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Abstract—Each additive cut in the nonstandard natural numbers∗
N induces the equivalence rela-

tion MU on∗
N defined as xMU y if |x − y| ∈ U . Such equivalence relations are said to be monadic.

Reducibility between monadic equivalence relations is studied. The main result (Theorem 3.1) is that
reducibility can be defined in terms of cofinality (or coinitiality) and a special parameter of a cut, called
its width. Smoothness and the existence of transversals are also considered. The results obtained are
similar to theorems of modern descriptive set theory on the reducibility of Borel equivalence relations.
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INTRODUCTION

Classical descriptive set theory mainly considers subsets of Polish (i.e., complete separable metric)
spaces. However, as early as in the 1980s, it was discovered that ideas of descriptive set theory can be
carried over to nonstandard analysis, where Polish spaces are replaced by internal (e.g., hyperfinite) sets
of a certain nonstandard structure. This theory was called hyperfinite (or nonstandard) descriptive
set theory; see, e.g., [1]. It considers structures which resemble those arising in Polish spaces in some
respects and strongly differ from them in other respects. Proofs are usually based on combinatorial ideas
(and use saturation). Nonstandard descriptive set theory also considers objects which have no analogs
at all in Polish spaces, such as determined sets.

In this paper, we consider the equivalence relations MU on the set∗N of all positive hyperintegers that
are induced by additive cuts (initial intervals) U ⊆∗

N in the sense that xMU y if and only if |x − y| ∈ U .
Their equivalence classes are called U-monads. Such monadic equivalence relations (or partitions)
have been considered in connection with various questions of nonstandard analysis, starting in the 1980s
(see [1], [2]). In [3], the existence problem for countably determined transversals (i.e., sets choosing
one element in each monad) for relations of the form MU was solved. A number of other problems
concerning countably determined equivalence relations (such as dichotomy theorems and smoothness
and reducibility problems) were solved in [4]. In particular, in was proved in [4] that each of the two
natural families of countably determined monadic relations (namely, countably cofinal and countably
coinitial relations) is linearly ordered by the relation of countably determined reducibility. The direction
of the order depends on a parameter (here called the width of a cut) characterizing the final rate of the
increasing cofinal or decreasing coinitial sequence determining the cut under consideration.

In a somewhat different situation (in the framework of nonstandard set theory), similar results were
obtained in the monograph [5, Ch. 9].

In this paper, we study monadic equivalence relations induced by cuts of any cofinality and coinitiality.
To be more precise, assuming that the original nonstandard universe is κ+-saturated, where κ is a given
infinite cardinal, we consider additive cuts which belong to the type of κ-determined sets; each of them
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758 KANOVEI et al.

is either ≤ κ-cofinal or ≤ κ-coinitial. Accordingly, we consider the κ-determined reducibility of MU

to MV , which means the existence of a κ-determined map from∗
N to∗

N inducing an embedding of the
coset space ∗

N/MU into ∗
N/MV . The main result, Theorem 3.1, characterizes such a reducibility in

terms of the cofinality, coinitiality, and width of the cuts U and V . As a byproduct, we obtain results
on κ-smoothness (i.e., κ-determined reducibility to an equality) and the existence of κ-determined
transversals.

Similar questions (on Borel equivalence relation and Borel reducibility) have been extensively studied
in modern descriptive sets theory (in Polish spaces); see, e.g., [6], [7].

We assume that the reader is familiar with the basics of nonstandard analysis (see [8]–[11]) and of
hyperfinite descriptive set theory at the level of, e.g., the introductory sections of [1].

1. DETERMINED SETS

All “nonstandard” objects considered below (such as∗
N) are assumed to belong to a fixed nonstan-

dard universe (e.g., to a nonstandard superstructure, as in [10]), whose elements are called nonstandard
(internal or external) sets. The degree of saturation of this nonstandard universe will be specified in
each particular case, but we always assume that at least ordinary ℵ1-saturation takes place. (See [12]
on saturation.)

By PintX we denote the set of all internal subsets of a nonstandard set X. The notation #(X) ∈∗
N

is used for the number of all elements in a hyperfinite set X, and card X denotes the cardinality of X in
the universe of all sets. Finally, Pfin(X) = {Y ⊆ X : Y finite}.

The notion of a determined set goes back to the works of Kolmogorov and Hausdorff on δs-
operations in the 1920s (see the historical comments in [13]); in the context of nonstandard analysis,
it was introduced in [14], [15]. Let κ be an infinite cardinal. We consider subsets of some fixed internal
(in a given nonstandard universe) set I.

