belongs to D for
all t ∈ 2h( j) . We conclude that

U = U

k (→ s) ⊆ U


k ⊆ ⋃
t∈2h( j) T 


k (t) ⊆ ⋃
t∈2h( j) St = ⋃

D′ ,

where D′ = {St : t ∈ 2h( j) } ⊆ D is finite.
To prove the pre-density claim, pick a string t ∈ 2h( j) with s ⊂ t . Then V = U


k (→ t) ∈ U and V ⊆ U .
However V ⊆ T 


k (t) = St ∈ D. Thus V witnesses that U is compatible with St ∈ D in U ∪ P, as required. �

Lemma 7.7 If a set D ∈ M, D ⊆ P ×E0 P is pre-dense in P ×E0 P then D is pre-dense in (P ∪ U) ×E0 (P ∪ U).

P r o o f . Let 〈U, U ′〉 ∈ U ×E0 U; the goal is to prove that 〈U, U ′〉 is compatible in (P ∪ U) ×E0 (P ∪ U)
with a condition 〈T, T ′〉 ∈ D. By Corollary 7.5, there exist: k < ω and strings s, s ′, σ, σ ′ ∈ 2<ω such that lh(s) =
lh(s ′) and U = σ ·U


k (→ s), U ′ = σ ′ ·U

k (→ s ′). As in the proof of the previous lemma, we can assume that

σ = σ ′ = �, so that U = U

k (→ s), U ′ = U


k (→ s ′). (The general case is reducible to this case by substituting
the set {〈σ · T, σ ′ · T ′〉 : 〈T, T ′〉 ∈ D} for D.)

Assume that D is in fact open dense.
Consider the set � ∈ M of all multitrees ϕ ∈ MT(P) such that k ∈ |ϕ|, lh(s) = lh(s ′) = n < h = hϕ

k , and
〈T ϕ

k (h)(→ u), T ϕ

k (h)(→ u′)〉 ∈ D whenever u, u′ ∈ 2h and u(h − 1) �= u′(h − 1). The set � is dense in MT(P)
by Lemma 5.2. Therefore ϕ( j) ∈ � for some j , so that if u, u′ ∈ 2h( j) , where h( j) = hϕ( j)

k > n, and u(h( j) −
1) �= u′(h( j) − 1), then

〈T ϕ( j)
k (h( j))(→ u), T ϕ( j)

k (h( j))(→ u′)〉 = 〈T 

k (u), T 


k (u′)〉 ∈ D.

Now, as h( j) > n, let us pick u, u′ ∈ 2h( j) such that u(h( j) − 1) �= u′(h( j) − 1) and s ⊂ u, s ′ ⊂ u′. Then
〈T 


k (u), T 

k (u′)〉 ∈ D. On the other hand, the pair 〈U


k (→ u), U

k (→ u′)〉 belongs to U ×E0 U by Lemma 5.3,

〈U

k (→ u), U


k (→ u′)〉 ≤ 〈U

k (→ s), U


k (→ s ′)〉,
and finally we have 〈U


k (→ u), U

k (→ u′)〉 ≤ 〈T 


k (u), T 

k (u′)〉. We conclude that the given condition

〈U

k (→ s), U


k (→ s ′)〉 is compatible with the condition 〈T 

k (u), T 


k (u′)〉 ∈ D, as required. �

8 Real names

In this section, we assume that P is a large-tree forcing notion and 2<ω ∈ P. It follows by (4.1) that all trees
T [s] = (2<ω)(→ s) (see Example 2.2) also belong to P.

Recall that P ×E0 P adds a pair of reals 〈xleft, xright〉 ∈ 2ω × 2ω.
Arguing in the conditions of Definition 7.1, the goal of the following Theorem 9.3 will be to prove that, for

any (P ×E0 P)-name c of a real in 2ω, it is forced by the extended forcing (P ∪ U) ×E0 (P ∪ U) that c does not
belong to sets of the form [U ], where U is a tree in U, unless c is a name of one of reals in the E0-class of one of
the generic reals xleft, xright themselves.

We begin with a suitable notation.

