THERE DOES NOT EXIST AN ENUMERABLE FAMILY OF CONTEXT-FREE GRAMMARS
THAT GENERATES THE CLASS OF SINGLE-VALUED LANGUAGES

K. Yu. Gorbunov UDC 519.765

I. The concept of context-free grammars entails a consideration of a deducible word
together with its deduction, where a deduction is understood as the syntactic analysis of a
particlar word. It is natural to require uniqueness of the analysis, i.e., uniqueness of
the deduction. This requirement means that the corresponding context-free grammar must be
single-valued.

The class of single-valued context-free grammars possesses better algorithmic properties
than does the class of all context-free grammars. For example, as has been shown by Semenov
[1], given an arbitrary single-valued context-free grammar and an arbitrary regular context-
free grammar, it is possible to decide whether or not they are equivalent (i.e., whether they
generate the same language). It is known that the problem of equivalence of a regular con-
text-free grammar is not solvable for arbitrary context-free grammars.

Muchnik [2] raised the following question: Is it possible to enumerate.a family of
single-valued context-free grammars that generates all the single-valued languages? If the
answer were in the positive, the family of single-valued languages would be just as well-
defined as, say, the family of deterministic languages.

In the present article we will obtain a negative response to this question and, inci-
dentally, construct a class of languages that possess certain interesting properties. That
is, for the grammars specifying the languages of this class, the problem of equivalence with
an arbitrary context-free grammar is solvable.

For purposes of illustration, recall that, as Hopcroft has proved [3], of all the regular
languages only the bounded languages possess these properties, i.e., finite unions of concate-
nations of languages of the form {u}, {u}*, where u is some word. On the other hand, in this
class the family of essentially non-single-valued languages is not co-enumerable.

II. We will consider finite transducers, both deterministic (abbreviated DT) and non-
deterministic (abbreviated NDT), defined on regular sets. In other words, the set of terminal
states will be distinguished in these transducers. Let us give formal definitions. A non-
deterministic transducer will be understood to refer to the quintuple <I, Q, q,, F, &>, where
Z is a finite alphabet, Q a finite set of states, q, an initial state, ¢, = Q, F a set of ter-
minal states, F© Q. and § a finite set of transformations, where § < (2* X @ X Z* x Q). We
will represent NDT in the form of a directed graph with labeled edges whose vertices are
states. With every computation of a NDT we associate a path in the graph. By in(y) we de-
note the word which the NDT reads along the path vy, and by out(y) the word it writes on this
path. The pair of words <u, v> belongs to the diagram of a NDT if there exists a path y start-
ing from an initial state and ending in a terminal state such that u = in(y) and v = out(y).
A deterministic transducer is an NDT such that § © (£ X ¢ X Z* X Q) and such that for any
g& ¢ and any letter u & I there exist unique w & £2* and ¢ & @ such that (4, ¢, w, q) = 6. It
is known that the problem of equivalence of arbitrary DT is solvable (cf. [4, pp. 322-323],
where it is shown that transducers are equivalent if their diagrams coincide).

On the other hand, the problem of equivalence for NDT is not solvable [4, pp. 322-326].
The diagram of a mapping specified by a transformation ¥ will be denoted I'u. The following
assertion will play a fundamental role in the discussion.

THEOREM 1. Suppose that %, ..., ¥, are arbitrary DT and that 8 is an arbitrary NDT.
Then

(a) the following equality is solvable:
I‘g:I’gng...UI‘mn,
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(b) the following inclusion is solvable:

Ts ST, U ... U Ty (1)
(c) if the inclusion‘(l) holds, there exist regular languages R,, R,,...,R, such that
Iy = Tyyr, U - - - U Tu R, the languages R,,...,R, may be effectively constructed;

by %p R we denote the DT %y whose diagram coincides with the set {r. % (r) |r = R};
it is obvious that such a DT exists;

(d) if % is a DT and % is a NDT, the inclusion problem I'y & I's is not solvable.

Proof. Assertion (a) follows at once from (b) and (¢). In fact, once the inclusion (b)
has been verified, we may, by (c), expand B into a union of DT. Next we verify the inverse
inclusion. To prove (d), note that Post's correspondence reduces to proving the inclusion
Iy, © f;;, where %, and ¥, are DTs with a single state. It is known that Iy, may be specified
by means of an NDT. Let us describe this NDT. Suppose that %, corresponds to a morphism g
and that the letter a runs through the alphabet Z. We enumerate all possible transitions,

specifying the word just read to the left of the incremental state, and the word just written
on the right:

g, —> aq:g (@); @y —> Go8; gy = 8G3T; g1 —> 44y,
Qo = Q205 g3 —> 443 G > gy, G4 —> 04,

Here q, is the initial state, q, and q, are terminal states, X runs through the set of words
from £* with length less than |[g(a)|, and y is the set of words from Z* with length equal to
g(a)|, but not equal to g{a). Obviously, this NDT is the desired NDT. Step (d) is proved.