We use the following two definitions of κ-determinacy.

(1) A set X ⊆ I is said to be κ-determined if it has the form

X = {x ∈ I : b(x) ∈ B}, where B ⊆ P(κ),
b(x) = {ξ < κ : x ∈ Xξ}, and Xξ ∈ Pint(I) for all ξ < κ;

(1)

(2) A set X ⊆ I is said to be κ-determined if it has the form

X =
⋃

b∈B

⋂

ξ∈b

Xξ, where B ⊆ P(κ), Xξ ∈ Pint(I) for all ξ < κ. (2)

Definitions (1) and (2) are equivalent. Indeed, if X is defined as in (2), then, setting

B′ =
⋃

b∈B

{b′ ⊆ κ : b ⊆ b′},

we obtain an expression of type (1). Conversely, if X is defined as in (1), then, setting X ′
2ξ = Xξ and

X ′
2ξ+1 = I \ Xξ and taking the set of all b′ ⊆ κ such that b = {ξ : 2ξ ∈ b′} ∈ B and {ξ : 2ξ + 1 ∈ b′} =

κ \ b for B′, we obtain an expression of type (2)1.

Lemma 1.1. If κ is an infinite cardinal and I is an internal set, then the family of all κ-determined
subsets of I is closed under complements and under the union and intersection of at most κ sets.

Proof. We use definition (1). To obtain a complement, we simply set B′ = P(κ) \ B. Consider the
union or intersection of at most κ sets. Obviously, we can assume that all of the ≤ κ sets are determined
in the sense of the same indexed family {Xξ}ξ<κ of sets Xξ ∈ Pint(I); this reduces the problem to
the union or intersection of the corresponding sets B ⊆ P(κ).

1We define 2ξ as the sum of ξ copies of the ordinal 2; thus, 2ω = ω �= ω2 = ω + ω, and 2(ω + 3) = 2ω + 2 · 3 = ω + 6.
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REDUCIBILITY OF MONADIC EQUIVALENCE RELATIONS 759

2. CUTS IN POSITIVE HYPERINTEGERS

Initial intervals U ⊆∗
N are usually called cuts. A cut U is additive if x ∈ U implies 2x ∈ U .

Examples of additive cuts are

hN = {x ∈∗
N : ∃n ∈ N (x < nh)} and h/N =

{
x ∈∗

N : ∀n ∈ N

(
x <

h

n

)}
,

where h ∈∗
N. The cofinality cof U of a cut U ⊆∗

N is defined as the minimal cardinal ϑ for which U
has an increasing cofinal subsequence of type ϑ. The coinitiality coi U of a cut U ⊆∗

N is defined as the
minimal cardinal ϑ for which∗N \ U has a coinitial decreasing subsequence of type ϑ. Note that if U has
no greatest element, then cof U and coi U are regular infinite cardinals. (Moreover, in an additive cut,
only {0} can be a greatest element.)

Lemma 2.1. Suppose that κ is an infinite cardinal and the nonstandard universe is κ+-saturated.
Then any κ-determined cut ∅ �= U �

∗
N satisfies the condition cof U ≤ κ or coi U ≤ κ, and if both

of these inequalities hold, then U contains a greatest element (and is an internal set).

Proof. Let

U =
⋃

b∈B

⋂

ξ∈b

Xξ,

where B ⊆ P(κ) and the sets Xξ ⊆∗
N are the same as in (2). For any a ⊆ κ, we set

Xa =
⋂

ξ∈a

Xξ and Ua = {y ∈∗
N : ∃x ∈ Xa (y ≤ x)}.

If a is finite, then the sets Xa and Ua are internal and Ua is a cut in∗
N. Therefore Ua = [0, μa), where

μa = maxUa + 1 or, conventionally, μa = ∞ (if Ua =∗
N). Moreover,

U =
⋃

b∈B

Ub,

and κ+-saturation implies

Ub =
⋂

a∈Pfin(b)

Ua.

Case 1: Ub � U for all b ∈ B. Taking hb ∈ U \ Ub, we obtain μa ≤ hb for at least one a = a(b)
belonging to Pfin(b) (because Ub =

⋂
a∈Pfin(b) Ua); therefore, the set {μa(b) : b ∈ B} is cofinal in U .

Case 2: Ub = U for some b ∈ B. If Ub � Ua for all a ∈ Pfin(b), then the set

{μa �= ∞ : a ∈ Pfin(b)}
of cardinality ≤ κ is coinitial in ∗

N \ U , and if Ub = Ua for some a ∈ Pfin(b), then U = Ub = Ua is an
internal set whose cofinality and coinitiality are equal to 1.

