SINGULAR CARDINALS

V. Kanovei , UDC 519.5

The problem is studied of the existence of nonconstructive subsets of cardinals belonging to
an original countable standard transitive model of ZF theory of sets that do not generate
new subsets of smaller cardinals of this same model. It is found that a fairly extensive
class of properties of the extended model is closely related to the corresponding properties
of the original model.

I. An ordinal is any set x such that y € x — y S x, and a cardinal is the least ordinal or given power.
On is the class of all ordinals.

If 7 and v are cardinals, we shall write 7 = »*, if 7 > v and there are no other cardinals between v
and 7. We shall write 7 = 2¥ if T is the power of the set of all subsets of v.

All cardinals of the form v+ are said to be nonlimit cardinals, whereas the others are limit cardinals.
A cardinal T is said to be singular if it can be represented in the form v = Z.=1v. , where A < 7 and for
any @ €A we have vy < T.

Nonsingular cardinals are said to be regular.

Now let us examine without proof a number of results belonging to the Zermelo— Frinkel theory of
sets (ZF).

The axiom of choice (AC) can be expressed as follows: If X is a set and F a function defined on X
that assumes nonempty values, then there exists a function f defined on X and such that f(x) € F(x) for any
x € X.

The generalized continuum hypothesis (GCH) is the assertion 2” = v* for any cardinal v.

Cohen [2] has defined a singular Gédel function F(a) with a domain of definition On and a domain of
values L. The class L is called the class of constructive sets; this class is specified by a well-defined
formula of ZF.

An axiom of constructivity is the following sequence: All sets belong to L. In brief this axiom can be
written as V = L.

It is possible to define a function F(e, x) that differs from F(a) only by the fact that F(o, x) is as-
sumed equal to x, and not to the empty set. The corresponding class of values of (e, x) for fixed x is de-
noted by L(x). It is a model of ZF and Orn = L (z).

Now letT be a model of ZF. We shall say that® is a standard model if for x €M, y €M the expres-
sions "x €y" and "M|=— "x € y" "areequivalent;i.e., the relation of membership inM is a restriction of
this relation to the setM.

We shall say that M is transitive if y=M &2z =y -z =M
In the following we shall consider only countable standard transitive models.

Now let™ be a model of ZF + V = L, let x be a set (possibly not belonging toR), and let Ony be the
set of ordinals of M.
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Let us define
M (1) ={y | Ha [0 = Ong & y = F (g, D)1}

It was shown by Cohen [2] that not for every x willM(x) be 2 model. There exists only one method of
obtaining sets x such thatM (x) is a model, namely, the forcing method.

Now let us consider the following problem.

Let™ be a model of ZF+ V = I, and A a cardinal inM. It is required to find a set @ & A such that:

1°. M(a) is a model of ZF.

2° a ¢M.

3° If v< Ais acardinal in®Rand z & M (a), 2 v, then x 6 M.

The third property can be formulated more roughly as follows: g does not generate new subsets con-
sisting of cardinals smaller than A.

This problem has been completely solved for cardinals A that are regular inM.

The method of its solution, presented in the second section of this paper, is a simplification of the
method of [3] (where Easton introduces not one, but many subsets A such that property 3° holds and in the
obtained model we have 22 > ).

For singular A the search for a set 4 with the above properties is in general an unsolved problem.

In the third section we present one of the particular results obtained for this problem. For under-
standing the proofs, it is necessary to be acquainted with the theory of sets as formulated, for example,
in [2].

II. Thus, letM be a standard transitive model of ZF + V = 1, and let A €® be a regular cardinal in®.
All the subsequent constructions belong toM.

Let us construct a parametric space S: Sy = {|a ] | @ <A} beinga set of symbols for ordinals
smaller than A;

8y = {af is a set consisting of the symbol a alone; Sg, 8 = 2, is defined in accordance with the general
rules as a set of formulas of one free variable and of constants belongingto |} §,, that are relativized to
U 8. v<g

¥<p

The forcing condition will be any pair p = (u, V), where uC A vES A, ulv=¢ andcard wUv)<
A. As usual, we shall define (u, vy = (u', v, ifus u', v&v'. The set of forcing conditions with such an
order will be denoted by P.

