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I. The concept of context-free grammars entails a consideration of a deducible word 
together with its deduction, where a deduction is understood as the syntactic analysis of a 
particlar word. It is natural to require uniqueness of the analysis, i.e., uniqueness of 
the deduction. This requirement means that the corresponding context-free grammar must be 
single-valued. 

The class of single-valued context-free grammars possesses better algorithmic properties 
than does the class of all context-free grammars. For example, as has been shown by Semenov 
[i], given an arbitrary single-valued context-free grarmnar and an arbitrary regular context- 
free grammar, it is possible to decide whether or not they are equivalent (i.e., whether they 
generate the same language). It is known that the problem of equivalence of a regular con- 
text-free grammar is not solvable for arbitrary context-free grammars. 

Muchnik [2] raised the following question: Is it possible to enumerate a family of 
single-valued context-free grammars that generates all the single-valued languages? If the 
answer were in the positive, the family of single-valued languages would be just as well- 
defined as, say, the family of deterministic languages. 

In the present article we will obtain a negative response to this question and, inci- 
dentally, construct a class of languages that possess certain interesting properties. That 
is, for the grammars specifying the languages of this class, the problem of equivalence with 
an arbitrary context-free grammar is solvable. 

For purposes of illustration, recall that, as Hopcroft has proved [3], of all the regular 
languages only the bounded languages possess these properties, i.e., finite unions of concate- 
nations of languages of the form {u}, {u}*, where u is some word. On the other hand, in this 
class the family of essentially non-single-valued languages is not co-enumerable. 

II. We will consider finite transducers, both deterministic (abbreviated DT) and non- 
deterministic (abbreviated NDT), defined on regular sets. In other words, the set of terminal 
states will be distinguished in these transducers. Let us give formal definitions. A non- 
deterministic transducer will be understood to refer to the quintuple <E, Q, q0, F, 6>, where 
Z is a finite alphabet, Q a finite set of states, q0 an initial state, qo~Q, F a set of ter- 
minal States, F~__Q, and 6 a finite set of transformations, where6~(~* • Q x ~* x Q). We 
will represent NDT in the form of a directed graph with labeled edges whose vertices are 
states. With every computation of a NOT we associate a path in the graph. By in(y) we de- 
note the word which the NDT reads along the path y, and by out(y) the word it writes on this 
path. The pair of words <u, v> belongs to the diagram of a NOT if there exists a path y start- 
ing from an initial state and ending in a terminal state such that u = in(y) and v = out(y). 
A deterministic transducer is an NDT such that 6~(Z x Q • ~* x Q) and such that for any 
q~Q and any letter u~E there exist unique w~Z* and qI~Q such that (u,q,w,q,)~ 6. It 
is known that the problem of equivalence of arbitrary DT is solvable (cf. [4, pp. 322-323], 
where it is shown that transducers are equivalent if their diagrams coincide). 

On the other hand, the problem of equivalence for NOT is not solvable [4, pp. 322-326]. 
The diagram of a mapping specified by a transformation ~ will be denoted F~. The following 
assertion will play a fundamental role in the discussion. 

THEOREM i. Suppose that ~, ..... ~ are arbitrary DT and that ~ is an arbitrary NDT. 
Then 
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(a) the following equality is solvable: 

F ~ = F % U  . . .  U r ~ ,  
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(b) the following inclusion is solvable: 

F~GF~,,U . . -  UF%; ( i )  
(c) if the inclusion (i) holds, there exist regular languages RI, R 2 ..... R n such that 

Fm = F%~R, ~ ... d F~n~R~; the languages RI,...,R n may be effectively constructed; 

by 4>R we denote the DT 4R whose diagram coincides with the set {r. 4 (r) ]r--_--~}; 
it is obvious that such a DT exists; 

(d) if ~ is a DT and ~ is a NDT, the inclusion problem F~F~ is not solvable. 

Proof. Assertion (a) follows at once from (b) and (c). In fact, once the inclusion (b) 
has been verified, we may, by (c), expand ~ into a union of DT. Next we verify the inverse 
inclusion. To prove (d), note that Post's correspondence reduces to proving the inclusion 

r~,~_F~--~, where 41 and 42 are DTs with a single state. It is known that-r~,may be specified 

by means of an NDT. Let us describe this NDT. Suppose that ~2 corresponds to a morphism g 
and that the letter a runs through the alphabet I. We enumerate all possible transitions, 
specifying the word just read to the left of the incremental state, and the word just written 
on the right: 

ql.--+aqlg (a); ql-+q2a; ql--->-aq3x; ql--+aq4y; 