Definition 8.1 A (P ×E0 P)-real name is a system c = {Ci
n }n<ω, i<2 of sets Ci

n ⊆ P ×E0 P such that each set
Cn = C0

n ∪ C1
n is pre-dense in P ×E0 P and any conditions 〈S, S′〉 ∈ C0

n and 〈T, T ′〉 ∈ C1
n are incompatible in

P ×E0 P. If a set G ⊆ P ×E0 P is (P ×E0 P)-generic at least over the collection of all sets Cn then we define
c[G] ∈ 2ω so that c[G](n) = i iff G ∩ Ci

n �= ∅.

Any (P ×E0 P)-real name c = {Ci
n } induces (can be understood as) a (P ×E0 P)-name (in the ordinary forcing

notation) for a real in 2ω.

Definition 8.2 (Actions) Strings in 2<ω can act on names c = {Ci
n }n<ω,i<2 in two ways, related either to

conditions or to the output. If σ, σ ′ ∈ 2<ω then define a (P ×E0 P)-real name 〈σ, σ ′〉 ◦ c = {〈σ, σ ′〉 ·Ci
n }, where

〈σ, σ ′〉 ·Ci
n = {〈σ · T, σ ′ · T ′〉 : 〈T, T ′〉 ∈ Ci

n } for all n, i . If � ∈ 2<ω then define a (P ×E0 P)-real name � · c =
{C�i

n }, where C�i
n = C1−i

n whenever n < lh(�) and �(n) = 1, but C�i
n = Ci

n otherwise.
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Both actions are idempotent. The difference between them is as follows. If G ⊆ P ×E0 P is a (P ×E0 P)-generic
set then (〈σ, σ ′〉 ◦ c)[G] = c[〈σ, σ ′〉 ◦ G], where 〈σ, σ ′〉 ◦ G = {〈σ · T, σ ′ · T ′〉 : 〈T, T ′〉 ∈ G}, while (� · c)[G] =
� · (c[G]).

Example 8.3 Define a (P ×E0 P)-real name ẋleft = {Ci
n }n<ω,i<2 such that each set Ci

n ⊆ P ×E0 P contains all
pairs of the form 〈T [s], T [t ]〉, where s, t ∈ 2n+1 and s(n) = i , and a (P ×E0 P)-real name ẋright = {Ci

n }n<ω,i<2

such that accordingly each set Ci
n ⊆ P ×E0 P contains all pairs 〈T [s], T [t ]〉, where s, t ∈ 2n+1 and now t(n) = i .

Then ẋleft, ẋright are names of the P-generic reals xleft, resp., xright, and each name σ · ẋleft (σ ∈ 2<ω) induces a
(P ×E0 P)-name of the real σ · (xleft[G]); the same for right.

9 Direct forcing a real to avoid a tree

Let c = {Ci
n }, d = {Di

n } be (P ×E0 P)-real names. Say that a condition 〈T, T ′〉 ∈ LT ×E0 LT:

1. directly forces c(n) = i , where n < ω, i = 0, 1, if 〈T, T ′〉 ≤ 〈S, S′〉 for some 〈S, S′〉 ∈ Ci
n;

2. directly forces s ⊂ c, where s ∈ 2<ω, iff for all n < lh(s), 〈T, T ′〉 directly forces c(n) = i , where i = s(n);
3. directly forces d �= c, iff there are strings s, t ∈ 2<ω, incomparable in 2<ω and such that 〈T, T ′〉 directly

forces s ⊂ c and t ⊂ d;
4. directly forces c /∈ [U ], where U ∈ PT, iff there is a string s ∈ 2<ω\U such that 〈T, T ′〉 directly forces

s ⊂ c.

Lemma 9.1 If S ∈ P, 〈R, R′〉 ∈ P ×E0 P, and c is a (P ×E0 P)-real name, then there exists a tree S′ ∈ P and
a condition 〈T, T ′〉 ∈ P ×E0 P, 〈T, T ′〉 ≤ 〈R, R′〉, such that S′ ⊆ S and 〈T, T ′〉 directly forces c /∈ [S′].

