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1. INTRODUCTION

Effective descriptive set theory appeared in the middle of the twentieth century as a set of technical
tools and methods for refining and simplifying constructions and arguments of classical descriptive set
theory and, to lesser degree, as a mechanism for applying theorems of recursion theory to problems of
descriptive set theory. However, it had soon turned out that effective descriptive set theory itself leads to
problems having no counterparts in classical descriptive theory, in particular, to problems related with
the effectiveness of certain properties of sets under consideration.

This category includes the following two theorems (see the paper [1], the book [2, Secs. 10.6, 10.7],
and the papers [3] and [4]) about effective versions of σ-boundedness1 and σ-compactness of sets in the
Baire space N = ωω.

Theorem 1. If A ⊆ N is a Σ1
1 set, then precisely one of the following two assertions holds:

(I) A is Δ1
1-effectively σ-bounded, i.e., there exists a Δ1

1-sequence {Tn}n∈ω of compact trees
Tn ⊆ ω<ω for which A ⊆

⋃
n[Tn];

(II) there exists a superperfect P-set Y ⊆ A.

Theorem 2. If A ⊆ N is a Δ1
1 set, then precisely one of the following two assertions holds:

(I) A is Δ1
1-effectively σ-compact, i.e., there exists a Δ1

1-sequence {Tn}n∈ω of compact trees
Tn ⊆ ω<ω for which A =

⋃
n[Tn];

(II) there exists a set Y ⊆ A homeomorphic to the entire space N and relatively closed in A.

*E-mail: kanovei@iitp.ru
**E-mail: lyubetsk@iitp.ru

1A set X in the Baire space N is σ-bounded if it can be covered by a σ-compact set in N .
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274 KANOVEI, LYUBETSKY

The effectiveness of the existence statements in these two theorems is in that the sequences of
compact trees in (I) belong to the effective class Δ1

1. The noneffective (coarser) assertion corresponding
to Theorem 1 is that any Σ1

1 set A ⊆ N either is covered by a σ-compact set or contains a superperfect
subset; this was proved in [5]. The noneffective result corresponding to Theorem 2 was obtained in
Hurewicz’ old paper [6].

All results mentioned above are of the type of dichotomy theorems, which classify point sets into
“small” (of type (I) in both theorems) and “large” (of type (II)) according to various criteria. Such
theorems attract much interest in modern descriptive set theory; see, e.g., the books [7]–[9]. Small-type
sets are characterized by structural properties of point sets, and large-type sets, simply by the presence
of a subset which is a canonical counterexample to the “smallness” property under consideration; thus,
the Baire space N = ωω can be regarded as a canonical example of a non-σ-compact set. The main
results of this paper, Theorems 3 and 4, are classified with such dichotomy theorems.

In our later paper [10], we proved that Theorem 2 is not valid in the case where the set A belongs
to the larger class Σ1

1 (as in Theorem 1); however, for Σ1
1 sets, a somewhat weaker assertion holds. In

the same paper, we obtained a far-reaching generalization of Theorem 1, in which the σ-boundedness
assumption of part (I) of the theorem was relaxed to the {F1, . . . ,Fn}-σ-boundedness assumption,
where F1, . . . ,Fn are given equivalence relations of class Δ1

1 and the {F1, . . . ,Fn}-σ-boundedness of a
set means that this set can be covered by a σ-bounded set and a countable union of equivalence classes
of the relations F1, . . . ,Fn. Accordingly, condition (II) is strengthened by the requirement that there
exists a superperfect set pairwise Fi-nonequivalent for each i = 1, . . . , n.

The proofs of the results mentioned above are very typical of the first projective level, and they cannot
be generalized to higher levels of the projective hierarchy (e.g., to the case of Σ1

2 and Δ1
2 sets A); as

shown in [10], at these levels, the direct generalizations of the theorems themselves are false. Correct
generalizations of Theorem 1 to Σ1

2 sets were obtained in [3] and of its more complicated version with
equivalence classes, in [10]; in part (I), uncountable unions are perforce allowed.

As usual, for the third and higher projective levels, results similar to Theorems 1 and 2 cannot be
obtained. In this case, it is common practice to solve the arising problems in the context of consistency
of certain statements with the Zermelo–Fraenkel axioms ZFC or, which is essentially equivalent,
investigate the status quo in particular models of ZFC. A special role is played by the Lévy–Solovay
model, which was first used in [11] to prove the consistency of the conjecture that all projective and even
all real-ordinal definable (ROD) sets of real numbers are measurable; see our book [12, Chap. 13] for
details.

In this paper, we prove that, in the Lévy–Solovay model, Theorems 1 and 2 admit natural general-
izations valid for sets A in a very large (but still effective enough) class OD of ordinal definable point
sets, which naturally includes all of the classes Σ1

n, Π1
n, and Δ1

n of the effective projective hierarchy. The
main results are as follows.

Theorem 3 (in Solovay’s model). If A ⊆ N is an OD set, then precisely one of the following
conditions holds:

(I) A is OD-effectively σ-bounded in the sense that there exists an OD-sequence {Tξ}ξ<ωL
1

of
compact trees Tξ ⊆ ω<ω for which

A ⊆
⋃

ξ<ωL
1

[Tξ];

(II) there exists a superperfect OD set Y ⊆ A.