Let us prove (b). Suppose that $ is an alphabet consisting of all the transducers we
are considering. If we Z*  and ¥ is a DT, ¥ (w) will denote the word that appears at the
output of ¥, if the word w is fed to its input.

Definition. Suppose that <w,, w,> is a pair of words from £* and let ¥ be DT. An ele-
ment of a free group with genetrices from I and equal to w;'%(w,) will be called the defect
of (w,, w,) relative to .

According to the basic property of the concept of defect, w, =% (w,) & the defect of
<w,, W,> relative to ¥ is equal to 1. By the defect of a path y we will understand the de-
fect of the pair <in(y), out(y)>. By a deduction in an NDT we will understand a path from
an initial state to a terminal state. It may be assumed that, in all operational cycles, in
an NDT % letters are added to one and only one of the words (either a word that has been read
or one that has been written). An arbitrary path y in an NDT will be said to be admissible
relative to ¥, if out(y) = A (in(y)).

LEMMA 1.1. Let y, and v, be paths in some NDT into some state g, and let 6, and &, be
paths in this NDT emanating from q. Suppose that the DT 9 reaches the words in(y,) and in
(y,) while in the same state q'. Then if three of the four paths v;8;, Y182, Y201, Y0, are
admissible relative to ¥, so is the fourth path.

Proof. We let B, (correspondingly, B,) denote the result of the operation ¥, beginning
with state q', on the input in (8;) [correspondingly, in{(8,}]. Then the lemma may be restated
in the following way. If three of the following equalities

(out (8,))7 (out (y))™ A (in(y)) By = 1,
(out (8,))2 (cut (y)™* % (in (1)) B2 = 1,
(out (8,))7 (ont (v))™* % (in (vo) B = 1,
(out (8,)) (out ()™ ¥ (in (v2)) B2 =1

are true, then so is the fourth. In this formulation the lemma is self-evident. If, for
example, the first three equalities hold, we find from the first and third equality that
(out(y,2)) U (in(y,)) = (out(y;)) % (in(y,;)), and this result, together with the second
equality, yields the fourth equality.

Ramsey's Graph Theorem. For any pair of natural numbers m and n, there exists a number
k such that any complete graph (i.e., a graph possessing all possible edges) with at least k
vertices whose edges are colored in n colors possesses a complete subgraph with m vertices
whose edges are colored in a single color.

Obviously, there exists a sorting algorithm that computes k, giﬁen m and n. We will use
this theorem only for m equal to 3. We denote the computable function that yields k given n
in this case by R(n).
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To prove (b), it suffices to show that, given¥,, ..., %,, $ , it is possible to find a
constant C, such that if, for all deductions Yy in B of length not greater than C,, the pair
<in(y), out(y)> belongs to Ty, U -..UTx, then all of Iy is embedded in To, {J - - - U Ty .

LEMMA 1.2. Given any finite set of DT A and any NDT %, it is possible to find a con-
stant C with the following property. If there is a path y, in % into some state q such that
for all paths y of length at most C out of state q into a terminal state, the path y,vy is
admissible with respect to at least one DT from A, then for any path y in $ issuing from g
and leading to a terminal state, the path y,v is admissible with respect to at least one DT
belonging to A. Replacing A by any one of its subsets will not increase the value of C.

Proof. Suppose that 4 = {D,,...,D;}. We denote the set of paths from q into a terminal
state by M. The length of the path y is denoted by |y|. Suppose that K is the set of states

in %8, and let m be the number of pairs <i, state ©;), where i {1,2,...,I}. We let C = K-
R(m). Let us assume that the assertion claimed by Lemma 1.2 is false. Then for some Y& M
such that |y| > C, the pair <in(y,y), out{yyy)> belongs to Ty, |J ... U Is,, but for all

vy & M such that |y'| < |y|, does not. Since [y| > K*R(m), there exists a state q of the
transducer %, through which y passes at least R(m) times. Let us determine this state. With
each 1 i< R (m) we associate yj, the segment of y until the i-th pass through q and §; the
segment of y after the i-th pass through q. Let us consider the path yidj for any pair
1<i<j< R(m). Since |vi8j| < |y|, the pair <in(yevidj), out (Yoyiéj)> belongs to
Ip, U --.U F%r We associate with every pair i < j the pair consisting of the ordinal number
of the DT whose diagram belongs to <in(y,viéj), out(y,vyisj)> and the states of this DT in
in(y,yidj). By Ramsey's theorem there exist numbers n, < n, < n, such that the same pair