P r o o f . Clearly there is a condition 〈T, T ′〉 ∈ P ×E0 P, 〈T, T ′〉 ≤ 〈R, R′〉, which directly forces u ⊂ c for
some u ∈ 2<ω satisfying lh(u) > lh((stem(S))). There is a string v ∈ S, lh(v) = lh(u), incomparable with u. The
tree S′ = S�v belongs to P, S′ ⊆ S by construction, and obviously 〈T, T ′〉 directly forces c /∈ [S′]. �

Lemma 9.2 If c is a (P ×E0 P)-real name, σ ∈ 2<ω, and a condition 〈R, R′〉 ∈ P ×E0 P directly forces
σ · c �= ẋleft, resp., σ · c �= ẋright, then there is a stronger condition 〈T, T ′〉 ∈ P ×E0 P, 〈T, T ′〉 ≤ 〈R, R′〉, which
directly forces resp. c /∈ [σ · T ], c /∈ [σ · T ′].

P r o o f . We just prove the “left” version, as the “right” version can be proved similarly. So let’s assume
that 〈R, R′〉 directly forces c �= ẋleft. There are incomparable strings u, v ∈ 2<ω such that 〈R, R′〉 directly forces
u ⊂ σ · c, hence, σ ·u ⊂ c as well, and also directly forces v ⊂ ẋleft. Then by necessity v ∈ R, hence T = R�v ∈ P,
but u /∈ T . Let T ′ = � · T , where � ∈ 2<ω satisfies R′ = � · R. By definition, the condition 〈T, T ′〉 ∈ P ×E0 P

directly forces c /∈ [σ · T ] (witnessed by s = σ ·u), as required. �

Theorem 9.3 With the assumptions of Definition 7.1, suppose that c = {Ci
m }m<ω,i<2 ∈ M is a (P ×E0 P)-real

name, and for every σ ∈ 2<ω the set

Dσ = {〈T, T ′〉 ∈ P ×E0 P : 〈T, T ′〉 directly forces c �= σ · ẋleft and c �= σ · ẋright}

is dense in P ×E0 P. Let 〈W, W ′〉 ∈ (P ∪ U) ×E0 (P ∪ U) and U ∈ U. Then there is a stronger condition 〈V, V ′〉 ∈
U ×E0 U, 〈V, V ′〉 ≤ 〈W, W ′〉, which directly forces c /∈ [U ].

P r o o f . By construction, U = � ·U

K (→ s0), where K < ω and �, s0 ∈ 2<ω; we can assume that simply

s0 = �, so that U = � ·U

K . Moreover we can assume that � = � as well, so that U = U


K (for if not then replace
c with � · c).

Further, by Corollary 7.5, we can assume that W = σ ·U

L (→ t0) ∈ U and W ′ = σ ′ ·U


L (→ t ′
0) ∈ U, where

L < ω, t0, t ′
0 ∈ 2<ω, lh(t0) = lh(t ′

0), and σ, σ ′ ∈ 2<ω. And moreover we can assume that σ = σ ′ = �, so that
W = U


L (→ t0) and W ′ = U

L (→ t ′

0) (for if not then replace c with 〈σ, σ ′〉 ◦ c).
The indices K , L involved can be either equal or different.
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There is an index J such that the multitree ϕ(J ) satisfies K , L ∈ |ϕ(J )| and hϕ( J )
L ≥ h0 = lh(t0) = lh(t ′

0), so

that the trees S0 = T ϕ( J )
K (0) = T 


K (0),

T0 = T ϕ( J )
L (h0)(→ t0) = T 


L (t0) , T ′
0 = T ϕ( J )

L (h0)(→ t ′
0) = T 


L (t ′
0)

in P are defined. Note that U ⊆ S0 and W ⊆ T0, W ′ ⊆ T ′
0 under the above assumptions.

Let D be the set of all multitrees ϕ ∈ MT(P) such that ϕ(J ) � ϕ and for every pair t, t ′ ∈ 2n , where n = hϕ

L ,
such that t(n − 1) �= t ′(n − 1), the condition 〈T ϕ

L (t), T ϕ

L (t ′)〉 directly forces c /∈ [T ϕ

K (m)], where m = hϕ

K .