q 2 " + q ~ a ;  q 3 - - ~ a q s ;  q 4 - " ' q 2 ;  q 4 " + a q 4  �9 

Here q~ i s  t h e  i n i t i a l  s t a t e ,  q2 and q3 a r e  t e r m i n a l  s t a t e s ,  x r u n s  t h r o u g h  t h e  s e t  o f  words  
f rom I*  w i t h  l e n g t h  l e s s  t h a n  [ g ( a ) l ,  and y i s  t h e  s e t  of  words  f rom E* w i t h  l e n g t h  e q u a l  t o  
I g ( a ) l ,  bu t  n o t  e q u a l  t o  g ( a ) .  O b v i o u s l y ,  t h i s  NDT i s  t h e  d e s i r e d  NDT. S t e p  ( d )  i s  p r o v e d .  

Le t  us p r o v e  ( b ) .  Suppose  t h a t  E i s  an a l p h a b e t  c o n s i s t i n g  of  a l l  t h e  t r a n s d u c e r s  we 
a r e  c o n s i d e r i n g .  I f  w ~ Z *  and 4 i s  a DT, 4 (w)  w i l l  d e n o t e  t h e  word t h a t  a p p e a r s  a t  t h e  
o u t p u t  o f  ~ , i f  t h e  word w i s  f e d  t o  i t s  i n p u t .  

D e f i n i t i o n .  Suppose  t h a t  <w~, w2> i s  a p a i r  of  words  f rom ~* and l e t  �9 be DT. An e l e -  
ment o f  a f r e e  g roup  w i t h  g e n e t r i c e s  f rom ~ and e q u a l  t o  w~14(w~) w i l l  be c a l l e d  t h e  d e f e c t  
o f  <w 1, w~> r e l a t i v e  t o  4 .  

A c c o r d i n g  t o  t h e  b a s i c  p r o p e r t y  of  t h e  c o n c e p t  o f  d e f e c t ,  w~=4(w~)~=> t h e  d e f e c t  o f  
<w~, w2> r e l a t i v e  t o  4 i s  e q u a l  t o  1. By t h e  d e f e c t  of  a p a t h  y we w i l l  u n d e r s t a n d  t h e  de -  
f e c t  o f  t h e  p a i r  < i n ( y ) ,  o u t ( y ) > .  By a d e d u c t i o n  i n  an NDT we w i l l  u n d e r s t a n d  a p a t h  from 
an i n i t i a l  s t a t e  t o  a t e r m i n a l  s t a t e .  I t  may be assumed t h a t ,  i n  a l l  o p e r a t i o n a l  c y c l e s ,  in  
an NDT ~ letters are added to one and only one of the words (either a word that has been read 
or one that has been written). An arbitrary path ~ in an NDT will be said to be admissible 
relative to 4, if out(7) = ~(in(y)). 

LEMMA i.i. Let ~i and 72 be paths in some NDT into some state q, and let 5~ and 62 be 
paths in this NDT emanating from q. Suppose that the DT 4 reaches the words in(y~) and in 
(7~) while in the same state q' Then if three of the four paths ~6~, y~6=, 7261, ~262 are 
admissible relative to 4, so is the fourth path. 

Proof. We let 8~ (correspondingly, $2) denote the result of the operation ~,beginning 
with state q', on the input in (5~) [correspondingly, in(6=)]. Then the lem~na may be restated 
in the following way. If three of the following e~ualities 

(out (~0)-~ (out (~0)-~ 4 (:~n (n)) ~ = ~, 
(out (6~)) -I (out (?i))-* 4 (in (?I)) ~, = ~, 
(out (~I)) -I (out (~s))-I 4 (in (~,) ~I = ~, 
(out (6z)) -1 (out (?~))-1 4 ~n ~)) ~ = 

are true, then so is the fourth. In this formulation the lemma is self-evident. If, for 
example, the first three equalities hold, we find from the first and third equality that 
(out(7=))-l~(in(y2)) = (out(yl))-14 (in(71)), and this result, together with the second 
equality, yields the fourth equality. 

Ramsey's Graph Theorem. For any pair of natural numbers m and n, there exists a number 
k such that any complete graph (i.e., a graph possessing all possible edges) with at least k 
vertices whose edges are colored in n colors possesses a complete subgraph with m vertices 
whose edges are colored in a single color. 

Obviously, there exists a sorting algorithm that computes k, given m and n. We will use 
this theorem only for m equal to 3. We denote the computable function that yields k given n 
in this case by R(n). 
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To prove (b), it suffices to show that, given ~,, ..., ~,, ~ , it is possible to find a 
constant C1~such that if, for all deductions u in ~ of length not greater than CI, the pair 
<in(y), out(y)> belongs to F~, U ..- U F~, then all of Fs is embedded in F~ I U "--U F~ . 

