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A CONSEQUENCE OF THE MARTIN AXIOM 

V. G. Kanovei 

I. Introduction. Let us recall some well-known definitions. 

Let P with the ordering ~ be a partially ordered set. Two arbitrary elements p, q~P 
are said to be compatible if ~r]r ~ p and r~q], and incompatible in the contrary case [i, p. 
48]. A set Q~_P is called an antichain if any two different elements p, q E Q are incom ~ 
patible. Let us call the following condition the countable antichain condition (in [I, p. 
65] it is called the countable chain condition): Every antichain Q~P is countable. Fur- 
ther, a set O~P is said to be dense in P if for each p~P there exists a q~O such 
that q,%p [i, p. 49]. Let F be a family of subsets of the set P. A set G~Pis said to 
be F-generic if the following three conditions are fulfilled [i, p. 99]: 

a) I f  p ~ P ,  q~G,  and q-~<p, then  p ~ G .  

b) If p, q~G, then there exists an r EG such that r-~p and r~q. 

c) If D~F is dense in P, then O NG~0. 

Finally, we will denote the cardinality 2m of the continuum by c. 

The Martin axiom (MA) can be formulated in the following manner [i, p. 99]: 

If P with the ordering ~ is a partially ordered set that satisfies the countable anti- 
chain condition and if F is a family of subsets of P such that card (F) < c, then there ex- 
ists an F-generic subset D of P. 

See [2] for more details about this interesting axiom. 

Further, for each set x the class of all sets, constrictible from x, is denoted by L[x] 
[i, p. 39]. Moreover, if ~ is an ordinal, then we will denote the a-th (according to count- 

ing) transfinite cardinal in L[x] by o~ t:q (the counting is started from zero, i.e., w, : w 
for arbitrary x). 

We will call the following statement the Levi axiom (LA): ~Vx~--m) [the ordinal m~I~] 
is countable in the universe of all sets]. 

The proposed name is stipulated by the fact that the model ZFC + LA was constructed 
and studied by Levi in [3]. In particular, the equiconsistency of the theories ZFC + LA 
and ZFC + "the axiom that there exists an inaccessible cardinal" is proved in [3]. 

And now we give the last group of definitions. Let ~ be an ordinal. A set A ~_=~ is 
said to be closed and unbounded in ~ if the following two conditions are fulfilled: i) 

(A ~)~A for each ~ and 2) ~A : • A cardinal • is called a Mahlo cardinal if it 
is inaccessible and each closed unbounded subset A of • contains an inaccessible cardinal 
(see [4, p. 94]. 

The following theorem is proved in the present note. 

THEOREM I.i (ZFC). Let MA, LA, and the relation c > m~ (i.e., the negation of CH) be 
fulfilled. Then ml is a Mahlo cardinal in L[x] for each x~--m. 

The following corollary follows immediately from the above theorem and the definition 
of Mahlo cardinal. 
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1) s' C_=s and t ' ~ t ;  

2) s NY = s '  ~ y  for  each y e t ' .  

Thus, larger components of the set p E P correspond to a smaller (in the sense of this 
ordering) set p. 

We interrupt the proof of the theorem for proving the following lemma. 

LEMMA 3.3. P satisfies the countable antichain condition. 

Proof of the Lemma. Let us observe that arbitrary (s, t) ~ P and (s, t') ~ P (with the 
same first components) are compatible, since the set (s, t LJ t') obviously belongs to P and 
satisfies the relations (s, t U t') ~ (s, t) and (s, t U t') ~ (s, t'). Therefore, incompatible p, 
q E P must have different first components. But the elements of the set P have a countable 
number of possible first components. The lemma is now obvious. 

We now continue with the proof of Theorem 3.2. For each y ~ Y we set, by definition, 
D,= {(s,t)~P: yet}. For all x~X--Yandn~m we set, by definition, Dx,~ -~ {(s, t) ~ P: 
there exists a k ~ x ~s such that ~ > n). We prove two lemmas about denseness. 

LEMMA 3.4. If y ~ Y, then the set Dy is dense in P. 

Proof. If (s, t) ~ P. then (s, t U {Y})~Dyand (s, t lJ {y})< (s, t). 

LEMMA 3.5. If x~ X--Yand n~ m. then the set Dxn is dense in P. 

Proof. Let p- (s, t)~ P. Let us construct a q ~ D~= such that q ~< p. We observe that 
xC/bY, and t~Y, and therefore, x~t. On the other hand, it follows from x~X~g and tc 
Y~ X c~" that t ~ {x}~. Therefore, by Lem~aa 3.1, the set x ~ y is finite for each y~ t. 
Hence there exists an m ~ co such that m~ n and the following condition is fulfilled: 
( i ) (Vk>m)(Vy~t) [k~x Oy]. 