Claim 9.4 The set D is dense in MT(P) above ϕ(J ).

P r o o f . Let a multitree ψ ∈ MT(P) satisfy ϕ(J ) � ψ ; the goal is to define a multitree ϕ ∈ D , ψ � ϕ. Let
m = hψ

K , n = hψ

L , Q = T ψ

K (m), P = T ψ

L (n).
Case 1: K �= L . Consider any s ∈ 2m+1 and t, t ′ ∈ 2n+1 with t(n) �= t ′(n). By Lemma 9.1, there is a tree S ∈ P

and a condition 〈R, R′〉 ∈ P ×E0 P such that S ⊆ Q(→ s), 〈R, R′〉 ≤ 〈P(→ t), P(→ t ′)〉, and 〈R, R′〉 directly
forces c /∈ [S]. By Lemma 4.1(ii),(iv) there are trees Q1 ∈ LCm+1(P) and P1 ∈ LCn+1(P) such that Q1 ⊆m+1 Q,
P1 ⊆n+1 P , Q1(→ s) = S and 〈P1(→ t), P1(→ t ′)〉 ≤ 〈R, R′〉.

Repeat this procedure so that all strings s ∈ 2m+1 and all pairs of strings t, t ′ ∈ 2n+1 with t(n) �= t ′(n) are
considered. We obtain trees Q′ ∈ LCm+1(P) and P ′ ∈ LCn+1(P) such that Q′ ⊆m+1 Q, P ′ ⊆n+1 P , and if s ∈
2m+1 and t, t ′ ∈ 2n+1, t(n) �= t ′(n), the condition 〈P ′(→ t), P ′(→ t ′)〉 directly forces c /∈ [Q′(→ s)]—hence
directly forces c /∈ [Q′].

Now define a multitree ϕ ∈ MT(P) so that |ϕ| = |ψ |, hϕ

k = hψ

k and τ
ϕ

k = τ
ψ

k for all k /∈ {K , L }, hϕ

K = m + 1,
hϕ

L = n + 1, and T ϕ

K (m + 1) = P ′, T ϕ

L (n + 1) = Q′ as the new elements of the K th and Lth components. We
have ϕ ∈ D and ψ � ϕ by construction. (Use the fact that P ′ ⊆n+1 P and Q′ ⊆m+1 Q.)

Case 2: L = K , and hence m = n and P = Q. Let h = spln(P). Consider any pair t, t ′ ∈ 2n+1 with t(n) �=
t ′(n). In our assumptions there is a condition 〈U, U ′〉 ∈ P ×E0 P, 〈U, U ′〉 ≤ 〈T (→ t), T (→ t ′)〉, which directly
forces both c �= σ · ẋleft and c �= σ · ẋright for any σ ∈ 2h . By Lemma 9.2, there is a stronger condition 〈T, T ′〉 ∈
P ×E0 P, 〈T, T ′〉 ≤ 〈U, U ′〉, which directly forces both c /∈ [σ · T ] and c /∈ [σ · T ′] still for all σ ∈ 2h . Then as in
Case 1, there is a tree P1 ∈ LCn+1(P), P1 ⊆n+1 P , such that P1(→ t) ⊆ T , P1(→ t ′) ⊆ T ′.

We claim that 〈T, T ′〉 directly forces c /∈ [P1], or equivalently, directly forces c /∈ [P1(→ s �i)] for any s �i ∈
2n+1 (then s ∈ 2n). Indeed if s �i ∈ 2n+1 then P1(→ s �i) = σ · P1(→ t) or = σ · P1(→ t ′) for some σ ∈ 2h by
the choice of h. Therefore P1(→ s �i) is a subtree of one of the two trees σ · T and σ · T ′. The claim now follows
from the choice of 〈T, T ′〉. We conclude that the stronger condition 〈P1(→ t), P1(→ t ′)〉 ≤ 〈T, T ′〉 also directly
forces c /∈ [P1].