Finally, if a set K ⊆ U of cardinality ≤ κ is cofinal in U and a set L ⊆∗
N \ U of cardinality ≤ κ

is coinitial in ∗
N \ U , then κ+-saturation implies the existence of an x ∈ K and a y ∈ L which are,

respectively, the greatest element of U and the least element of∗N \ U ; thus, U is an internal set.

Conversely, any cut U ⊆∗
N satisfying the condition cof U ≤ κ or coi U ≤ κ is κ-determined. Indeed,

if a sequence {uξ}ξ<κ is, say, cofinal in U , then

U =
⋃

ξ<κ

Uξ,

where all sets Uξ = [0, uξ ] are internal and, therefore, κ-determined, and it remains to apply Lemma 11.
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3. MONADIC PARTITIONS

Any additive (i.e., such that a ∈ U ⇒ 2a ∈ U ) cut U ⊆∗
N induces the equivalence relation MU on∗

N

defined by xMU y if |x − y| ∈ U . The equivalence classes

[x]U = {y : xMU y} = {y : |x − y| ∈ U}
are called U-monads; they form the coset space

∗
N/U =∗

N/MU = {[x]U : x ∈∗
N}.

The relations MU themselves are called monadic equivalence relations, or simply monadic partitions.
Two degenerate examples are U = ∅, for which MU coincides with the equality on ∗

N and is often
denoted by D∗N (the diagonal of ∗N). If U =∗

N, then all x ∈∗
N are MU -equivalent to each other. A

nondegenerate example is U = N, in which xMU y if and only if |x − y| is finite.
Various monads are often encountered in works on nonstandard analysis and nonstandard models of

Peano arithmetic. Monads induced by additive cuts in ∗
N were studied in, e.g., [2], [3]. In this paper,

we consider monadic partitions and equivalences from the point of view of the existence of transversals,
smoothness, and reducibility.

Recall that a transversal for an equivalence relation E is any set which has precisely one common
element with each E-class. Let κ be an infinite cardinal. An equivalence relation E on ∗

N is said to be
κ-smooth if there exists a κ-determined (as a set of pairs) function f : ∗N →∗

N for which

xE y ⇔ f(x) = f(y) for all x, y ∈∗
N.

Finally, if E and F are equivalence relations on ∗
N, then E ≤κ F (the κ-determined reducibility of E

to F) is understood as the existence of a κ-determined set R ⊆∗
N ×∗

N such that

(a) the relation R is invariant in the sense that xEx′ ⇔ y F y′ for all pairs
〈x, y〉 and 〈x′, y′〉 from R, and

(b) dom R =∗
N.

(3)

In this case, we can define an embedding F : ∗N/E →∗
N/F so that F ([x]E) = [y]F if there exists

a y′ ∈ [y]F for which 〈x, y′〉 ∈ R. Note that the κ-smoothness of E defined above is equivalent to
E ≤κ D∗N.

According to the following theorem, the relation of κ-determined reducibility between monadic
partitions is determined by their cofinalitites (coinitialities) and the parameter

widU =
⋂

u∈U, u′∈∗N\U

[
0,

u′

u

)
= {h ∈∗

N : ∀x (x ∈ U ⇒ hx ∈ U)},

which we call the width of the cut U �
∗
N.2 It is easy to verify that widU is a cut as well; moreover, it is

not only additive but also multiplicative, i.e., a ∈ wid U ⇒ a2 ∈ widU .
Additive cuts of minimal possible width (except {0}) are the cuts U = hN, where h ∈∗

N, and
U = h/N, where h ∈∗

N \ N; for these cuts, widU = N. We call them slow cuts. The other additive
cuts (i.e., all cuts but those of the forms hN and h/N) are said to be fast. Note that even ℵ1-saturation
prohibits the existence of cuts which can be written both as cN and as c′/N.

Theorem 3.1. Suppose that κ is an uncountable cardinal and the given nonstandard universe is
κ+-saturated. Suppose also that U and V are additive κ-determined cuts in∗

N different from ∅,
{0}, and∗

N. Then

(i) D∗N ≤κ MU ;

(ii) the following three assertions are equivalent:

2It is also called thickness.
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(1) MU is κ-smooth;

(2) MU has a κ-determined transversal;

(3) either (a) U = hN, where h ∈∗
N, or (b) U = h/N, where h ∈∗

N \ N, and c ≤ κ;3

(iii) if U is a cut of type (ii) (3), then MU ≤κ MV ;

(iv) if cof U ≤ κ, cof V ≤ κ, and U is not of the form U = hN, where h ∈∗
N, then MU ≤κ MV if

and only if cof U = cof V and wid U ⊆ wid V ;

(v) if coi U ≤ κ, coi V ≤ κ, and U is not of the form U = h/N, where h ∈∗
N \ N, then MU ≤κ MV

if and only if coi U = coi V and wid U ⊆ widV ;

(vi) if cof U ≤ κ but coi V ≤ κ or, vice versa, coi U ≤ κ but cof V ≤ κ, then MU �≤κ MV , except for
the case in which U satisfies (ii) (3).