Theorem 4 (in Solovay’s model). If A ⊆ N is an OD set, then precisely one of the following
conditions holds:

(I) A is OD-effectively σ-compact in the sense that there exists an OD-sequence {Tξ}ξ<ωL
1

of
compact trees Tξ ⊆ ω<ω for which

A =
⋃

ξ<ωL
1

[Tξ];
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ON EFFECTIVE σ-BOUNDEDNESS AND σ-COMPACTNESS 275

(II) there exists an OD set Y ⊆ A homeomorphic to the entire space N and relatively closed
in A.

Note that, in Solovay’s model, the ordinal ωL
1 (i.e., the first uncountable cardinal in the constructive

universe L) is countable in the universe of all sets (see Lemma 4.1 below); therefore, the unions in
conditions (I) in both theorems are countable, although not indexed by positive integers (and they cannot
be indexed with the preservation of ordinal definability; see Remark 6.1). Note also that Theorems 3 and
4 also contain an effectiveness condition at the OD level in parts (II), in contrast to Theorems 1 and 2,
where effectiveness at the levels of Δ1

1 and Σ1
1 in parts (II) cannot be achieved.

The proofs of Theorems 3 and 4 are given in Secs. 6 and 7, after a technical introduction in Sec. 3
and a review of properties of the Lévy–Solovay model in Secs. 4 and 5.

2. REMARK

Theorems 3 and 4 are based on properties of Solovay’s model and may be false in other models
of ZFC. For example, in Gödel’s constructive model L (the class of all constructive sets), any OD
set X ⊆ N satisfies condition (I) in both theorems, so that strict dichotomy is already impossible.

On the other hand, there also exist models in which some OD point sets satisfy the disjunc-
tion (I) ∨ (II) (in any one of the theorems). Namely, there exist models of ZFC in which

(a) the continuum hypothesis is false, i.e., ω1 < 2ℵ0 , and

(b) there exists an OD well-order ≺ on the space N ; to be more precise, this order even belongs to
one of the projective classes Δ1

n;

see [13] and [14]. A certain modification of a construction of [13] yields a model in which the following
additional condition holds:

(c) ωL
1 < ω1.

In this model, we perform the well-known construction of a Bernstein set (i.e., a set A ⊆ N such that
neither A not its complement A′ = N \ A contains perfect subsets), replacing the abstract axiom of
choice at certain places by the choice of a ≺-least point (where ≺ is the well-order in condition (b)). As
a result, we obtain a Bernstein OD set A. According to the Alexandroff–Hausdorff theorem, this set
cannot contain uncountable Borel subsets, so that, in both theorems, it does not satisfy condition (II).
But condition (I) cannot hold either. Indeed, if A satisfies condition (I) in Theorem 3 (which is the
weakest among the two conditions (I)), then, according to (c), A is meager in N , and its complement
A′ = N \ A surely contains a perfect subset in contradiction to the choice of A.

Constructing a model containing a similar counterexample in which ωL
1 = ω1 is an interesting

unsolved problem.

3. TECHNICAL INTRODUCTION

We use the standard notation Σ1
1 , Π1

1 , and Δ1
1 for effective projective classes in the Baire space N

and also Σ1
1, Π1

1, and Δ1
1 for the corresponding ineffective classes; see [2], [7], [12], [15], and [16].

By ω<ω we denote set of all tuples (finite sequences) of positive integers, including the empty tuple Λ.
Given u, v ∈ ω<ω, lhu denotes the length of u and u ⊂ v means that v is a proper extension of u. For
s ∈ ω<ω and n ∈ ω, by s∧n we denote the tuple obtained by attaching n to s on the right. Let

Ns = {x ∈ N | s ⊂ x} a (Baire interval in N = ωω)

for s ∈ ω<ω. If the set X ⊆ N contains at least two points, then there exists a maximal tuple s = sX for
which X ⊆ Ns. In this case, we set diamX = 1/(1 + lh s); if X contains at most one point, then we set
diamX = 0.

A set T ⊆ ω<ω is called a tree if u ∈ T whenever u∧n ∈ T for at least one n. The elements u ∈ T of
a tree T are called the vertices of this tree. A vertex u ∈ T is said to be terminal if there is no such n for
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276 KANOVEI, LYUBETSKY

which u∧n ∈ T . Any nonempty tree contains the empty tuple Λ. A vertex u ∈ T is a branching point
in T if there exists a number k �= n for which u∧k ∈ T and u∧n ∈ T ; the notation branT is used for the
set of all branching points in T .

A tree T ⊆ ω<ω without terminal vertices is said to be compact if it is finitely branching, i.e.,
whenever u ∈ branT , we have u∧n ∈ T for only finitely many n. In this case, the subset

[T ] = {x ∈ N | ∀m (x � m ∈ T )}
of the space N is compact. Conversely, if X ⊆ N is compact, then

T = tree(X) = {x � n | x ∈ X ∧ n ∈ ω}
is a compact tree and X = [T ].