Repeat this procedure so that all pairs of strings t, t ′ ∈ 2n+1 with t(n) �= t ′(n) are considered. We obtain a tree
P ′ ∈ LCn+1(P) such that P ′ ⊆n+1 P , and if t, t ′ ∈ 2n+1, t(n) �= t ′(n), then 〈P ′(→ t), P ′(→ t ′)〉 directly forces
c /∈ [P ′].

Similar to Case 1, define a multitree ϕ ∈ MT(P) so that |ϕ| = |ψ |, hϕ

k = hψ

k and τ
ϕ

k = τ
ψ

k for all k �= K ,
hϕ

K = n + 1, and T ϕ

K (n + 1) = P ′ as the new element of the (K = L)th component. Then ϕ ∈ D , ψ � ϕ. �

We come back to the proof of Theorem 9.3. The lemma implies that there is an index j ≥ J such that the multi-
tree ϕ( j) belongs to D . Let n = hϕ( j)

L , m = hϕ( j)
K . Pick strings t, t ′ ∈ 2n such that t0 ⊂ t , t ′

0 ⊂ t ′, t(n) �= t ′(n). Let

T = T ϕ( j)
L (t) = T 


L (t), T ′ = T ϕ( j)
L (t ′) = T 


L (t ′), S = T ϕ( j)
K (m) = T 


K (m).

Then 〈T, T ′〉 ∈ P ×E0 P, 〈T, T ′〉 ≤ 〈T0, T ′
0〉, and 〈T, T ′〉 directly forces c /∈ [S].

Consider the condition 〈V, V ′〉 ∈ U ×E0 U, where V = U

L (→ t) and V ′ = U


L (→ t ′) belong to U. (Recall
that V = U


L (→ t) and V ′ = U

L (→ t ′), and hence V ′ = σ · V for a suitable σ ∈ 2<ω.) By construction we

have both 〈V, V ′〉 ≤ 〈W, W ′〉 (as t0 ⊆ t, t ′) and 〈V, V ′〉 ≤ 〈T, T ′〉 ≤ 〈T0, T ′
0〉. Therefore 〈V, V ′〉 directly forces

c /∈ [S]. And finally, we have U ⊆ T ϕ( j)
K (m) = S, so that 〈V, V ′〉 directly forces c /∈ [U ], as required. �

10 Jensen’s forcing

In this section, we argue in L, the constructible universe. Let ≤L be the canonical wellordering of L.
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Definition 10.1 In L, following the construction in [9, § 3] mutatis mutandis, define, by induction on ξ < ω1,
a countable large-tree forcing notion Uξ ⊆ LT as follows.

Let U0 consist of all trees of the form T [s], see Example 2.2.
Suppose that 0 < λ < ω1, and countable large-tree forcing notions Uξ ⊆ LT are defined for ξ < λ. Let Mλ

be the least model M of ZFC′ of the form Lκ , κ < ω1, containing {Uξ }ξ<λ and such that λ < ωM
1 and all sets

Uξ , ξ < λ, are countable in M. Then Pλ = ⋃
ξ<λ Uξ is countable in M, too. Let {ϕ( j)} j<ω be the ≤L-least

sequence of multitrees ϕ( j) ∈ MT(Pλ), �-increasing and generic over Mλ. Define Uλ = U as in Definition 7.1.
This completes the inductive step.

Let P = ⋃
ξ<ω1

Uξ .

Proposition 10.2 In L, the sequence {Uξ }ξ<ω1 belongs to �HC
1 .

Lemma 10.3 In L, if a set D ∈ Mξ , D ⊆ Pξ is pre-dense in Pξ then it remains pre-dense in P. Therefore if
ξ < ω1 then Uξ is pre-dense in P. If a set D ∈ Mξ , D ⊆ Pξ ×E0 Pξ is pre-dense in Pξ ×E0 Pξ then it is pre-dense
in P ×E0 P.