Thus, monadic relations are linearly ≤κ-(pre)ordered inside each cofinality/coinitiality type; between
these types, there are no relations except those induced by cuts of the forms hN and h/N. There is
an open question related to Theorem 3.1: Suppose that κ < c, U = h/N for some h ∈∗

N, and V is a
κ-determined additive cut with ω < coi U ≤ κ; can the relation MU ≤κ MV hold?

For κ = ℵ0, Theorem 3.1 was proved in [4].

4. PRELIMINARY REMARKS AND THE BEGINNING OF THE PROOF

We start with the following definition. We say that an internal set X ⊆∗
N is sparse if there exists a

number s ∈∗N \ N such that #(X ∩ I)/s is infinitesimal for any interval I of length s in∗N.

Proposition 4.1. Under the conditions of Theorem 3.1, ∗
N is not a union of at most κ sparse

internal sets.

Proof. By saturation, any cover by internal sets of cardinality ≤ κ has a finite subcover; therefore, it
suffices to prove the required assertion for finite unions. Let

∗
N =

⋃

k≤n

Xk,

where n ∈ N and each Xk is a sparse set with parameter sk ∈∗
N \ N. We put s = s0 · s1 · · · sn and

I = [0, s). Then #(Xk ∩ I)/s is infinitesimal for any k, which contradicts the n being finite.

Proof of Theorem 3.1. We start with several simple assertions.
(i) Let h ∈∗

N \ U . Then the map x �→ [xh] witnesses D∗N ≤κ MU .
(ii) If MU has a κ-determined transversal, then it is κ-smooth. (For x ∈∗

N, we set f(x) = tx, where
tx is the unique element of the transversal that is equivalent to x.)

Now, suppose that MU is κ-smooth, i.e., MU ≤κ D∗N. Then, by (i), MU ≤κ MV for any other additive
κ-determined cut; thus, by (vi), the cut U can be only of type (ii) (3).

Finally, suppose that U is a cut of type (ii) (3). For the case in which U = hN for h ∈∗
N, the existence

of even countably determined transversals was proved in [3] (see also [4]). Suppose that U = h/N, where
h ∈∗

N \ N, and c ≤ κ. In this case, MU has no countably determined transversals ([3]; see also [4] or
9.7.14 in [5]). However, the inequality c ≤ κ simplifies the situation. Indeed, obviously, the restricted
relation MU � [0, h) has precisely c equivalence classes, and since c ≤ κ, we can choose one element in
each of them, thus obtaining a κ-determined transversal T ⊆ [0, h) for MU � [0, h) (by Lemma 11). It
remains to reproduce a copy of T in each interval of the form [ph, ph + h), where p ∈∗

N, by applying an
appropriate translation.

(iii) The cut MU is κ-smooth by (ii). It remains to apply (i).

The other assertions of the theorem are proved in the following sections.

3By c = 2ℵ0 we denote the cardinality of the continuum.
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5. COFINAL CUTS

In this section, we prove the implication ⇐ in assertion (iv) of Theorem 3.1. Take increasing
sequences {uξ}ξ<ϑ and {vη}η<τ cofinal in U and V , respectively; here ϑ = cof U ≤ κ and τ = cof V ≤ κ
are regular infinite cardinals.

Thus, we assume that MU ≤κ MV . This implies the existence of a κ-determined set R ⊆∗
N ×∗

N

satisfying the conditions dom R =∗
N and

xRy ∧ x′Ry′ ⇒ (|x − x′| ∈ U ⇔ |y − y′| ∈ V ) 4 (4)

for all x, y, x′, y′ ∈∗
N. By definition (2), we have R =

⋃
b∈B Rb, where B ⊆ P(κ), Rb =

⋂
ζ<κ Rζ for

each b ⊆ κ, and all of the sets Rζ ⊆∗
N ×∗

N are internal.