Now let us define the forcing of elementary statements (such as the statements " [ | € a," where o <
A by (u, vy Forc "|a| €a" if @ €u.

The definition of a predicate can be extended to more complex statements by a well-known induction
method [2].

LEMMA 1.1. Let p =<y, v>=P,c<=S. Then p|tncN |v]| constructively" for any ¥ <A. (|-
is the symbol of weak forcing, i.e., p |-~ = pForc ~~ A.)

Proof. As is easy to see, by assuming the contrary we find that there exists a ¢ = p such that qf~
"¢ N || nonconstructively.”

For obtaining a contradiction, we shall construct a system of forcing conditions {ps | @« < v} such
that

1) o < p— pa < pas

2)ifaw <B,then pl—«Jaj&cnN |viror ps|—«a{g&ecN |v]|» . The construction will be car-
ried out by induction on @. Let us write p; = q.
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Suppose we have constructed all pg, B<a, and let @ be a limit ordinal. Let ps=<us, v3>. Then we
shall write wu,= U us, va= U Vs
f<a B<a

By virtue of the induction hypothesis the condition 1) holds for {p; | p < a} ; therefore u, | vx = @.
Moreover, card (i U vs) = card (U (us U v5)) <\ , since A is a regular cardinal by assumption, i.e.,
B<a
it is not reachable.

Thus, py = (Uy, Ve) Will be a condition. The properties 1 and 2 are trivial to verify for the extended
system.

Now let v be a nonlimit ordinal, @ = 8 * 1, and suppose that p; =<(ug, v3> has been constructed. If
pel—dBlgc N [v[» we shall write py = pg, and the properties are retained. Otherwise there exists a
q= P such that ¢~ «d p[=c ) |v|» Letus take such a q and write py = q.

The system {p, | « < v} has been constructed. Now let us write w' = |J u,, v"= | v.. As before,

o<y a<lv
p' = (u', v') is a condition. Moreover, it follows from the properties of {pa,} that if @ < v, then p' |« a |
Sclvi» or pil—dalegc [v]»

Hence we can easily prove that p|jl—nc () |v | constructively". (For example, let y = {a =~ |p'|}—~
«ajeEc ) |v[»}; then evidently p’'|l—« N |v]|=]|y|» where |y| €S is an element of parametric
space whose filling is always equal to y.) But by construction we have p' = ¢. The obtained contradiction
proves the lemma.

Now it is trivial to construct a set that satisfies 1°-3°.

In fact, let {p"}new, be a complete sequence of conditions belonging to P, and let g be the correspond-
ing set. Then 2° will follow from general forcing theorems, 1° is evident, and 3° easily follows from the
lemma (for example, let M () [—=ne¢ & v and not constructively." Then a p? belonging to the complete se-
quence will force the nonconstructivity of ¢ (1 |v[, which contradicts Lemma 1.1). Thus we have proved.

THEOREM 1. If A is a regular cardinal inM, then there exists a set ¢ that satisfies 1°-3°.
It is easy to see that such a method of proof cannot be applied to singular cardinals.

In the next section we shall presernt a different method which, however, does not completely solve
the problem for singular numbers.

II. We shall prove the following A

THEOREM 2. Let® be a model of ZF + V = L, let A be a cardinal in®, and let Q = At (the cardinal
of T that fol‘lows A). Then there exists a subset a & A such that ¢ M, and M () is a model of ZF that does
not contain nonconstructive subsets of ordinals ¥ < A up to the step Q.

1t is evident that for completely solving the problem of singular numbers, it is necessary to prove
that in the model under consideration the ordinals A and © do not have the same power.

At first let us make a stipulation. Let S be a parametric space with only one symbol g for a generic
set.