P r o o f . By induction on λ ≥ ξ , if D is pre-dense in Pλ then it remains pre-dense in Pλ+1 = Pλ ∪ Uλ by
Lemma 7.6. Limit steps are obvious. To prove the second claim note that Uξ is dense in Pξ+1 by Lemma 7.3, and
Uξ ∈ Mξ+1.

To prove the last claim use Lemma 7.7. �

Lemma 10.4 In L, if X ⊆ HC = Lω1 then the set WX of all ordinals ξ < ω1 such that 〈Lξ ; X ∩ Lξ 〉 is an
elementary submodel of 〈Lω1 ; X〉 and X ∩ Lξ ∈ Mξ is unbounded in ω1. More generally, if Xn ⊆ HC for all n
then the set W of all ordinals ξ < ω1, such that 〈Lξ ; {Xn ∩ Lξ }n<ω〉 is an elementary submodel of 〈Lω1 ; {Xn }n<ω〉
and {Xn ∩ Lξ }n<ω ∈ Mξ , is unbounded in ω1.

P r o o f . Let ξ0 < ω1. Let M be a countable elementary submodel of Lω2 containing ξ0, ω1, X , and such that

M ∩ HC is transitive. Let ϕ : M
onto−→ Lλ be the Mostowski collapse, and let ξ = ϕ(ω1). Then ξ0 < ξ < λ < ω1

and ϕ(X) = X ∩ Lξ by the choice of M . It follows that 〈Lξ ; X ∩ Lξ 〉 is an elementary submodel of 〈Lω1 ; X〉.
Moreover, ξ is uncountable in Lλ, hence Lλ ⊆ Mξ . We conclude that X ∩ Lξ ∈ Mξ since X ∩ Lξ ∈ Lλ by
construction.

The second claim does not differ much: we start with a model M containing both the whole sequence {Xn }n<ω

and each particular Xn , and so on. �

Corollary 10.5 The forcing notions P and P ×E0 P satisfy the c.c.c. in L.

P r o o f . (Compare to [9, Lemma 6].) Suppose that A ⊆ P is a maximal antichain. By Lemma 10.4, there is
an ordinal ξ such that A′ = A ∩ Pξ is a maximal antichain in Pξ and A′ ∈ Mξ . But then A′ remains pre-dense,
therefore, still a maximal antichain, in the whole set P by Lemma 10.3. It follows that A = A′ is countable. �

11 The model

We view the sets P and P ×E0 P (Definition 10.1) as forcing notions over L.

Lemma 11.1 A real x ∈ 2ω is P-generic over L iff x ∈ Z = ⋂
ξ<ωL

1

⋃
U∈Uξ

[U ].

P r o o f . (Compare to [9, Lemma 7].) If ξ < ωL
1 then Uξ is pre-dense in P by Lemma 10.3, therefore any real

x ∈ 2ω
P-generic over L belongs to

⋃
U∈Uξ

[U ].
To prove the converse, suppose that x ∈ Z and prove that x is P-generic over L. Consider a maximal antichain

A ⊆ P in L; we have to prove that x ∈ ⋃
T ∈A[T ]. Note that A ⊆ Pξ for some ξ < ωL

1 by Corollary 10.5. But then
every tree U ∈ Uξ satisfies U ⊆fin ⋃

A by Lemma 7.6, so that
⋃

U∈Uξ
[U ] ⊆ ⋃

T ∈A[T ], and hence x ∈ ⋃
T ∈A[T ],

as required. �

Corollary 11.2 In any generic extension of L, the set of all reals in 2ω
P-generic over L is �HC

1 and �1
2.

P r o o f . (Compare to [9, Corollary 9].) Use Lemma 11.1 and Proposition 10.2. �
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Definition 11.3 From now on, we assume that G ⊆ P ×E0 P is a set (P ×E0 P)-generic over L, so that the
intersection X = ⋂

〈T,T ′〉∈G [T ] × [T ′] is a singleton XG = {〈xleft[G], xright[G]〉}.
Compare the next lemma to [9, Lemma 10]. While Jensen’s forcing notion in [9] guarantees that there is a

single generic real in the extension, the forcing notion P we use adds a whole E0-class (a countable set) of generic
reals!

