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Abstract—Using the Gandy–Harrington topology and other methods of effective descriptive set
theory, we prove several theorems about compact and σ-compact sets. In particular, it is proved
that any Δ1

1-set A in the Baire space N either is an at most countable union of compact Δ1
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of course, A cannot be σ-compact).
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1. INTRODUCTION

Effective descriptive set theory emerged in the 1950s mainly as a tool for improving and simplifying
constructions of classical descriptive theory and as a mechanism for applying some theorems of
recursion theory to problems of descriptive set theory. However, it soon turned out that effective
descriptive set theory itself leads to setting and solving problems which have no counterparts in classical
descriptive theory. An example is the following basis theorem: Any countable Δ1

1-set A in the Baire
space N = N

N consists of Δ1
1-points. A vague analog of this theorem in classical descriptive theory is

the Luzin–Novikov splitting theorem for plane Borel sets with countable sections.
In this paper, we apply methods of effective descriptive set theory to study the compactness and

σ-compactness of sets A ⊆ N . Our main results are as follows.

Theorem 1.1. For any Δ1
1-set A ⊆ N , precisely one of the following two conditions holds:

I) A coincides with the union U of all sets of the form [T ], where T ⊆ N
<ω is a compact Δ1

1-tree
and [T ] ⊆ A;1

II) there is a set Y ⊆ A homeomorphic to N and closed in A.

Moreover, in case (I), if A �= ∅, then A contains a Δ1
1-point.

Obviously, conditions (I) and (II) in this theorem contradict each other, because any relatively closed
subset of a σ-compact set is itself σ-compact, while the space N and, therefore, the set Y in (II), which
is homeomorphic to N , are not σ-compact.

Theorem 1.2. For any Σ1
1-set A ⊆ N , precisely one of the following two conditions holds:

I) A is contained in the union U of all sets of the form [T ], where T ⊆ N
<ω is a compact

Δ1
1-tree;2

*E-mail: kanovei@rambler.ru
**E-mail: lyubetsk@iitp.ru

1In this case, the set A is σ-compact, because each effective class (in particular, Δ1
1) is at most countable.

2The set U is σ-compact for the same reason as in condition (I) in Theorem 1.1.
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790 KANOVEI, LYUBETSKY

II) there is a set Y ⊆ A closed in N and homeomorphic to N .

Conditions (I) and (II) in this theorem also contradict each other; otherwise, Y would be a closed
subset of the σ-compact set U , which is impossible, as mentioned above.

Note that condition (I) in Theorem 1.2 is weaker than condition (I) in Theorem 1.1, and condition (II)
in Theorem 1.2 is stronger than condition (II) in Theorem 1.1. Theorem 1.1 in which (II) is replaced
by the stronger condition (II) of Theorem 1.2 is no longer valid. Indeed, suppose that A consists of all
points a ∈ 2N for which the set {k : a(k) = 1} is infinite. Then A is not a σ-compact Δ1

1-set, but it is
covered by the compact set 2N; hence there are no sets X ⊆ A closed in N and homeomorphic to N .
Thus, A satisfies neither condition (I) in Theorem 1.1 nor condition (II) in Theorem 1.2.

On the other hand, Theorem 1.1 in which condition (I) is replaced by the weaker condition (I) of
Theorem 1.2 becomes false as well; indeed, there exists a set A (the same as in the preceding paragraph)
which satisfies both condition (I) in Theorem 1.2 and condition (II) in Theorem 1.1. This set itself is
homeomorphic to N by means of the map taking each point x ∈ N to the point a = f(x) ∈ A chosen
so that, for any n, x(n) is equal to the number of zeros between the nth and the (n + 1)th 1 in the
sequence a.

Corollary 1.3. Any σ-compact Δ1
1-set A ⊆ N is a countable union of compact Δ1

1-sets; if such a
set is nonempty, then it contains a Δ1

1-point.

Corollary 1.4. If a Δ1
1-set A ⊆ N is not σ-compact, then it contains a subset homeomorphic

to N and closed in A. If a Σ1
1-set A ⊆ N is not covered by a σ-compact set, then it contains a

subset homeomorphic to N and closed in N .