Further, it follows from the relation x ~ X ~ $- and Lemma 3.1 that x is infinite. 
Consequently, there exists a k E x such that k/>.m. Then k>/n, and therefore the set q = 
(s ~ {k}, t) belongs to Dxn. 

It remains to verify the inequality q~p. Let us assume the contrary: q~p. Since 
p = (s, t), this means that there exists a y~t such that (s~ {k}) ~ y ~s ~ y. It is clear 
that the last statement implies that k ~ y. But k/> m and k ~ x. We have obtained a contra- 
diction with (i), which proves the relation q ~p and the lemma. 

We continue with proof of Theorem 3.2. Let us set, by definition, F = {D,: y ~ Y} 
{O~n: x ~X Y n~r~}. Since card (X)~1, it follows that card (F)~ I. Therefore, 
taking Lemma 3.3 and the relation c > m~ into account, we can apply MA and find an F-generic 
set G~ P. We show that the set z = [J {s: there exists a t such that (s, t)~G} is the desired 
one in the sense of Theorem 3.2. 

Verification of (i). Let y ~ Y. We will prove that z ~ y is finite. Since the set G 
is F-generic, by Lemma 3.4 we have G N D, ~e 0. Let p = (s, t) belong to D v Cl G. We will 
prove that z ~ y~s; since s is finite, by definition (s, t)~ P; therefore,this will be suf- 
ficient. 

Let us assume the contrary: k ~ z ~ y, but k~ s. By the definition of z there exists 
a q :~ (s', t')~ G such that k ~__ s'. Further, since p and q are elements of the set G, it fol- 
lows from the definition of a generic set, Sec. i, that there exists an r- (s,, ~ t,,)~ P such 
that r< p and r-~ q. By the definition of ~.< we have: 

(1) s" ~s", and by the same token k~s". since k~s'; 

(2) s f~ y ~ s" N Y, since y~ t. 

But these two statements give a contradiction since k ~-y and k ~ s. This contradiction 
completes the verification of (i). 

Verification of (ii). Let x ~ X- Y. We will show that z ~ x is infinite. It is 
sufficient to verify that for each n ~ o there exists a k ~ z N x such that k ~ n. 

Let n~ m. It follows from Lemma 3.5 and the F-genericity of G that O.~n N G~=0. Let 
(s, t)~D~,~ n G. Then sGz by the definition of z, and there exists ak~sA x such that k~ n 
by the definition of Dxn. Thus, we have found a k ~ z N x such that k > n. which was required. 
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(ii) is verified for z, and Theorem 3.2 is proved. 

4. Proof of Theorem I.i. In this section we will assume that MA, LA, and inequality 

c > ml are fulfilled. 

4.1. We will prove that ~ = ml is a Mahlo cardinal in L[x] for each x ~R. 

Let us assume the contrary: u ~ R is such that ~ is not a Mahlo cardinal in L[u]. 
Since ~ is inaccessible in L[u] by Lemma 2.1, by Proposition 2.2 this assumptions implies 
the existence of an unbounded closed subset A of ~, A ~ L [ue that does not contain regular 
(in the sense of L[u]) cardinals. 

We will obtain a contradiction from this assumption. The sets u and A of the indicated 
form are fixed in the following arguments. For each ~ ~ ~ we denote the s-th (according to 
magnitude) element of the set A by as (since A is an unbounded closed subset of ~ = ml and 
we have assumed the axiom of choice, it follows that card (A) = ~). Without loss of general- 
ity we may assume that ao = 0. 

THEOREM 4.2. There exists a sequence d----(xm: ~ )  of elements of the set R such that 
the following conditions are fulfilled: 

(a) x=~ {Xv: y~m) for any m~ ~and xo = u. 

(b) a~< ~[x~l for each =~ ~, 

(c) Q = ~I 

(d) If = E Q is a limit ordinal, then xs is the smallest (in the sense of the canonical 
complete ordering of the class L[d]a]) y~ R 0 L|dJa]. such that y~ {%,: u and L[dJa] = 
L[y]. 

(Comments on the statement (d): dla is the restriction of the sequence d to ~, i.e., 

dis = (xv: 3' ~- m).) 

Proof. We construct the desired sequence by induction on ~. The induction consists 
of three steps. 

i*. We set xo = u. 