Lemma 11.4 (under the assumptions of Definition 11.3) If y ∈ L[G] ∩ 2ω then y is a P-generic real over L iff
y ∈ [xleft[G]]E0 ∪ [xright[G]]E0 .

Recall that [x ]E0 = {σ · x : σ ∈ 2<ω}.
P r o o f . The reals xleft[G], xright[G] are separately P-generic (see Remark 5.1). It follows that any real

y = σ · xleft[G] ∈ [xleft[G]]E0 or y = σ · xright[G] ∈ [xright[G]]E0 is P-generic as well since the forcing P is by
definition invariant under the action of any σ ∈ 2<ω.

To prove the converse, suppose towards the contrary that there is a condition 〈T, T ′〉 ∈ P ×E0 P and a (P ×E0 P)-
real name c = {Ci

n }n<ω, i=0,1 ∈ L such that 〈T, T ′〉 (P ×E0 P)-forces that c is P-generic while P ×E0 P forces both
formulas c �= σ · ẋleft and c �= σ · ẋleft for all σ ∈ 2<ω.

Let Cn = C0
n ∪ C1

n , this is a pre-dense set in P ×E0 P. It follows from Lemma 10.4 that there exists an ordinal
λ < ω1 such that each set C ′

n = Cn ∩ (Pλ ×E0 Pλ) is pre-dense in Pλ ×E0 Pλ, and the sequence {C ′
ni }n<ω, i=0,1

belongs to Mλ, where C ′
ni = C ′

n ∩ Ci
n—then C ′

n is pre-dense in P ×E0 P too, by Lemma 10.3. Therefore we can
assume that in fact Cn = C ′

n , that is, c ∈ Mλ and c is a (Pλ ×E0 Pλ)-real name.
Further, as P ×E0 P forces that c �= σ · ẋleft and c �= σ · ẋright, the set D(σ ) of all conditions 〈S, S′〉 ∈ P ×E0 P

which directly force c �= σ · ẋleft and c �= σ · ẋright, is dense in P ×E0 P—for every σ ∈ 2<ω. Therefore, still
by Lemma 10.4, we may assume that the same ordinal λ as above satisfies the following: each set D′(σ ) =
D(σ ) ∩ (Pλ ×E0 Pλ) is dense in Pλ ×E0 Pλ.

Applying Theorem 9.3 with P = Pλ, U = Uλ, and P ∪ U = Pλ+1, we conclude that for each tree U ∈ Uλ the
set QU of all conditions 〈V, V ′〉 ∈ Pλ+1 ×E0 Pλ+1 which directly force c /∈ [U ], is dense in Pλ+1 ×E0 Pλ+1. As
obviously QU ∈ Mλ+1, we further conclude that QU is pre-dense in the whole forcing P ×E0 P by Lemma 10.3.
This implies that P ×E0 P forces c /∈ ⋃

U∈Uλ
[U ], hence, forces that c is not P-generic, by Lemma 11.1. But this

contradicts to the choice of 〈T, T ′〉. �

Corollary 11.5 The set [xleft[G]]E0 ∪ [xright[G]]E0 is �1
2 set in L[G]. Therefore the two element set

{[xleft[G]]E0 , [xright[G]]E0 } is OD in L[G].

Corollary 11.6 The E0-classes [xleft[G]]E0 , [xright[G]]E0 are disjoint.

P r o o f . Corollary 5.4 implies xleft[G] � E0 xright[G]. �

Lemma 11.7 (still under the assumptions of Definition 11.3) Neither of the two E0-classes [xleft[G]]E0 ,
[xright[G]]E0 is OD in L[G].

P r o o f . Suppose towards the contrary that there is a condition 〈T, T ′〉 ∈ G and a formula ϑ(x) with ordinal
parameters such that 〈T, T ′〉 (P ×E0 P)-forces that ϑ([ẋleft]E0) but ¬ ϑ([ẋright]E0). However both the formula and
the forcing are invariant under actions of strings in 2<ω. In particular if σ ∈ 2<ω then 〈σ · T, σ · T ′〉 still (P ×E0 P)-
forces ϑ([ẋleft]E0) and ¬ ϑ([ẋright]E0). We can take σ which satisfies T ′ = σ · T ; thus 〈T ′, T 〉 still (P ×E0 P)-
forces ϑ([ẋleft]E0) and ¬ ϑ([ẋright]E0).