Part 1. Let us prove that wid U ⊆ widV . Suppose that, on the contrary, widU �⊆ wid V , and let
e ∈ widU \ wid V . We claim that,

for any b ∈ B, there exists a finite set a(b) ⊆ b for which

the set Db = dom Ra(b) is sparse in the sense of Proposition 4.1.
(5)

This contradicts 4.1, because∗
N = domR =

⋃
b∈B Db (this follows from Rb ⊆ Ra(b)) and, on the other

hand, the family of all finite sets a ⊆ κ has cardinality κ.
To prove (5), take b ∈ B. We have Rb ⊆ R; thus, by (4),

(∀ ζ ∈ b (xRζy ∧ x′Rζy
′) ∧ ∃ η < τ(|y − y′| < vη)) ⇒ (∃ ξ < ϑ (|x − x′| < uξ))

for all x, x′, y, y′ ∈∗
N. κ+-Saturation implies

∀ η < τ ∃fin a ⊆ b ∃ ξ < ϑ ∀x, x′, y, y′ ∈∗
N :

xRay ∧ ∃x′Ray
′ ∧ |y − y′| < vη ⇒ |x − x′| < uξ, (6)

where ∃fin a means the existence of a finite a. Using a similar argument, we obtain

∀ ξ′ < ϑ ∃fin a′ ⊆ b ∃ η′ < τ ∀x, x′, y, y′ ∈∗
N :

xRa′y ∧ x′Ra′y′ ∧ |x − x′| < uξ′ ⇒ |y − y′| < vη′ . (7)

By the choice of e ∈ widU \ wid V , there exists an index η < τ such that evη /∈ V and, at the same
time, euξ ∈ U for any ξ. Choose a and ξ so that (6) holds for this η. Since euξ ∈ U , it follows that there
exists an index ξ′ > ξ for which uξ′/uξ > e, and since U is a fast cut, we can assume, without loss of
generality, that the relation (uξ′/uξ) : e is infinitely large. Now, take m′ and η′ for which (7) holds. We
can assume that a ⊆ a′ and η ≤ η′; otherwise, we take the union in the former case and a maximum in
the latter. For all 〈x, y〉 and 〈x′, y′〉 from the set Ra′ , we have

|y − y′| < vη ⇒ |x − x′| < uξ and |x − x′| < uξ′ ⇒ |y − y′| < vη′ . (8)

To prove the sparsity of the set Db = dom Ra′ , note that any interval of length vη′ in∗
N consists of

approximately s = v′η/vη subintervals of length vη. Accordingly, any interval of length vξ′ consists of
approximately t = u′

ξ/uξ subintervals of length uξ. The fraction s/t is infinitesimal by the choice of ξ′.
It follows from (8) that the fraction #(I ∩ Db)/#(I) is infinitesimal for any interval I of length uξ′ in∗

N.
Therefore, Db is a sparse set, as required.

Part 2. Let us derive the equality cof U = cof V , i.e., prove that ϑ = τ . Suppose that, on the
contrary, ϑ �= τ ; to be definite, let ϑ < τ . Again, it suffices to prove (5). Take b ∈ B. From cardinality
considerations, there exists an index η < τ such that (7) holds for all ξ′ < ϑ simultaneously; thus,

∀ ξ′ < ϑ ∃fin a′ ⊆ b ∀x, x′, y, y′ ∈∗
N :

xRa′y ∧ x′Ra′y′ ∧ |x − x′| < uξ′ ⇒ |y − y′| < vη. (9)

4If R is a binary relation (a set of pairs), then xRy means that 〈x, y〉 ∈ R.
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Choose an index ξ < ϑ and finite a ⊆ b so that (6) holds for this η. Applying (9) to ξ′ > ξ for which the
fraction uξ′/uξ is infinitely large, we obtain a finite a′ ⊆ b such that a ⊆ a′ and, for all x, x′ belonging to
Db = dom Ra′ , we have

|x − x′| < uξ′ ⇒ |x − x′| < uξ. (10)

This implies the sparsity of Db.
For τ < ϑ, the argument is somewhat different. Namely, there exists an ordinal ξ < ϑ such that (6)

holds for all η′ < τ simultaneously; thus,

∀ η′ < τ ∃fin a ⊆ b ∀x, x′, y, y′ ∈∗
N :

xRay ∧ x′Ray
′ ∧ |y − y′| < vη′ ⇒ |x − x′| < uξ. (11)

Choose ξ′ > ξ so that the fraction uξ′/uξ is infinitely large and take an ordinal η′ < τ and a finite set
a′ ⊆ b such that (7) holds for ξ′. Applying (11) to η′, we again obtain a finite set a ⊆ b such that a′ ⊆ a
and (10) holds for all x, x′ ∈ Db = dom Ra, etc.