2*. Let = ~ Q and xv ~ R be constructed for all ? < m. We now indicate the construc- 
tion of xm+1. Since a~+~ ~ A ~ Q, the ordinal a=+, is countable. Therefore, there exists a 

< =). We set xa~-~ equal to one of these y. y _~_ R s u c h  t h a t  am+l ~ w[ "I~'1 and y ~ {x~,: ?-..~ 

3". Let us assume that m~Q is a limit ordinal and the "initial segment"dI~ =(,:~,: 
y ~m) has already been constructed such tha~ (b) is fulfilled for all y < a. We indicate 
the construction of xs. 

I ~ 0~ 'i'q'~l Indeed, by the assumptions made by us, a~, < ~[~'~ for We first prove that t~ . 

all ? ~ ~. All the more, aw < m~ 4'~I~]. But the set A is closed in ~, and this implies that �9 

aa ~ m~[,tlm] since s is a limit ordinal. 

We will now prove that the equality am = ~[~'~]is impossible. Indeed, the cardinal 

o #[dl=] is regular in L[dla ] and, all the more, regular in L[u], since ~ = xo~L[dla]. On the 
other hand, as is not a regular cardinal in L[u] by virtue of the relation a= ~A and the 
choice of A and u. Thus, the indicated equality is indeed impossible. Together with the 

above-proved relation am ~ oh LIntel we finally have am ~ ~o[ ~[~k~l- 

All the more we then have m ~ ~[~q:~], i.e., the statement "dl= ----(xv: ? ~ m)is a sequence 
of elements of the set R of countable length s" is true in L[dle ]. Therefore there exists 
a y ~R ~ L[dJ~] such that y ~ {xv: y ~m) and L[dlm] ---- L[y]. We set xs equal to the smallest 
(in the sense of the canonical complete ordering of the class L[dla]) among all these y. The 
construction of (xm: ~ ~ ~) is complete. 

Let us verify the conditions (a)-(d). The condition (a) is fulfilled obviously for 
= 0 and is clearly fulfilled for s > 0 on account of the constructions 2* and 3*. The 

condition (b) follows for s = 0 from the assumption as = 0 in 4.1. The condition (b) for 
limit ordinals ~ follows immediately from the construction 2,. 
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Let us prove (b) in the case of a limit ordinal =~. By the construction 3* we have 

L [x=] -- L [dl~]. We also have a= <~o~[dl=](see the arguments of 3*). Combining these two state- 
ments, we get (b). 

Further, (c) is obvious from (b), and (d) follows immediately from the construction 3*. 
Thus, d -~ (z~: =~) is the desired sequence. The theorem is proved, 

In the sequel the sequence d --(x=: =~) with the properties (a)-(d) is fixed. 

4.3. Let us observe that if ~ is a limit ordinal, then, having the "initial seg- 
ment" dl= -- (x~: ?~=), we uniquely restore x~ in L[dI= ] with the help of 4.2 (d). The aim 
of the following lemma is to chose a z~R that helps us to do the same for nonlimit ordi- 
nals ~. Before stating the lemma let us introduce the "convolution"x �9 n ~ {2~(2kq-l)--l: 

k~x) for x~R and n~. 

LEMMA 4.3. There exists a z ~ R such that xa+~ =~ {n: the set z N S (x~, ~z) is finite} 
for each~ ~ Q. 

The proof is based on Theorem 3.2. We set, by definition X = {S(x~,n): = ~  and n~ 
oo} and Y _~ {S(x=*n): ~Qand n~x=+,}. Before applying 3.2 we prove two auxiliary proposi- 
tions. 

tion 
(a). 

(i) If x=*n ==x~;,m, then u = 8 and m = n. 

Indeed, the indicated equality obviously implies that m = n and xu = x8 by the defini- 
of the convolution *. But the statement that if ~ ~= ~, then xa =/= x~ follows from 4.2 
Now (i) is obvious. 

(2) If S (x~*n) EY, then n ~x~+,. 

Indeed, by the definition of the set Y it follows that there exist ~ ~ ~ and m ~ (0 
such that S (x=~n)== S (x~.m)and m E x~+1. But the equality S(x) = S(y) implies that x = y 
by 3.1. Consequently, x~,n ~ x~,m. Hence, applying (i), we have a = 8 and m = n. Now (2) 
follows from the relation m ~ x~+1. 

We now return to the proof of the lemma. It follows from the definition of the sets 
X and Y that }z~X~and card (X) -- Q. = ~,. Therefore, by Theorem 3.2 there exists a z~ R 
such that: (3) x~Yif and only if z ~ x is finite, for each x~X 

It now follows from statements '(2) and (3) and the definition of the set Y that the set 
z is the desired one. The lemma is proved. 

We fix the set z ~ R whose existence has been asserted in the above lemma. The follow- 
ing theorem is the decisive moment in the proof of Theorem i.i. 