For finding out the future properties of the model R(g), it is appropriate to replace g by sets belong-
ing to the modelM. Let A be a statement concerning S. We shall take a set x ¢ such that transitivity is
ensured. Then we shall fill the elements of the parametric space S by substituting this set x for g. Let us
writeM(x) [= A, if R [= &, where A is a formula of ZF with constants belonging toM that has been obtained
from A by replacing each occurrence of ¢ €8 by the set ¢ (filled according to x), and by restricting in the
same way the bounded quantifiers belonging to A (i.e., the quantifier H,y is transformed into 'Hy(yEBU Sp)).

<o

Strong (syntactically defined) forcing will be denoted by Fore, weak forcing by |[—, and the truth symbol
by |=.

Let 8 be a parametric space of the following form: S,= {]a |a <A}, with tags for all the ordinals
smaller than A; S, is necessary for transitive construction of §; = {at. Sq, @ = 2, is defined in accordance
with general rules as a set of formulas with one free variable and constants belongingto |y Sz that are
relativized to this same set. fe
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As the set P of forcing conditions we shall take the set of all subsets 22 of power © that is ordered
by inclusion. The forcing of elementary statements is also defined in the usual way: p Forc "|a|€a" (for
a<Nif Ve ploacs 2l

LEMMA 2.1. Let A be a limited statement concerning S of rank < Q [i.e., all the constants of A are
elements of UQ S, and all the quantifers of A are bounded by ordinals 8 < 2], and let p be a forcing condi-
tion. =

Hence if Vi< p[M(z) | = Al, then p|[— A and if p[|— A, then {z< p|M (z)|— ~ 4} will have a
power smaller than Q.

Proof. The lemma can be proved by induction on the rank of formula A (defined as in [2]) by examin~
ing several cases; among the quantifiers and connectives we shall consider only ~ , & and H.

1. Let A be an elementary statement, A = "|a|€a". It then follows from the definition of forcing of
elementary statements that !

Vxep[é‘m(x):«]oc[ea»]anEp[|a|ex]—»p"——«|alea».

Conversely, let pl|— "|a|€a". Letq={z<=p| - |e=s}. Itis evident that the power of q is smaller
than @ (since otherwise we would have ¢|}—«| o | w),i.e., {exp [M (z) |-« « | & a»} has a power
smaller than Q.

2. Let A be a negation, A =~ B, and let Ve p[® E(2) = ~Bl. Letus show that p|- ~B. In
fact, otherwise there would exist a g = p such that q & B. It now follows from the induction hypothesis that
there exists at least one x € q such that M (z) = B. But this contradicts q S p and Vz < p [ (z) £ ~ Bl.

Conversely, if p - ~B and there exists aq € P, q = p such that V2 <= ¢ [W (2) =B, then it follows
from the induction hypothesis that qj} B, which contradicts g = p and pJ- ~B.

3. let A=B&C, Vze=p [M (z) & B& Cl. But inthis case Vz e p M (z) = Bl, whence follows
from the induction hypothesis that p|~ B. Similarly, p||— C. Hence p|~B & C.

Conversely, let p|[|~B&C. Thenthesets ¢ ={r=p |M(x)=~B) and g={e=p | M(z) & ~ C}
will have a power smaller thanQ,i.e., {z=p | ™ (2) = [B&C]} has a power smaller than Q.

4. Tet A=Ha2B(x), vy<<Q, and let Vy=p[M (y) = A]. Let us assume the contrary. Then there
exists a condition g = p such that ¢|—V,z~ B (z), i.e., forany c¢& | S; we have q[~ ~B(c).
By
For any such c let us write ¢={z & ¢ M (2) = B (c)}. Let us note that = g, . (This follows
[ [
from the fact that for similarly defined sets pp the assumption M (x) £ 4 implies that p= Up;, and q¢ =
[

q N pe.) Hence at least one g, will have the power £. Let r be this qc. T follows from the definition of qe
Veer[®(z) = B(c)]. Hence rl|f B(c), which contradicts r = q and q|- ~B(c).