As usual, the theorems and corollaries remain valid in relativized form, i.e., when the classes Δ1
1

and Σ1
1 are replaced by classes of the form Δ1

1(p) and Σ1
1(p), respectively, where p ∈ N is any fixed

parameter; the proofs of the relativized statements are the same. We do not dwell on this generalization.
The proofs of both theorems are based on methods of effective descriptive set theory; namely, they use

the Gandy–Harrington topology, Kreisel’s choice theorem, and an effective enumeration of Δ1
1-sets.

2. BASIC DEFINITIONS AND RESULTS
We use the standard notations Σ1

1, Π1
1, and Δ1

1 for the effective projective hierarchy classes of points
and subsets of the Baire space N and denote the corresponding projective classes by Σ1

1, Π1
1, and Δ1

1;
for details, see, e.g., [1, Chap. 8] and [2]–[4].

By N
<ω we denote the set of all finite tuples (sequences) of positive integers, including the empty

tuple Λ. The length of a tuple s ∈ N
<ω is denoted by lh s. The concatenation of tuples s ∈ N

<ω and
n ∈ N is denoted by s∧n. For s ∈ N

<ω, we set

Ns = {x ∈ N : s ⊂ x} (this is a Baire interval in N ).

A set T ⊆ N
<ω is called a tree if s ∈ T whenever s∧n ∈ T for at least one n. Clearly, any nonempty

tree contains Λ. A tree T ⊆ N
<ω is said to be compact if

1) it has no pendant vertices, i.e., if s ∈ T , then s∧n ∈ T for at least one n;

2) it is finitely branched, i.e., if s ∈ T , then s∧n ∈ T only for finitely many n.

A tree T is compact if and only if so is the set

[T ] = {x ∈ N : ∀m(x � m ∈ T )}.

Given any sets X, Y, and P ⊆ X × Y, we define the projection of P on X and the x-section of P for
x ∈ X as

prP = {x ∈ X : ∃y(〈x, y〉 ∈ P )} and (P )x = {y ∈ Y : 〈x, y〉 ∈ P},
respectively. We say that a set P ⊆ X × Y is single-valued if each of its sections (P )x (where x ∈ X)
contains at most one point; we say that P is countable-valued if each section (P )x is at most countable.

The proofs of our main theorems use the following well-known results of effective descriptive set
theory (see [5] and [6] for details).

MATHEMATICAL NOTES Vol. 91 No. 6 2012



EFFECTIVE COMPACTNESS AND SIGMA-COMPACTNESS 791

Theorem 2.1 (on separation). If Σ1
1-sets X,Y ⊆ N are disjoint, then there exists a Δ1

1-set Z ⊆ N
such that X ⊆ Z and Y ∩ Z = ∅.

Theorem 2.2 (Kreisel’s choice theorem). If P ⊆ N × N is a Π1
1-set and its projection prP is a

Δ1
1-set, then there exists a Δ1

1-function f : pr P → N such that

〈x, f(x)〉 ∈ P for all x ∈ prP.3

The following theorem provides a convenient effective enumeration of all Δ1
1-sets X ⊆ N

<ω. Actually,
the set N

<ω of all (finite) tuples of positive integers can be identified with N by means of any recursive
bijection between N and N

<ω.

Theorem 2.3 (on enumeration of Δ1
1-sets). There exist Π1

1-sets E ⊆ N and W ⊆ N × N
<ω and a

Σ1
1-set W ′ ⊆ N × N

<ω satisfying the following conditions:

i) if e ∈ E, then the sets

(W )e = {s ∈ N
<ω : 〈e, s〉 ∈ W} and (W ′)e

coincide;

ii) T ⊆ N
<ω is a Δ1

1-set if and only if there exists a number e ∈ E for which

T = (W )e = (W ′)e.

Corollary 2.4. The sets

D = {T ⊆ N
<ω : T is Δ1

1}
and

{〈p, T 〉 : p ∈ N ∧ T ⊆ N
<ω ∧ T is Δ1

1(p)}

belong to the class Π1
1.

Proof. Take the same E, W , and W ′ as in Theorem 2.3. We have

T ∈ D ⇐⇒ ∃e(e ∈ E ∧ T = (W )e)

⇐⇒ ∃e
(
e ∈ E ∧ ∀s ∈ N

<ω(s ∈ (W ′)e =⇒ s ∈ T =⇒ s ∈ (W )e)
)
,

as required.

Theorem 2.5. If a Δ1
1-set P ⊆ N × N is countable-valued, then

i) pr P is a Δ1
1-set;

ii) P is a countable union of single-valued Δ1
1-sets;

iii) P is uniformized by a Δ1
1-set.