(i, q) corresponds to the three pairs <n,, n,>, <n;, n;>, <n,, ny>. Then Lemma 1.1 is appli-
cable to the paths YoYnis YoYng 5n2, 5n3’ since by construction the three paths YanIan’
YoYn;%nss YoYn,%n,; are admissible with respect to ©;. Consequently, the path YoYn,%n, coin-
cides with the path v,y which is admissible with respect to ®,. Lemma 1.2 is proved. To
prove (b), it suffices to apply Lemma 1.2, where y, is the empty path, q an initial state,
and A = {¥;, ..., %}

Let us prove (c). The length of a defect will be assumed to equal the length of its non
contractable representation.

LEMMA 1.3. There exists a constant C, that is computable in B, %;, ..., ¥, with the fol-
lowing property:

If the inclusion (1) holds, then for any deduction y in B, a number i may be found such
that <in(y), out(y)> & Iy, and such that for any initial segment Yy, of y, the length of the

defect of y; relative to ¥, is not greater than C,.

Proof, We take C, = C-S, where C is the constant of Lemma 1.2 for the case 4 = {¥;, .. .,

%U.}. and S is the greatest number such that the length of a word written in the DT ¥y, . - -, ¥n
may increase as a single letter is being read. Let us determine an arbitrary deduction y in
. Suppose that 4 ={%;, ..., %}, and let B be the set of all those DT in A whose diagrams

belong to <in(y),out(y)>. Let us assume that our assertion is false in the case of y. With
every transducer %; & B we associate some initial segment of y whose defect relative to ¥;
is greater than C,. Let us order all DIs belonging to B in increasing length of the initial
segments corresponding to them: %, %, ..., qu] (if several DTs correspond to a single ini-
tial segment of y, we arrange them in arbitrary order). We denote by yx the initial segment
of y corresponding to the DT %;. By induction on k, we prove that any deduction in % con-
taining its own initial segment yy is admissible with respect to any DT belonging to the set
AN {¥i s ...%;,) Suppose that the assertion has been proved in the case k' < k. Let us con-
sider all deductions in B with initial segment Yk and continuation of length not greater
than C,. Since the length of ‘the defect yy relative to ¥ is greater than C,, none of these
deductions is admissible with respect to %, since the length of a defect may decrease by
at most one step in moving along the path. By the induction hypothesis, these deductions
are admissible with respect to any DT belonging to 4 \ {¥i,. . - ¥, .} [if k = 1 this follows
from (1)]. Consequently they are admissible also with respect to any DT that belongs to

AN (% - - %y} By Lemma 1.2, all deductions with initial segment yy are admissible with

respect to some DT in AN\ {¥%;,..., %,}. For k = [B|, we obtain a contradiction. Lemma 1.3
is proved.
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It is easily seen that for any C and any i, the set of words that are read on those
deductions in % in which the length of the defect of any initial segment relative to ¥, is
at most C is regular, and that this set may be effectively constructed from C. In fact, an
automaton that recognizes this set possesses as its states the triple {state %, state %,
defect>, where the length of the defect does not exceed C. Since a defect and a pair of
increments to inscribed words determine a new defect in unique fashion, the transitions of
the automaton are determined in obvious fashion.

From Lemma 1.3 it follows that the desired regular sets Rj, i = 1,...,n, constitute
the set of words that are read on those deductions in %, in which the length of the defect of
any initial segment relative to %, is not greater than C,. Step (c), and along with it Theo-
rem 1, are proved.