Conversely, let p|— U, zB (z), but suppose that a q = p is such that Vze=g¢I® (2) £ ~ 2B (0)}; ie.,
forany c= |J S and x €qwehave M (z) = ~B. Butq =pand g | ¥, -2B(z).. Hence ifr = ¢, thenrFore
B<y
d, zB (z) , whence we can see that there exists a ¢ < {J Sp such that r[— B(c). Now it follows from the

By
induction hypothesis that there exists at least one x € r such that M (z) = B (¢); this contradicts the above-

mentioned property of q and r = q.

5. Let A be cy €cy, where ¢; €8y, ¢y €S8, 8BS a <Q and Vzep[M(z) ]=g<clec2>>]. By virtue of the
transitivity of the construction of M(x) this signifies that Vx = pHe= | 8 [M(x) |[—¢y=c&e & ] . For
¥<p

any ce= U Sy letus denote p = {z=p|M@)|—=1« =ckcScpl.
v<B

Then one of the pe will have the power ©. Let r be this pc. Then Vze&r (M (2) £« =c& c = el
It now follows from the induction hypothesis that

rl—ec, =c&ecs e, T. . T— ey Sy,
Conversely, let pJl- "c; €c,", but there exists a q = p such that for any ce& UBSY , and x €q we have
<
M(z) |—«c e\ ectepr.  But in this case gl—«w;=c\/cgey forany ce= (8, ie., qlF"cy £ c,", which
<8

contradicts q = p.
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6. Let Abecy=cy cy €8y, €88, ® = < Q. Then p]l—AcheyguSY[p]]—<<cEclzcEc2»],
whence follows from the induction hypothesis that for any c= L<JaSY the quantity {z = p|M@)|=r~[ce
cy=¢C € 02]"1L will have a power smaller than Q; i.e., by taking ;nto account the transivity of the construc-
tion of M (x), we find that {z = p|M(x)|=«~[c; == c,]»} will have a power smaller than Q.

Conversely, let Vz=p [‘Jﬁ(z) |=«¢, = ¢»]. Then fqr any c¢& YgaSy we have M(z)|[=«w Sy =c ey,

ie.,pl-"c €cy = ¢ €c,", whence follows directly that pl~ "c; = c,".

7. The last case, A = ”ci ECZH’ €1 & Sa, C2E‘SI31 G<B<Q - Let Cy = Ax,c', ..., Cn)- pr”_ "ci €
c,", then pl|— A(eq, ¢’y . . ., cD) and Ve S p[M@) =4 (1, ¢\, ..., )], Le€., V2 E p[M(z)|= ey S ] (with the
possible exception of x that are smaller than Q).

Conversely, let V2= p [M(z)|=«c; =cy»]. Then
Ve pm(@)|=A4(c, ¢ty ..., ¢, pl— A, ¢t . . e
and pl- "¢y €c,". By examining these cases, we have completed the proof of the lemma.
Now the proof of Theorem 2 can be obtained by simple calculations.

Let ¢& | S« and suppose that the condition p is such that p||— "¢ is nonconstructive and ¢ & |7]"
foraT<a ¢

For any subset yS 7 let us write p,={z = p|M (z) E «c= |y |»}. Let us consider ¢=p— | p,.
Y

It is evident that the power of q is smaller than @ (since otherwise q would be a condition and Vz & ¢ [M ()
=« & [t |»], which contradicts Lemma 2.1 and q = p). It is also easy to see that {yly S 7ihas a power
smaller than . Hence one of the py will have a power Q. Let r be this py. Then Vz < r (M (z) Ene=

Iy | "], whence follows from Lemma 2.1 that r | « =y (where |z]is an element of parametric space
such that always |z| = z; its existence is proved, for example, in [1]); i.e., r|F "¢ is constructive."

The obtained contradiction proves the theorem.
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