6. COINITIAL CUTS

Let us prove the implication ⇐ in assertion (v) of Theorem 3.1. Calculations differ from those
presented in Sec. 5 only in some fairly obvious details. We only sketch the proof of the inclusion
wid U ⊆ wid V . We start with decreasing sequences {uξ}ξ<ϑ and {vη}η<τ coinitial in U and V ,
respectively.

Suppose that e ∈ wid U \wid V , contrary to the required assertion. The same argument as that used
in Sec. 5 proves the relations

∀ η < τ ∃fin a ⊆ b ξ < ϑ ∀x, x′, y, y′ ∈∗
N :

xRay ∧ x′Ray
′ ∧ |x − x′| < uξ ⇒ |y − y′| < vη, (6’)

∀ξ′ < ϑ ∃fin a′ ⊆ b η′ < τ ∀x, x′, y, y′ ∈∗
N :

xRa′y ∧ x′Ra′y′ ∧ |y − y′| < vη′ ⇒ |x − x′| < uξ′ , (7’)

yields two pairs of indices ξ < ξ′ and η < η′ for which vη/vη′ < e and uξ/uξ′ > e, and reduces the key
relation (8) to the form

|y − y′| < vη′ ⇒ |x − x′| < uξ′ and |x − x′| < uξ ⇒ |y − y′| < vη. (8’)

Since U is a fast cut, we can again choose ξ′ so that the fraction (uξ/uξ′) : e is infinitely large and obtain
a contradiction in the same way as above.

7. THE MIXED CASE

In this section, we prove assertion (vi) of Theorem 3.1. Suppose that, on the contrary, a κ-determined
set R ⊆∗

N ×∗
N witnesses MU ≤κ MV , i.e., dom R =∗

N and (4) holds. As above, R =
⋃

b∈B Rb, where
B ⊆ P(κ), Rb =

⋂
ζ<κ Rζ , and all of the sets Rζ ⊆∗

N ×∗
N are internal.

Case 1: cof U ≤ κ, coi V ≤ κ, and U is not of the form hN. Take an increasing cofinal sequence
{uξ}ξ<ϑ in U and a decreasing coinitial sequence {vη}η<τ in ∗

N \ V ; here ϑ = cof U ≤ κ and τ =
coi V ≤ κ are regular infinite cardinals.

Let b ∈ B. Arguing as in Sec. 5, we obtain

∃fin a ⊆ b ∃ ξ < ϑ ∃ η < τ ∀x, x′, y, y′ ∈∗
N :

xRay ∧ x′Ray
′ ∧ |y − y′| < vη ⇒ |x − x′| < uξ (12)

and, conversely,

∀ ξ′ < ϑ ∀ η < τ ∃fin a′ ⊆ b ∀x, x′, y, y′ ∈∗
N :

xRa′y ∧ x′Ra′y′ ∧ |x − x′| < uξ′ ⇒ |y − y′| < vη. (13)
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Take ξ, η, and a as in (12), an ordinal ξ′ ≥ ξ for which uξ′/uξ is infinitely large, and, finally, a set a′ as
in (13) (for ξ′) such that a ⊆ a′. For all x and x′ from the set Db = dom Ra′ , we have

|x − x′| < uξ′ ⇒ |x − x′| < uξ;

thus, Db is sparse. This proves (5) and leads to the desired contradiction.

Case 2: coi U ≤ κ, cof V ≤ κ, and either U is not of the form h/N or U = h/N and κ < c. Take a
decreasing coinitial sequence {uξ}ξ<ϑ in∗

N \ U and an increasing cofinal sequence {vη}η<τ in V .
Let b ∈ B. Arguing as above, we obtain

∃fin a ⊆ b ∃ ξ < ϑ ∃ η < τ ∀x, x′, y, y′ ∈∗
N :

xRay ∧ x′Ray
′ ∧ |x − x′| < uξ ⇒ |y − y′| < vη (14)

and, conversely,

∀ ξ′ < ϑ ∀ η < τ ∃fin a′ ⊆ b ∀x, x′, y, y′ ∈∗
N :

xRa′y ∧ x′Ra′y′ ∧ |y − y′| < vη ⇒ |x − x′| < uξ′ . (15)

Take ξ, η, and a as in (12) and a set a′ ⊇ a as in (13) with some ξ′ > ξ. For all x and x′ from the set
Db = dom Ra′ , we have

|x − x′| < uξ ⇒ |x − x′| < uξ′ .