LEMMA 1.2. Given any finite set of DT A and any NDT ~, it is possible to find a con- 
stant C with the following property. If there is a path u in ~ into some state q such that 
for all paths X of length at most C out of state q into a terminal state, the path Y0u is 
admissible with respect to at least one DT from A, then for any path u in 9 issuing from q 
and leading to a terminal state, the path 70Y is admissible with respect to at least one DT 
belonging to A. Replacing A by any one of its subsets will not increase the value of C. 

Proof. Suppose that A = {D, ..... Dz}. We denote the set of paths from q into a terminal 
state by M. The length of the path y is denoted by INf. Suppose that K is the set of states 
in 9, and let m be the number of pairs <i, state ~>, where i E{I,2 ..... l}. We let C = K. 
R(m). Let us assume that the assertion claimed by Lemma 1.2 is false. Then for some ],~AI 
such that l~I > C, the pair <in(YoN) , out(N0u belongs to F~, ~ ... ~ F~t, but for all 

7'~Msuch that IN'I < IN[, does not. Since INl > K.R(m), there exists a state q of the 
transducer ~, through which y passes at least R(m) times. Let us determine this state. With 
each i~i~R (m) we associate Ni, the segment of N until the i-th pass through q and 6i the 
segment of N after the i-th pass through q. Let us consider the path Ni6j for any pair 
|~ i~/<R(m). Since INi6jl < INI, the pair <in(YoNi~j) , out (u )> belongs to 
Fm, U ... ~ r~ z. We associate with every pair i < j the pair consisting of the ordinal number 

of the DT whose diagram belongs to <in(NoYi6j), out(NoNi6j)> and the states of this DT in 
in(NoYi6j). By Ramsey's theorem there exist numbers n~ < n 2 < n 3 such that the same pair 
(i, q) corresponds to the three pairs <nl, n2> , <nl, n3> , <n2, n3>. Then Lemma i.i is appli- 
cable to the paths ~0Ynl, u 6n2, ~n3, since by construction the three paths NoYnl6n2, 
NoNnl6n~, u are admissible with respect to ~i. Consequently, the path N0u coin- 
cides with the path YoN which is admissible with respect to ~. Lemma 1.2 is proved. To 
prove (b), it suffices to apply Lemma 1.2, where Y0 is the empty path, q an initial state, 
a n d  A = {~, . . . . .  ~ } -  

L e t  us  p r o v e  ( c ) .  The l e n g t h  o f  a d e f e c t  w i l l  be  a s s u m e d  t o  e q u a l  t h e  l e n g t h  o f  i t s  n o n  
c o n t r a c t a b l e  r e p r e s e n t a t i o n .  

L F ~  1 . 3 .  T h e r e  e x i s t s  a c o n s t a n t  C 2 t h a t  i s  c o m p u t a b l e  i n  ~ ,  ~ ,  . . . .  , ~ w i t h  t h e  f o l -  
l o w i n g  p r o p e r t y :  

I f  t h e  i n c l u s i o n  ( 1 )  h o l d s ,  t h e n  f o r  a n y  d e d u c t i o n  N i n  9 ,  a number  i may be  f o u n d  s u c h  
t h a t  < i n ( ~ ) ,  o u t ( N ) > ~ F ~ , , a n d  s u c h  t h a t  f o r  a n y  i n i t i a l  s e g m e n t  Xz o f  u  t h e  l e n g t h  o f  t h e  

d e f e c t  o f  Nz r e l a t i v e  t o  ~ i s  n o t  g r e a t e r  t h a n  C~. 

P r o o f .  We t a k e  C 2 = C . S ,  w h e r e  C i s  t h e  c o n s t a n t  o f  Lemma 1 . 2  f o r  t h e  c a s e  A = {~,  . . . .  , 
~ } ,  and  S i s  t h e  g r e a t e s t  number  s u c h  t h a t  t h e  l e n g t h  o f  a word  w r i t t e n  i n  t h e  DT ~ , , . . . ,  ~ 
may i n c r e a s e  a s  a s i n g l e  l e t t e r  i s  b e i n g  r e a d .  L e t  u s  d e t e r m i n e  an  a r b i t r a r y  d e d u c t i o n  N i n  
~ .  S u p p o s e  t h a t  A = { ~ ,  . . . . .  ~ } ,  and  l e t  B be  t h e  s e t  o f  a l l  t h o s e  DT i n  A w h o s e  d i a g r a m s  