Let us now consider context-free grammars. With every transducer % we associate a
language Lg = {w 3t v’ |{w, ud & Ty}, here uf denotes the word which is the mirror image of u.
Recall that a c-linear context-free grammar is understood to refer to a linear context-free
grammar in whose alphabet a special terminal symbol # (called a marker) is provided and such
that the right side of any rule either does not contain a marker but contains a nonterminal
symbol, or is in fact a marker. It is easily seen that for any 3 the language Ly is gen-
erated by some c-linear context-free grammar, and conversely any c-linear context-free gram-
mar generates a language of this form. Moreover, if ﬁl,...;%n are arbitrary transducers, a
c-linear context-free grammar that generates the language Ly, {J ... |J Ls, may be constructed

in a standard fashion. We will call it ¢(%, ) ... U %n). We will also say that a DT ¥ pos-
sesses finite delay if there exists a natural number C such that, if it begins to function
in some arbitrary state, once it has read any C letters, ¥ will output at least one letter.
The language that is generated by an arbitrary context-free grammar K is denoted Lg. A gram-
mar of the form G (%, {J ... ) %,), where %,,... %, are DT with finite delay, will be called a
diagrammed grammar.

THEOREM 2. Suppose that G =G, |J ... |J ¥,) is an arbitrary diagrammed context-free
grammar, and let K be an arbitrary context-free grammar. Then

(a) the problem Lg = Lg is solvable;
(b) the problem Ly & Lg; is solvable;

(c) if Lx < Lg, a diagrammed context-free grammar G that is equivalent to K may be con-
structed;

(d) the set of essentially distinct diagrammed context-free grammars is not co-enumer-
able.

Proof.

LEMMA 2.1. Given an arbitrary context-free grammar K and an arbitrary diagrammed con-
text-free grammar G, it is possible effectively to either prove that Ly & Lg,or construct a
c-linear context-free grammar K, that is equivalent to K.

Proof. Obviously, if Ly && Lg, it will not be possible for infinitely many segments of
some word in Lg following (preceding) some marker to correspond to a fixed segment of this
word preceding (following) this marker. Therefore, if Lx & L;, at most one nonterminal sym-
bol on the right side of every production in K will produce an infinite number of words in
Lgx. Since the finiteness problem of a context-free language is solvable (cf. [5, p. 305]),
the latter condition may be checked and, if it holds, a linear context-free grammar K' may
be constructed that is equivalent to K. For the reason given above, in K' only a finite
number of words in Lyt may be produced from any nonterminal symbol on the right side of any
production containing a marker. Once this condition has been checked, the desired c-linear
context-free grammar K, is easily constructed. Lemma 2.1 is proved.

Steps (a), (b), and (c) of Theorem 2 follow immediately from Theorem 1 and Lemma 2.1.
Assertion (d) of Theorem 2 was proved by Gladkii [6]. Theorem 2 is proved.

The next theorem contains an answer to the question posed in the introduction.

THEOREM 3. There does not exist an enumerable set of context-free grammars (not neces-
sarily single-valued) whose elements generate precisely all the single-valued context-free
languages.
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Proof. If such a set were to exist, it would follow from Theorem 2 (a) that all the
diagrammed grammars that generate single-valued languages could be enumerated. But this con-
tradicts assertion (d) of the theorem.

Remark. It has come to my attention that assertions (a) and (b) of Theorem 1 follow
from results in [7] together with a result from [8] and the results of [9].

I would like to express my appreciation to An. A. Muchnik and N. K. Vereshchagin for
the statement of the problem and for useful discussion.
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APPROXTMATIVE EVALUATION OF THE HEIGHT OF THE MAXIMAL UPPER ZERO
OF A MONOTONE BOOLEAN FUNCTION

A. Yu. Kitaev UDC 517.1

Many numerical problems of the practical importance can be formulated in terms of a
problem of finding the maximal upper zero of a certain monotone Boolean function f, computable
according to a beforehand known algorithm. As an example, we may consider the search for the
maximal solvable subsystem of a given system of inequalities [1]. In connection with this
problem, there arises a question of the computational complexity of the height of the upper
zero of a monotone Boolean function, defined with the help of an oracle. There exist two
natural measurements of the complexity: the number of inquires to the oracle, and the full
number of steps in the algorithm. The minimal number of inquiries to the oracle sufficient
for defining the height of a maximal upper zero of an arbitrary monotone function of n vari-

ables is equal to <P5ﬂ>—+ I [2]. In the present paper there is investigated a question of the

computational complexity of the height of the upper zero. A related problem was considered

in [3]; however, in this paper there was used another criterion of the computational exact-
ness (ef. also [4]).

Let B™ = {0, 1}" be the n-dimensional Boolean cube, and F; be the set of all monotone
Boolean functions with n parameters, satisfying the condition f(0,...,0) = 0. TFor a Boolean
vector u & B*, by h(u) we denote the number of ones in the vector (uy,...,up). The set Sy =
{fu<=B" |k (u) =k} is called a layer with height h in the Boolean cube. The height of the
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