If U �= h/N, then ξ′ can be chosen so that u′
ξ/uξ is infinitesimal. In this case, each set Db turns out to

be sparse, and so on.
It remains to consider the case in which U = h/N for h ∈∗

N \ N and κ < c. We can assume that
ϑ = N and uξ = h/ξ for all ξ ∈ N. In this case, sparse sets do not work, and we must use a different idea.

Take b ∈ B and ξ, η, and a = a(b) as in (14). Note that |y − y′| < vη implies y MV y′, which is,
in turn, equivalent to xMU x′ provided that xRy and x′Ry′. Thus, for all x, x′ ∈ Db = dom Ra(b) with
|x− x′| < uξ, we have xMU x′. However, the interval I = [0, h] in∗

N is partitioned into ξ subintervals of
length uξ, and ξ is finite. Therefore, Db ∩ I intersects only finitely many MU -classes. But there are only
≤ κ sets of the form a(b) (because card Pfin(κ) = κ) and, hence, ≤ κ sets of the form Db = dom Ra(b),
and their union covers ∗

N. Thus, I intersects ≤ κ MU -classes, which contradicts the inequality
κ < c = card(I/MU ).

8. CONSTRUCTION OF REDUCTIONS

In this section, we prove the implication ⇒ in the assertions (iv) and (v) of Theorem 3.1.
(iv) Suppose that coi U = coi V = ϑ ≤ κ (where ϑ is a regular infinite cardinal) and widU ⊆ wid V .

Let us prove that MU ≤κ MV . Choose increasing cofinal sequences {uξ}ξ<ϑ and {vξ}ξ<ϑ in U and V ,
respectively. Since the cuts are additive, it follows that we can assume all terms uξ and vξ of these
sequences to be hyperinteger powers of the number 2 in∗

N.
The relation widU ⊆ widV means that

∀ η ∃ ξ ∀ ξ′ > ξ ∃ η′ > η

(
uξ′

uξ
≤ vη′

vη

)
.

(Here and in the course of the proof, ξ, ξ′, η, η′, and ζ denote ordinals smaller than ϑ.)
This allows us to separate out an unbounded subsequence in {uξ}ξ<ϑ for which, after renumbering,

we obtain

∀ ζ ∀ ξ > ζ ∃ η > ζ

(
uξ

uζ
≤ vη

vζ
, i.e.,

vζ

uζ
≤ vη

uξ

)
;

then, we separate out an unbounded subsequence in {vη}η<ϑ so that, after renumbering,

∀ ξ < η < ϑ

(
vξ

uξ
≤ vη

uη
, i.e.,

uη

uξ
≤ vη

vξ

)
. (16)
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Under the above assumptions, the function f that maps each uξ to vξ satisfies the following
conditions: dom f = {uξ : ξ < ϑ} (this is a set of cardinality ϑ in∗

N), dom f and ran f consist of powers
of the number 2, and f(u)/u ≤ f(u′)/u′ for all u < u′ in dom f (by (16)). Using κ+-saturation, it is
easy to prove the existence of an internal function ϕ such that

D = dom ϕ is a hyperfinite subset of ∗N, dom f ⊆ dom ϕ, ϕ(uξ) = vξ for
all ξ, the sets D and Z = ranϕ consist of powers of the number 2, and
ϕ(d)/d ≤ ϕ(d′)/d′ for all d < d′ in D; as is easy to show, this implies that ϕ
is a bijection, the sets D ∩U and D ∩ V are cofinal in U and V , respectively,
and the sets D \U and D \ V are coinitial in∗

N \U and∗
N \ V , respectively.

(17)

Suppose that h = #(D) = #(Z) and the elements of D = {d1, d2, . . . , dh} and Z = {z1, z2, . . . , zh}
are enumerated in increasing order in ∗

N so that zν = ϕ(dν) for each ν = 1, . . . , h. Since all terms dν

and zν are powers of 2, it follows that the fractions jν = dν+1/dν and kν = zν+1/zν belong to ∗
N, and,

under the above assumptions, jν ≤ kν . Moreover, d1 ∈ U and z1 ∈ V .

Each number x ∈∗
N admits a unique internal representation in the form x = α0 +

∑h
ν=1 αν dν ,

where αν ∈∗
N, α0 < d1, and 0 ≤ αν < jν for all ν = 1, . . . , h − 1 (but the coefficient αh is, of course,

unbounded). We could take the map σ(x) =
∑h

ν=1 ανzν for a reduction of MU to MV , but this is not
exactly what we need. Indeed, suppose that

x =
h∑

ν=1

dν and x′ =
h−1∑

ν=1

(jν − 1) dν ;

then x − x′ = 1, but the value of |σ(x) − σ(x′)| may be very large if, e.g., kν > jν for all ν. A certain
modification is needed.