b e l o n g  t o  < i n ( y ) ,  o u t ( N ) > .  L e t  u s  a s s u m e  t h a t  o u r  a s s e r t i o n  i s  f a l s e  i n  t h e  c a s e  o f  N. W i t h  
e v e r y  t r a n s d u c e r  ~ i ~ B  we a s s o c i a t e  some i n i t i a l  s e g m e n t  o f  Y w h o s e  d e f e c t  r e l a t i v e  t o  ~ 
i s  g r e a t e r  t h a n  C~. L e t  u s  o r d e r  a l l  DTs b e l o n g i n g  t o  B i n  i n c r e a s i n g  l e n g t h  o f  t h e  i n i t i a l  
s e g m e n t s  c o r r e s p o n d i n g  t o  t h e m :  ~ i , , ~ i ,  . . . . .  ~il~l ( i f  s e v e r a l  DTs c o r r e s p o n d  t o  a s i n g l e  i n i -  

t i a l  s e g m e n t  o f  u  we a r r a n g e  them i n  a r b i t r a r y  o r d e r ) .  We d e n o t e  by  Nk t h e  i n i t i a l  s e g m e n t  
o f  y c o r r e s p o n d i n g  t o  t h e  DT ~i~. By i n d u c t i o n  on k ,  we p r o v e  t h a t  a n y  d e d u c t i o n  i n  ~ c o n -  

t a i n i n g  its own initial segment Yk is admissible with respect to any DT belonging to the set 

A xx {~ ..... ~}.Suppose that the assertion has been proved in the case k' < k. Let us~ con- 

sider all deductions in 9 with initial segment ~k and continuation of length not greater 

than C2. Since the length of the defect Yk relative to ~ is greater than C~, none of these 

deductions is admissible with respect to ~, since the length of a defect may decrease by 

at most one step in moving along the path. By the induction hypothesis, these deductions 

are admissible with respect to any DT belonging to A~{~,..~i~_~} [if k = i this follows 

from (I)]. Consequently they are admissible also with respect to any DT that belongs to 
A~{~i,,...,~,~}- By Lemma 1.2, all deductions with initial segment ~k are admissible with 
respect to some DT in A~{~i ...... ~}. For k = [BI, we obtain a contradiction. Lemma 1.3 
is proved. 
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It is easily seen that for any C and any i, the set of words that are read on those 
deductions in ~ in which the length of the defect of any initial segment relative to ~ is 
at most C is regular, and that this set may be effectively constructed from C. In fact, an 
automaton that recognizes this set possesses as its states the triple <state ~, state ~i, 
defect>, where the length of the defect does not exceed C. Since a defect and a pair of 
increments to inscribed words determine a new defect in unique fashion, the transitions of 
the automaton are determined in obvious fashion. 

From Lemma 1.3 it follows that the desired regular sets Ri, i = l,...,n, constitute 
the set of words that are read on those deductions in ~,in which the length of the defect of 
any initial segment relative to ~ is not greater than C 2. Step (c), and along with it Theo- 
rem I, are proved. 

Let us now consider context-free grammars. With every transducer ~ we associate a 
language Lm = {w~u~ [<m, u>~F~}, here u r denotes the word which is the mirror image of u. 
Recall that a c-linear context-free grammar is understood to refer to a linear context-free 
grammar in whose alphabet a special terminal symbol # (called a marker) is provided and such 
that the right side of any rule either does not contain a marker but contains a nonterminal 
symbol, or is in fact a marker. It is easily seen that for any ~ the language L~ is gen- 
erated by some c-linear context-free grammar, and conversely any c-linear context-free gram- 
mar generates a language of this form. Moreover, if ~ ..... ~ are arbitrary transducers, a 
c-linear context-free grammar that generates the language L~, U .-. U L~ may be constructed 

in a standard fashion. We will call it G(~I ~ ... U ~). We will also say that a DT ~pos- 
sesses finite delay if there exists a natural number C such that, if it begins to function 
in some arbitrary state, once it has read any C letters, ~ will output at least one letter. 
The language that is generated by an arbitrary context-free grammar K is denoted L K. A gram- 
mar of the form G(~I ~ .-. U ~), where ~i ..... ~ are DT with finite delay, will be called a 
diagrammed gra,~nar. 

THEOREM 2. Suppose that G = G(~I ~ ... U ~)is an arbitrary diagrammed context-free 
grammar, and let K be an arbitrary context-free grammar. Then 

(a) the problem L K = L G is solvable; 

(b) the problem LK~__L~; is solvable; 

(c) if LK~_LG, a diagrammed context-free grammar G that is equivalent to K may be con- 
structed; 

(d) the set of essentially distinct diagrammed context-free grammars is not co-enumer- 

able. 