Theorems 2.1–2.3 and 2.5 and Corollary 2.4 remain true under the replacement in their statements
of the classes Σ1

1, Π1
1, and Δ1

1 by the relativized classes Σ1
1(p), Π1

1(p), and Δ1
1(p), where p ∈ N is any

parameter. Therefore, Theorems 2.1, 2.2, and 2.5 are valid for the projective classes Σ1
1, Π1

1, and Δ1
1.

3In this situation, we say that the set P is uniformized by the function f .
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3. THE GANDY–HARRINGTON TOPOLOGY

The Gandy–Harrington topology on the Baire space N consists of all unions of Σ1
1-sets S ⊆ N .

This topology contains the Polish topology of N , but it is neither Polish nor even metrizable.
Indeed, there exists a Π1

1-set P ⊆ N which is not a Σ1
1-set. By definition, P is closed in the Gandy–

Harrington topology. Suppose that this topology is metrizable. In metric spaces, all closed subsets are
of type Gδ . Hence

P =
⋂

n

⋃

m

Smn,

where all Smn ⊆ N are Σ1
1-sets (i.e., base open sets in the Gandy–Harrington topology). But the

class Σ1
1 is closed with respect to countable unions and intersections. Thus, P turns out to be a Σ1

1-set,
which contradicts the assumption.

Nevertheless, although the Gandy–Harrington topology itself is not Polish, it has a property which
makes it possible to obtain results typical of Polish spaces.

Definition 3.1. A Polish net for a family of sets F is a family {Dn : n ∈ N} of open dense sets
Dn ⊆ F such that

⋂
n Fn �= ∅ for any sequence of sets Fn ∈ Dn with the finite intersection property,

i.e., satisfying the condition
⋂

k≤n

Fk �= ∅ for each n.

Recall that a set D ⊆ F is said to be open dense if

∀F ∈ F ∃D ∈ D (D ⊆ F )

and

∀F ∈ F ∀D ∈ D (F ⊆ D =⇒ F ∈ D).4

For example, the family of all nonempty closed subsets in any complete metric space X has a Polish
net: for Dn one can take the set of all nonempty closed sets of diameter ≤ n−1 in X. The following
theorem is less elementary. Both the theorem and its corollary are well known; see, e.g., [7], [8], or [9].

Theorem 3.2. The family P of all nonempty Σ1
1-sets in the space N has a Polish net.

Corollary 3.3. The set N with the Gandy–Harrington topology has the Baire property, i.e., all
comeager5 sets are dense in this space.

Proof of Theorem 3.2 (sketch). Let P ⊆ N × N . We set

pr P = {a : ∃b P (a, b)}
(this is the projection of P ) and

Pst = {〈a, b〉 ∈ P : s ⊂ a ∧ t ⊂ b} for s, t ∈ N
<ω.

By D(P, s, t) we denote the family of all nonempty Σ1
1-sets X ⊆ N such that

either X ∩ prPst = ∅ or X ⊆ prPs∧i,t∧j for some i, j ∈ N.

(Note that, in the latter case, the number i is unique, but j may be nonunique.) Since the effective
class Π0

1 is countable, we can choose an enumeration {Dn : n ∈ N} of all families of the form D(P, s, t),
where P ⊆ N × N is a Π0

1-set. Let us prove that all Dn form a Polish net for P.

4A set D satisfying only the first condition is said to be dense. If a set D ⊆ F is dense, then the set defined as
D ′ = {F ∈ F : ∃D ∈ D(F ⊆ D)} is open dense. The openness and density defined as above can be associated with
a certain topology on F , but we regard them as purely combinatorial properties here.

5We use the term comeager for sets complementary to meager (first-category) sets in a given topological space.
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EFFECTIVE COMPACTNESS AND SIGMA-COMPACTNESS 793

It is easy to show that D(P, s, t) is an open dense set in P in the sense of Definition 3.1, whatever the
Π0

1-set P ⊆ N × N . Thus, all of the sets Dn are open and dense in P.

Consider a sequence of nonempty Σ1
1-sets Xn ∈ Dn with the finite intersection property. Let us prove

that
⋂

n Xn �= ∅. The sets

Yn =
⋂

k≤n

Xk

are nonempty; obviously, they belong to Σ1
1 (as well as the sets Xk) and satisfy the condition Yn ⊆ Xn.