Suppose that x = α0 +
∑h

ν=1 αν dν ∈∗
N, where, as above, α0 < d1 and 0 ≤ αν < jν for 1 ≤ ν < h.

We say that x is a number of type 1 if there exist indices 1 ≤ ν ′ < ν ′′ < h such that dν′ ∈ U , dν′′ /∈ U ,
and αν = jν − 1 for each ν in the range ν ′ ≤ ν ≤ ν ′′. In this case, we take maximal ν ′′ and minimal
ν ′ satisfying these conditions and define ᾱν = aν for all ν < ν ′ and all ν > ν ′′; then, we put ᾱν = 0 for
ν ′ ≤ ν ≤ ν ′′ and ᾱν′′+1 = αν′′+1 + 1; finally, we set

x̄ =
h∑

ν=1

ᾱν dν .

Otherwise, we say that x is a number of type 2 and set

x̄ = x.

Note that x̄ − x = α0 + dν′ ∈ U if x is of type 1.
Now, let us prove that the map ρ(x) = σ(x̄) satisfies (3), i.e.,

|x − x′| ∈ U ⇔ |σ(x̄) − σ(ȳ)| ∈ V for all x, x′ ∈∗
N.

Suppose that

x = α0 +
h∑

ν=1

ανdν and y = γ0 +
h∑

ν=1

γνdν ,

where α0, γ0 < d1 and αν , γν < jν for all 1 ≤ ν < h. Suppose also that |x − y| ∈ U . Then we have
|x − y| < dν ∈ U for some 1 ≤ ν < h. To be definite, let x < y. We can assume that the numbers x and
y are of type 2 and, therefore, α0 = γ0 = 0. (Otherwise, we replace these numbers by x̄ and ȳ.) Then
there exist infinitely (but hyperfinitely) many indices ν ′ > ν for which αν′ �= jν′ − 1. We have αν′ = γν′

for any ν ′ ≥ ν, because, by assumption, |x − y| < dν . Hence |σ(x) − σ(y)| ∈ V (because jν′ ≤ kν′ for
all ν ′), as required.

Now, let x < y be as above (and of type 2) but |x − y| /∈ U . The set D′′ = {dν ∈ D : αν �= γν}
is internal; therefore, it has a greatest element dν′′ = max D′′. Moreover, dν′′ /∈ U . (Otherwise,
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|x − y| ∈ U ; see above.) Thus, αν′′ < γν′′ (because x < y). In this case, the only possibility for the
element |σ(x) − σ(y)| ∈ V is the existence of an index ν ′ < ν ′′ such that zν′ ∈ V and γν = 0 and
αν = jν − 1 = kν − 1 for all ν between ν ′ and ν ′′. This contradicts the assumption that x is of type 2.
Thus, |σ(x) − σ(y)| /∈ V , as required.

It remains to check that ρ is a κ-determined map. Note that σ is, obviously, even an internal function;
so, it remains to consider the map x �→ x̄. Of course, it is not internal, but the formulas expressing the
statements that x is a number of type 1 and y = x̄ can be represented as propositional internal relations
with ≤ κ operations of union and intersection (because U has a cofinal subsequence with ≤ κ terms),
after which the result follows from Lemma 11.

(v) Now, suppose that coi U = coi V = ϑ ≤ κ and widU ⊆ widV . Let us prove that MU ≤κ MV .
Choose decreasing coinitial sequences {uξ}ξ<ϑ and {vξ}ξ<ϑ in∗

N \ U and ∗
N \ V , respectively. It can

be assumed that all terms uξ and vξ in these sequences are hyperinteger powers of the number 2 in∗
N.

The relation widU ⊆ wid V means in this case that

∀ η ∃ ξ ∀ ξ′ > ξ ∃ η′ > η

(
uξ′

uξ
≥ vη′

vη

)
.

As in the proof of (iv), we can separate out unbounded subsequences in {uξ}ξ<ϑ and {vη}η<ϑ so that,
after renumbering, we obtain

∀ ξ < η < ϑ

(
vξ

uξ
≥ vη

uη
, i.e.,

uη

uξ
≥ vη

vξ

)
. (18)

Again, the function f(uξ) = vξ can be extended to an internal function ϕ satisfying (17), and so on (as
above).
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