THEOREM 4.4. The sequence d- (x=: = ~ Q) belongs to L[u, z]. 

Proof. We indicate the following procedure for the computation of the set x~ ~ R in 
L[u, z]. 

! 

i**. We set xo = u. 

2"*. If x~ E R has been constructed, then xi4, ---- {n: z ~ S (x~ ,n) is finite}. 

3**. If ~ ~ ~ is a limit ordinal and the "initial segment" d'- (x~: ? ~ =) has already 
! 

been constructed, then x~ is the smallest (in the sense of the canonical complete ordering 
of the class L[d']) among all y~N ~L [d'] such that L[d'] = L[y] and y~ {x~:?~ ~}, 

T 
By induction over ~ it is easily proved that x~ = xa for all = ~ ~. Namely, the desired 

equality is obvious for a = O: x~ ---- x~ -~ u. The induction step ~ + ~ + 1 is considered with 
regard for the choice of z (satisfying the condition of Lemma 4.3). The induction step for 
a limit ordinal a is considered with regard for 4.2 (d). Thus x~ = xa for all = ~. 

Further, the above construction is valid in L[u, z] also. By the same token d = (x=: 
~ ~) belongs to L[u, z]. The theorem is proved. 

COROLLARY 4;5. There exists a y ~ ]~ such that ~,~[,d = ~. 

Proof. Indeed, we set, by definition, y ~= {2n: ,2 ~ u} [I {2n ~- I: n ~ z}. Then u, z ~ L [y], 
and therefore d ~-L [y] by Theorem 4.4. Using 4.2 (e), we get the desired result. 
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4.6. We now complete the proof of Theorem i.i. Above in 4.1 we have assumed the con- 

trary. This led us to the existence of a y~R such that ~[~]=~= ~i. By the same token 
we get a contradiction with the assumption (made in accordance with the statement of Theo- 
rem i.I) that LA is fulfilled. This contradiction refutes the contradictory assumption made 
in 4.1 and completes the proof of Theorem i.i. 
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RIGIDITY OF CONVEX SURFACES WITH ISOLATED BOUNDARY 

V. T. Fomenko 

Let $m be an m-connected surface with the boundary ~S m in the three-dimensional Euclid- 
ean space E3. We say that the surface S m has an isolated boundary ~S m if for an arbitrary 
infinitesimal deformation of the surface the variation of the normal curvature of the bound- 
ary is equal to zero. Under the assumption that S,,~D~,pp~2; OS~C I,~, 0<~<~, m = 
i, 2, 3, and the Gaussian curvature K is positive up to the boundary, the rigidity of the 
surface with isolated boundary was proved in 1952 by I. N. Vekua. The condition K~k~0, 
ko = const, characterizes local convexity of the surface S m. In 1947 N. V. Efimov proved 
the rigidity of surfaces with isolated plane boundary and conjectured that an arbitrary con- 
vex surface with isolated boundary is rigid. The justification for this conjecture for reg- 
ular ovaloids Sm, m~i, with smooth holes of a sufficiently general form was given in 1964 
by M. I. Voitsekhovskii. The condition of smoothness (and not piecewise smoothness)of the 
boundary is essential here: There exist convex surfaces with piecewise-smooth boundary 
admitting nontrivial infinitesimal deformations that preserve curvature of the boundary. 
In the present note Voitsekhovskii's result is carried over to piecewise regular convex sur- 
faces with smooth boundary in the form of the following theorem. 

THEOREM i. Let F m be a convex surface glued from surfaces of the class C 3 of nonneg- 
ative Gaussian curvature K that do not contain plane regions, where the lines of gluing Li 
(i = i, 2, ., n) are simple closed or nonclosed nonintersecting curves of the class C 2. 
Let the surface Fm be bounded by the curves Zi (i = i, 2, .... m) of the class C 2 that do 
not intersect the lines of gluing, where the curves I i (i = i, 2, . .., m) do not contain 
straight-line segments and lie on convex cones with vertex at a certain elliptic point 0 of 
the surface F m. Then the surface Fm with isolated boundary is rigid. 

The theorem is proved by the method of integral formulas with the help of appropriate 
results of [1-3]. 

i. Following [3], we take the origin of the Cartesian system of coordinates (x, y, z) 
at the point 0 of the surface Fm, and dispose the surface Fm in the half plane z>~0 so that 
the plane z = 0 becomes tangent to the surface at the point O. We carry out the projective 
transformation of the space i x' = x/z, y' = y/z, and z' = i/z, under which the surface F m 
transforms into a surface F m single-valuedly projecting on the plane z' = 0, whose radius 
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