Therefore, we have Yn ∈ Dn, because the Dn are open dense. Finally, the sets Yn not only have the finite
intersection property but also are contained in each other, i.e., Yn+1 ⊆ Yn for all n. It suffices to prove
that

⋂
n Yn �= ∅.

We say that a set X ⊆ N is positive if there exists a subscript m for which Ym ⊆ X. For every n,
we fix a Π0

1-set

Pn ⊆ N × N for which Yn = prPn.

If s, t ∈ N
<ω and the projection prPn

st is positive, then, by the construction of the sets Yn, there exists a
unique i and some j for which the projection prPn

s∧i,t∧j is positive too. Indeed, suppose that Ym ⊆ prPn
st

(the existence of such an m follows from positivity). The family D(Pn, s, t) coincides with some Dk;
hence there exists a subscript k for which Yk ∈ D(Pn, s, t). Thus,

either Yk ∩ pr Pn
st = ∅, or Yk ⊆ prPn

s∧i,t∧j for some i, j ∈ N.

The former case cannot occur, because Ym ⊆ prPn
st and the sets Yj are contained in each other.

Therefore, Yk ⊆ prPn
s∧i,t∧j for some i, j ∈ N, and the projection Pn

s∧i,t∧j is positive. It follows that
there exists a unique point a = an ∈ N and a (not necessarily unique) point b = bn ∈ N for which the
projections prPn

a�k,b�k are positive for all k. The the fact that the sets Pn are closed implies 〈an, bn〉 ∈ Pn;
hence an ∈ Xn for each n.

It remains to prove that the points an coincide, i.e., am = an even if m �= n. To this end, we simply
note that if projections pr Pst and pr Qs′t′ are both positive (even for two different sets P and Q!), then,
by virtue of the same finite intersection property, we have either s ⊆ s′ or s′ ⊆ s.

4. COMPACT Δ1
1-SETS

Clearly, if T ⊆ N<ω is a Δ1
1-tree, then

[T ] = {a ∈ N : ∀m(a � m ∈ T )}

is a Δ1
1-set, because

x ∈ [T ] ⇐⇒ ∀m(x � m ∈ T ).

Lemma 4.1. If F ⊆ N is a closed Δ1
1-set and A ⊆ F is a compact Σ1

1-set, then there exists a
compact Δ1

1-tree T ⊆ N
<ω for which A ⊆ [T ] ⊆ F . In the special case A = F , the compactness of

the Δ1
1-set A ⊆ N implies the existence of a compact Δ1

1-tree T ⊆ N
<ω for which A = [T ].

Proof. Part 1. First, let us try to find a Δ1
1-tree S (not necessarily compact) for which F = [S]. Since

the complementary Δ1
1-set G = N \ F is open, it follows that, for

P = {〈x, t〉 : x ∈ G ∧ t ∈ N
<ω ∧ x ∈ Nt ⊆ G} ⊆ N × N

<ω,

we have domP = G. Moreover, P is a Π1
1-set, because the key relation Nt ⊆ G can be expressed by the

Π1
1-formula

∀x(t ⊂ x =⇒ x ∈ G).

MATHEMATICAL NOTES Vol. 91 No. 6 2012
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Therefore, Theorem 2.2 gives a Δ1
1-function f : G → N

<ω such that x ∈ Nf(x) ⊆ G for all x ∈ G. The
set

U = {f(x) : x ∈ G} = {t ∈ N
<ω : ∃x ∈ G (f(x) = t)}

belongs to Σ1
1 and satisfies the condition G =

⋃
t∈U Nt. However,

V = {t ∈ N
<ω : Nt ⊆ G} = {t ∈ N

<ω : ∀x(x ∈ Nt =⇒ x ∈ G)}

is a Π1
1-set; moreover, U ⊆ V and G =

⋃
t∈V Nt. By Theorem 2.1 (on separation), there exists a

Δ1
1-set W for which U ⊆ W ⊆ V ; we then still have G =

⋃
t∈W Nt. Let

S = {s ∈ N
<ω : ∀t (t ∈ W =⇒ t �⊆ s)}.

It is easy to see that S is a Δ1
1-tree (which may have pendant vertices) and [S] = F ; this completes the

first part of the proof.