3 However P ×E0 P is symmetric with respect to the left-right exchange,
which implies that conversely 〈T ′, T 〉 has to force ϑ([ẋright]E0) and ¬ ϑ([ẋleft]E0). The contradiction proves the
lemma. �

This concludes the proof of Theorem 1.1.

12 Concluding remarks

First, one may ask whether other Borel equivalence relations E admit results similar to Theorem 1.1. Fortunately
this question can be easily solved on the base of the Glimm-Effros dichotomy theorem [6].

3 This is the argument which does not go through for the full product P × P.
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Corollary 12.1 The following is true in the model of Theorem 1.1. Let E be a Borel equivalence relation on
ωω coded in L. Then there exists an OD pair of E-equivalence classes {[x ]E, [y]E} such that neither of the classes
[x ]E, [y]E is separately OD, iff E is not smooth.

P r o o f . Suppose first that E is smooth. By the Shoenfield absoluteness theorem, the smoothness can be
witnessed by a Borel map ϑ : ωω → ωω coded in L, hence, ϑ is OD itself. If p = {[x ]E, [y]E} is OD in the
extension then so is the 2-element set R = {ϑ(z) : z ∈ [x ]E ∪ [y]E} ⊆ ωω, whose both elements (reals), say px

and py , are OD by obvious reasons. Then finally [x ]E = ϑ (−1)(px) and [y]E = ϑ (−1)(py) are OD as required.
Now let E be non-smooth. Then by Shoenfield and the Glimm-Effros dichotomy theorem in [6], there is a

continuous, coded by some r ∈ ωω ∩ L, hence, OD, reduction ϑ : 2ω → ωω of E0 to E, so that we have a E0 b
iff ϑ(a)Eϑ(b) for all a, b ∈ 2ω. Let, by Theorem 1.1, {[a]E0 , [b]E0 } be a �1

2 pair of non-OD E0-equivalence
classes. By the choice of ϑ , one easily proves that {[ϑ(a)]E, [ϑ(b)]E} is a �1

2(r) pair of non-OD E-equivalence
classes. �

Secondly, one may ask what happens with the Groszek-Laver pairs of sets of reals in better known models.
For some of them the answer tends to be in the negative. Consider, e.g., the Solovay model of ZFC in which all
projective sets of reals are Lebesgue measurable [16]. Arguing in the Solovay model, let {X, Y } be an OD set,
where X, Y ⊆ 2ω. Then the set of four sets X\Y, Y\X, X ∩ Y, 2ω\(X ∪ Y ) is still OD, and hence we have an
OD equivalence relation E on 2ω with four (or fewer if say X ⊆ Y ) equivalence classes. By a theorem of [10]4,
either E admits an OD reduction ϑ : 2ω → 2<ω1 to equality on 2<ω1 or E0 admits a continuous reduction to E.
The “or” option fails since E has finitely many classes.

The “either” option leads to a finite (not more than 4 elements) OD set R = ran(ϑ) ⊆ 2<ω1 . An easy argument
shows that then every r ∈ R is OD, and hence so is the corresponding E-class ϑ−1(r). It follows that X, Y
themselves are OD.

Question 12.2 Is it true in the Solovay model that every countable OD set W ⊆ ℘(ωω) of sets of reals contains
an OD element X ∈ W (a set of reals)?

An uncountable counterexample readily exists, for take the set of all non-OD sets of reals. As for sets W ⊆ ωω,
any countable OD set of reals in the Solovay model consists of OD elements, e.g., by the result mentioned in
Footnote 4.

Thirdly, one may ask whether a forcing similar to P ×E0 P with respect to the results in § 11, exists in ground
models other than L or L[x ], x ∈ 2ω. Some coding forcing constructions with perfect trees do exist in such a
general frameworks, cf. [1, 12].
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