Proof. 

LEMMA 2.1. Given an arbitrary context-free grammar K and an arbitrary diagrammed con- 
text-free grammar G, it is possible effectively to either prove that LK~Lo, or construct a 
c-linear context-free grammar K~ that is equivalent to K. 

Proof. Obviously, if LK~Lo, it will not be possible for infinitely many segments of 
some word in L K following (preceding) some marker to correspond to a fixed segment of this 
word preceding (following) this marker. Therefore, if LK~_Lo, at most one nonterminal sym- 
bol on the right side of every production in K will produce an infinite number of words in 
L K. Since the finiteness problem of a context-free language is solvable (cf. [5, p. 305]), 
the latter condition may be checked and, if it holds, a linear context-free grammar K' may 
be constructed that is equivalent to K. For the reason given above, in K' only a finite 
number of words in L K, may be produced from any nonterminal symbol on the right side of any 
production containing a marker. Once this condition has been checked, the desired c-linear 
context-free grammar K I is easily constructed. Lemma 2.1 is proved. 

Steps (a), (b), and (c) of Theorem 2 follow immediately from Theorem i and Lemma 2.1. 
AsserLion (d) of Theorem 2 was proved by Gladkii [6]. Theorem 2 is proved. 

The next theorem contains an answer to the question posed in the introduction. 

THEOREM 3. There does not exist an enumerable set of context-free grammars (not neces- 
sarily single-valued) whose elements generate precisely all the single-valued context-free 
languages. 
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Proof. If such a set were to exist, it would follow from Theorem 2 (a) that all the 
diagrammed grammars that generate single-valued languages could be enumerated. But this con- 
tradicts assertion (d) of the theorem. 

Remark. It has come to my attention that assertions (a) and (b) of Theorem 1 follow 
from results in [7] together with a result from [8] and the results of [9]. 

I would like to express my appreciation to An. A. Muchnik and N. K. Vereshchagin for 
the statement of the probiem and for useful discussion. 
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APPROXIMATIVE EVALUATION OF THE HEIGHT OF THE MAXIMAL UPPER ZERO 

OF A MONOTONE BOOLEAN FUNCTION 

A. Yu. Kitaev UDC 517.1 

Many numerical problems of the practical importance can be formulated in terms of a 
problem of finding the maximal upper zero of a certain monotone Boolean function f, computable 
according to a beforehand known algorithm. As an example, we may consider the search for the 
maximal solvable subsystem of a given system of inequalities [i]. In connection with this 
problem, there arises a question of the computational complexity of the height of the upper 
zero of a monotone Boolean function, defined with the help of an oracle. There exist two 
natural measurements of the complexity: the number of inquires to the oracle, and the full 
number of steps in the algorithm. The minimal number of inquiries to the oracle sufficient 
for defining the height of a maximal upper zero of an arbitrary monotone function of n vari- 

(~ a b l e s  i s  e q u a l  t o  [n/21 -I- 1 [ 2 ] .  I n  t h e  p r e s e n t  p a p e r  t h e r e  i s  i n v e s t i g a t e d  a q u e s t i o n  o f  t h e  

c o m p u t a t i o n a l  c o m p l e x i t y  o f  t h e  h e i g h t  o f  t h e  u p p e r  z e r o .  A r e l a t e d  p r o b l e m  was c o n s i d e r e d  
i n  [3 ]  ; h o w e v e r ,  i n  t h i s  p a p e r  t h e r e  was u s e d  a n o t h e r  c r i t e r i o n  o f  t h e  c o m p u t a t i o n a l  e x a c t -  
n e s s  ( c f .  a l s o  [ 4 ] ) .  

L e t  B n = {0 ,  1} n be  t h e  n - d i m e n s i o n a l  B o o l e a n  c u b e ,  and  F + be  t h e  s e t  o f  a l l  m o n o t o n e  
B o o l e a n  f u n c t i o n s  w i t h  n p a r a m e t e r s ,  s a t i s f y i n g  t h e  c o n d i t i o n  f ( 0 , . . . , 0 )  = 0.  F o r  a B o o l e a n  
v e c t o r  u ~ B '~, by  h ( u )  we d e n o t e  t h e  number  o f  o n e s  i n  t h e  v e c t o r  (u~ . . . . .  Un) .  The s e t  S k = 
{u ~ B n f h (u) = k} i s  c a l l e d  a l a y e r  w i t h  h e i g h t  h i n  t h e  B o o l e a n  c u b e .  The h e i g h t  o f  t h e  
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