Part 2. Note that the set P of all pairs 〈s, u〉 for which s ∈ N
<ω, u ⊆ N is finite and nonempty, and

∀x ∈ N
(
(x ∈ A ∧ s ⊂ x) =⇒ ∃k ∈ u(s∧k ⊂ x) ∧ ∀k ∈ u(s∧k ∈ S)

)

is a Π1
1-set in the space N × PfinN, where the second multiplier (the set of all finite u ⊆ N) is identified

with N by means of a suitable recursive bijection. Moreover, domP = N
<ω. (Indeed, if there is no x ∈ A

for which s ⊂ x, then 〈s, u〉 ∈ P for any finite u, and if such a point x exists, then the set

u = {x(n) : s ⊂ x ∈ A}, where n = lh s,

is finite by compactness, and we take this set.) Thus, we again have a Δ1
1-function f : N

<ω → PfinN

such that 〈s, f(s)〉 ∈ P for all s ∈ N
<ω. It remains to set

T = {s ∈ N
<ω : ∀n < lh s(s(n) ∈ f(s � n))}.

Corollary 4.2. Any compact Δ1
1-set A ⊆ N contains a Δ1

1-point x ∈ A.

Proof. By Lemma 4.1, we have A = [T ] for a suitable compact Δ1
1-tree T ⊆ N

<ω. For x we take the
lexicographically leftmost branch of the tree T , so that, for each n, we have

x(n) = min
{
s(n) : s ∈ T ∧ n < lh s ∧ s � n = 〈x(0), . . . , x(n − 1)〉

}
.

5. PROOF OF THE FIRST MAIN THEOREM

We start the proof of Theorem 1.1 by showing that the set U in condition (I) of Theorem 1.1 (i.e., the
union of all compact Δ1

1-sets K ⊆ A) is of class Π1
1. Take the same Π1

1-sets E ⊆ N and W ⊆ N × N
<ω

and the Σ1
1-set W ′ ⊆ N × N

<ω as in Theorem 2.3. We have

x ∈ U ⇐⇒ ∃e
(
e ∈ E ∧ (W )e is a compact tree ∧ x ∈ [(W )e] ⊆ A

)
.

The property of being a compact tree is expressed by a boringly long arithmetic formula; it would occupy
several lines here, and we do not write it out. The inclusion [(W )e] ⊆ A is expressed by the Π1

1-formula

∀y(∀n(y � n ∈ (W )e) =⇒ y ∈ A),

where y � n ∈ (W )e can be replaced by 〈e, y � n〉 ∈ W . We have a Π1
1-formula prefixed by the arithmetic

quantifier ∃e, which is again a Π1
1-formula. Thus, U ∈ Π1

1. This means that A′ = A \ U is a Σ1
1-set. It

remains to prove that if the set A′ is nonempty, then it contains a set Y ⊆ A′ homeomorphic to N and
closed in A′.

Lemma 5.1. The set A′ has no nonempty closed σ-compact Σ1
1-subsets.
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Proof. First, let us prove that A′ has no nonempty compact Σ1
1-subsets. Suppose that, on the contrary,

∅ �= Z ⊆ A′ is a compact Σ1
1-set. If F is a closed Δ1

1-set for which Z ⊆ F ⊆ A, then, by Lemma 4.1,
there exists a compact Δ1

1-tree T ⊆ N
<ω satisfying the condition

Z ⊆ [T ] ⊆ F ⊆ A.

We have [T ] ⊆ U by the definition of U , and hence Z ⊆ U , which is impossible.
Since the complement C = N \ Z is open, it follows that the set

H = {〈x, s〉 : x ∈ C ∩ Ns ∧ Ns ∩ Z = ∅}
belongs to the class Π1

1 and satisfies the condition prH = C. In particular, the Δ1
1-set D = N \ A is

contained in prH . This means that the narrower Π1
1-set

H ′ = {〈x, s〉 ∈ H : x ∈ D}
satisfies the condition pr H ′ = D. By Theorem 2.2, there exists a Δ1

1-function f : D → N
<ω for which

x ∈ D =⇒ 〈x, f(x)〉 ∈ H;

in other words, we have

x ∈ Nf(x) ⊆ C for all x ∈ D.

Thus,

Σ = ran f = {f(x) : x ∈ D} ⊆ N
<ω

is a Σ1
1-set, and

D ⊆
⋃

s∈Σ

Ns ⊆ C.

However,

Π = {s ∈ N
<ω : Ns ⊆ C}

is a Π1
1-set, and Σ ⊆ Π. Therefore, by the Σ1

1-separation theorem (Theorem 2.1), there exists a Δ1
1-set Δ

for which Σ ⊆ Δ ⊆ Π. We still have D ⊆
⋃

s∈Δ Ns ⊆ C, so that the closed set

F = N \
⋃

s∈Δ

Ns

satisfies the relations Z ⊆ F ⊆ A. However, x ∈ F is equivalent to

∀s(s ∈ Δ =⇒ x /∈ Ns);

hence F , as well as Δ, is a Δ1
1-set, as required.

Now, let us complete the proof of the lemma. Suppose that, on the contrary, a nonempty closed
Σ1

1-set F =
⋃

n Fn ⊆ A′ is σ-compact and all of the Fn are compact. Then there exists a base clopen
set U ⊆ N for which the intersection Z = U ∩ F is nonempty and is entirely contained in one of the
sets Fn. Thus, Z is a nonempty compact Σ1

1-set, which contradicts the above considerations. This
completes the proof of the lemma.

Returning to the theorem, we suppose that condition (I) in Theorem 1.1 does not hold, so that
the Σ1

1-set A′ ⊆ A is nonempty, and derive condition (II) in Theorem 1.1 from this assumption. The
following two cases are possible.

Case 1. There exists a nonempty closed Σ1
1-set F ⊆ A′. It is not σ-compact by Lemma 5.1, and a

simple construction yields at once a closed set Y ⊆ F homeomorphic to N .

Case 2. There are no nonempty closed Σ1
1-sets F ⊆ A′. To obtain the required relatively closed

set Y ⊆ A homeomorphic to N under this assumption, we construct a system of nonempty Σ1
1-sets

Ys ⊆ A′ satisfying the following technical conditions:

MATHEMATICAL NOTES Vol. 91 No. 6 2012
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1) Ys∧i ⊆ Ys whenever s ∈ N
<ω and i ∈ N;

2) the diameter of each Ys is at most 2− lh s;

3) Ys∧k ∩ Ys∧n = ∅ for all s and k �= n; moreover, each Ys∧k is contained in an open set Y ′
s∧k disjoint

from
⋃

n �=k Ys∧n;

4) Ys ∈ Dlh s, where, by Theorem 3.2, {Dn : n ∈ N} is a Polish net for the family P of all nonempty
Σ1

1-sets Y ⊆ N ;

5) if s ∈ N
<ω and xk ∈ Ys∧k for all k ∈ N, then the sequence of points xk converges to a point of

N \ A′.

If such a system is constructed, then condition (4) ensures the nonemptiness of each intersection⋂
m Ya�m for a ∈ N by the definition of a Polish net. According to (2), any such intersection contains

precisely one point, which we denote by f(a); it is easy to see that the map

f : N
on→ Y = ran f = {f(a) : a ∈ N }

is a homeomorphism. Note that

Y =
⋃

a∈N

⋂

m

Ya�m.

To prove that Y is closed in A′, take y ∈ Y (Y is the closure of Y ). We have y ∈ Y Λ, because Y ⊆ YΛ.
Suppose that s ∈ N

<ω and y ∈ Y s. By assumption, we have

y ∈
⋃

k

Ys∧k.

Therefore, according to (5), either y /∈ A′ or y ∈ Ys∧k for some (in fact, unique) k. If follows that
if y ∈ Y ∩ A′, then there exists a point a ∈ N such that y ∈ Ya�m for all m. Condition (2) implies
y = f(a), so that y ∈ Y , as required.

Finally, we describe the construction of the sets Ys.

If we already have a nonempty Σ1
1-set Ys ⊆ N , then its closure Ys is a Σ1

1-set as well, which implies
Ys �⊆ A′ in case 2. Take any point y ∈ Ys \ A′ and a sequence of pairwise different points yn ∈ Ys

converging to y. For each n, let Un be a base neighborhood (i.e., a Baire interval) of the point yn

of diameter not exceeding one third of the least distance from yn to a point yk with k �= n. We set
Ys∧n = Ys ∩ Un; then, we replace the sets Ys∧n by smaller Baire intervals so as to satisfy conditions (2)
and (4). This completes the proof of the theorem.

6. PROOF OF THE SECOND MAIN THEOREM

In this section, we prove Theorem 1.2. The set U in (I) is of class Π1
1; this is easy to see from

Corollary 2.4. Thus, the difference A \ U is a Σ1
1-set.

Lemma 6.1. Under the assumptions of Theorem 1.2, the topological closure in N of any
nonempty Σ1

1-set Y ⊆ A \ U is noncompact, i.e., the tree

T (Y ) = {y � n : y ∈ Y ∧ n ∈ N}

has at least one infinite branching.
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Proof. Assume the contrary. The set

H = {〈t, n〉 : t ∈ N
<ω ∧ n ∈ N ∧ ∀k(t∧k ∈ T (Y ) =⇒ k ≤ n)}

is of class Π1
1 (because the Σ1

1-fragment of T (Y ) is on the left of the implication sign), and domH = N
<ω.

Theorem 2.2 implies the existence of a Δ1
1-function f : N

<ω → N such that

〈t, f(t)〉 ∈ H for all t ∈ N
<ω.

By the definition of H , we have

y(n) ≤ f(y � n) for all y ∈ Y and n,

so that Y ⊆ [T ′], where T ′ is the tree of all tuples t ∈ N
<ω satisfying the condition

t(n) ≤ f(t � n) for each n < lh t.

The tree T ′ is compact, and it is easy to see that T ′, as well as f , is of class Δ1
1. Therefore, [T ′] ⊆ U ,

which is impossible.

Returning to the proof of Theorem 1.2, suppose that (I) does not hold, i.e., the set A \U is nonempty.
Under this assumption, there exists a system nonempty Σ1

1-sets Ys ⊆ A \ U satisfying the technical
conditions (1)–(4) in Sec. 5 and the following condition instead of (5):

(5′) if s ∈ N
<ω and xk ∈ Ys∧k for all k ∈ N, then the sequence of xk has no convergent subsequences

in N .

If such a system is constructed, then, for the same reasons as in the proof of Theorem 1.1, the
associated function f : N → A \ U is one-to-one; moreover, this is a homeomorphism from N onto
its complete image

Y = ran f = {f(a) : a ∈ N } ⊆ A \ U.

The verification of the fact that Y is absolutely closed in N is similar to that of the relative closedness in
the proof of Theorem 1.1; note that condition (5′) is stronger. Thus, we obtain (II).

The sets Ys are constructed as follows. If a Σ1
1-set Ys ⊆ A \U is already constructed, then, according

to Lemma 6.1, we can choose t ∈ T (Ys) so that t∧k ∈ T (Ys) for all k from an infinite set Ks ⊆ N.
Thus, there is a sequence of pairwise different points yk ∈ Ys, where k ∈ N, which has no convergent
subsequences. We cover these points by sufficiently small Baire intervals Uk so that the resulting Σ1

1-sets
Ys∧i = Ys ∩Us satisfy (5′); then, if necessary, we shrink these sets to satisfy conditions (2) and (4). This
completes the proof of the theorem.

7. REMARKS

The main results of this paper are parallel to the following theorems of classical descriptive set theory.

Theorem 7.1 (Hurewicz [10]). Let X be a Polish space. Then any non-σ-compact Σ1
1-set A ⊆ X

has a subset homeomorphic to N and closed in A.

Theorem 7.2 (Saint-Raymond [11]; see also 21.23 in [12]). Let X be a Polish space, and let A ⊆ X be
a Σ1

1-set not contained in a σ-compact set Z ⊆ X. Then there exists a set P ⊆ A homeomorphic
to N and closed in X.

Considerations of [12] show that each of these theorems can be proved in the case X = N and
then extended to sets in any Polish space X by purely topological methods. The X = N version of
Theorem 7.2 follows directly from our Theorem 1.2 in relativized form (i.e., for the classes Σ1

1(p), where
p ∈ N is any parameter). Theorem 7.1 follows from the relativized form of Theorem 1.1 only for
sets A of class Δ1

1 (i.e., for Borel sets). An interesting problem is to appropriately extend Theorem 1.1
to the class Σ1

1. Such an extension may require relaxing condition (I) in Theorem 1.1, provided that
condition (II) remains the same; for example, it may involve trees not belonging to the class Δ1

1.
Theorem 1.1 readily implies several known results, which are collected in the following theorem.
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Theorem 7.3 (cf. Theorem 2.5). Let P ⊆ N × N be a Δ1
1-set for which all sections

(P )x = {y : 〈x, y〉 ∈ P}, x ∈ X,

are σ-compact. Then

i) pr P is a Δ1
1-set;

ii) P is a countable union of Δ1
1-sets with compact sections;

iii) P is uniformized by a Δ1
1-set.

Proof. (i) Consider the set H of all pairs 〈x, T 〉 such that x ∈ N , T ⊆ N
<ω is a compact Δ1

1(x)-tree,
and [T ] ⊆ (P )x. According to Corollary 2.4, H is a Π1

1-set. By Theorem 1.1, if 〈x, y〉 ∈ P , then there
exists a tree T for which 〈x, T 〉 ∈ H and y ∈ [T ]. Therefore, the Π1

1-set

E = {〈x, y, T 〉 : 〈x, y〉 ∈ P ∧ 〈x, T 〉 ∈ H ∧ y ∈ [T ]} ⊆ N × N × 2(N<ω)

satisfies the condition prxy E = P , i.e., 〈x, y〉 ∈ P implies the existence of a tree T for which we have
〈x, y, T 〉 ∈ E. Suppose that E is uniformized by a Π1

1-set U ⊆ E. This means that if 〈x, y〉 ∈ P , then
there exists a unique T for which 〈x, y, T 〉 ∈ U . But U is a Σ1

1-set, because the relation 〈x, y, T 〉 ∈ U is
described by the formula

〈x, y〉 ∈ P ∧ y ∈ [T ] ∧ ∀T ′ ∈ Δ1
1(x) (〈x, y, T ′〉 ∈ U =⇒ T = T ′),

and quantifiers of the form ∀x ∈ Δ1
1(y) preserve the class Σ1

1. Thus, the Σ1
1-set

F = {〈x, T 〉 : ∃y(〈x, y, T 〉 ∈ U)}

is contained in the Π1
1-set H . By the separation theorem (Theorem 2.1), there exists a Δ1

1-set V for
which F ⊆ V ⊆ H . By construction, we have

〈x, y〉 ∈ P ⇐⇒ ∃T (〈x, T 〉 ∈ V ∧ y ∈ [T ]).

Finally, the set V is countable-valued; indeed, if 〈x, T 〉 ∈ V , then T ∈ Δ1
1(x) (because V ⊆ H). Note at

once that pr P = prV , and hence the projection D = pr P is a Δ1
1-set by Theorem 2.5.

(ii) According to Theorem 2.5, the set V is the union
⋃

n Vn of single-valued Δ1
1-sets Vn, and

each projection Dn = prVn ⊆ D is a Δ1
1-set. Each Vn is essentially the graph of a Δ1

1-function
τn : Dn → compact trees, and

(P )x =
⋃

x∈Dn

[τn(x)].

Setting

Pn = {〈x, y〉 : x ∈ Dn ∧ y ∈ [τn(x)])}
for each n, we see from the above considerations that P =

⋃
n Pn, all sets Pn have only compact sections,

and each Pn is a Δ1
1-set, because all of the sets Dn and the function τn belong to this class.

(iii) Again applying Theorem 2.5 (iii), we see that the set V is uniformized by a single-valued Δ1
1-set;

i.e., there exists a Δ1
1-function

τ : Dn → compact trees

such that 〈x, τ(x)〉 ∈ V for all x ∈ D. Consider the set Q of all pairs 〈x, y〉 ∈ P for which y is the
lexicographically leftmost point in the compact set [τ(x)]. It is easy to show that Q is a Δ1

1-set (see
the proof of Corollary 4.2) uniformizing the given set P .
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Theorem 7.3 remains true for the class Δ1
1(p) with any fixed parameter p ∈ N (the proof is the same),

which, certainly, implies the validity of this theorem for the projective class Δ1
1 (of all Borel sets). Thus,

we obtain the following corollary, which contains several classical results of descriptive set theory (due
to Arsenin, Kunugui, Shchegol’kov, and Saint-Raymond; see [3, Sec. 4] for references).

Corollary 7.4. Let X and Y be Polish spaces, and let P ⊆ X × Y be a Δ1
1-set for which all sections

(P )x = {y : 〈x, y〉 ∈ P}, x ∈ X, are σ-compact. Then

i) pr P is a Δ1
1-set;

ii) P is a countable union of Δ1
1-sets with compact sections;

iii) P is uniformized by a Δ1
1-set.
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