A tree T ⊆ ω<ω without terminal vertices is said to be perfect if, for any vertex u ∈ T , there exists a
branching point v ∈ branT such that u ⊂ v. In this case, the set [T ] is perfect. A perfect tree T is said to
be superperfect if, for each branching point u ∈ branT , there exist infinite many numbers n such that
u∧n ∈ T . In this case, the set [T ] is superperfect. Conversely, if X ⊆ N is a perfect set, then the tree
tree(X) is perfect, and, for any superperfect set X ⊆ N , there exists a superperfect tree T ⊆ tree(X).
Recall that a set X ⊆ N is said to be

• perfect if it has no isolated points;

• superperfect if it has no nonempty open-and-closed σ-compact subsets.

4. ON SOLOVAY’S MODEL

The proofs of our main results, Theorems 3 and 4, will be given later on; in this section, we describe
the those properties of Solovay’s model which are used in these proofs.

First, by Solovay’s model we mean the model of ZFC constructed in [11] in which all projective
sets of real numbers are Lebesgue measurable, rather than a narrower model, also constructed in [11], in
which only the axioms ZF+DC hold (i.e., the axiom of choice is replaced by the axiom DC of dependent
choice), but all sets of real numbers in general are measurable. These models were considered in more
detail in the book [12, Chap. 13] and the paper [17, Sec. 4].

Definition 4.1. Let Ω be any ordinal. By Ω-SM we denote the conjunction of the following three
conjectures (A), (B), and (C):

(A) Ω = ω1;

(B) in the class L (Gödel’s universe of constructive sets), the cardinal Ω is strongly inaccessible;

(C) the set-theoretic universe V is a generic extension of the class L obtained by using the collapse
forcing poset P = Coll(ω,< Ω) as in [12, Sec. 13.6].

Thus, Ω-SM is the hypothesis that the universe V is Solovay’s model over the initial model L with key
cardinal Ω.

Definition 4.2. The class OD is the class of all ordinal definable sets. In other words, a set X belongs
to OD if it can be defined by a ZFC formula in which all parameters are ordinals.2

Lemma 4.1. Under Ω-SM, the following assertions hold:

(i) if X is a countable OD set, then there exists an ordinal λ < Ω and a one-to-one OD map
f : λ

on−→ X;

(ii) if ξ < Ω and a ∈ N , then ω
L[a]
ξ < Ω; in particular, ωL

ξ < Ω;

2Details related to this definition can be found in [12, Sec. 3.5] and [18, Chap. 14].
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ON EFFECTIVE σ-BOUNDEDNESS AND σ-COMPACTNESS 277

(iii) if X ⊆ Y ∈ L, then X ∈ L if and only if X ∈ OD.

Proof. (i) Consider the canonical OD map F : Ord
onto−−→ OD (see Statement 1 in [18, Chap. 14]).

The relations F (ξ) ∈ X and F (ξ) = F (η) (with arguments ξ and η) belong to OD as well. The rest
is obvious.

For the proof of (ii) and (iii), see Lemmas 13.6.5 and 13.6.7 in the book [12].

The following lemma describes the key properties of Solovay’s model.

Lemma 4.2. Under Ω-SM, the following statements hold:

(i) if λ < Ω and f : ω
onto−−→ λ, then the universe is a P-generic extension of the class L[f ];

(ii) given any ∈-formula ϕ(x), there exists a ∈-formula ϕ(λ, x) such that

ϕ(f) ⇐⇒ ϕ(λ, f) in L[f ]

for any λ < Ω and any function f : ω
on−→ λ.

Proof. (i) For the case λ = ω, where f ∈ N (even without the assumption ran f = ω), the proof of
the required assertion is contained in that of Lemma 13.6.6 in [12]. The case of any λ is reduced to this
special case by considering the map taking each function f : ω

on−→ λ to a point f ′ ∈ N defined by setting
f ′(n) = 1 if n = 2m · 3k ∈ ω and f(k) < f(m) and f ′(n) = 0 otherwise. We have L[f ′] = L[f ], and the
required assertion for f follows from that for f ′.

(ii) Lemma 13.6.7 (A) with w = ∅ in the book [12] contains the required assertion for the case λ = ω:
the formula ϕ(λ, f) expresses the forcing of ϕ(f) over L[f ]. The general case is proved by using the
same transformation as in (i).

Assertion (ii) of Lemma 4.2 is important because it reduces the truth of a formula ϕ(f) in Solovay’s
model to that of another formula ϕ(f) in the class L[f ] of all sets constructive with respect to f . This
reduction is used in the next section.

5. FORCING BY OD-SETS IN SOLOVAY’S MODEL

Definition 5.1 (Ω-SM). Let P denote the set of all nonempty OD sets Y ⊆ N . This A set P is regarded
as a forcing poset; thus, we refer to its elements as (forcing) “conditions,” and subsets of P which are
smaller (with respect to inclusion) are considered stronger conditions. A set of conditions W ⊆ P is
said to be

• dense if, for each Y ∈ P, there exists a condition Z ∈ W for which Z ⊆ Y ;

• P-generic if it satisfies the conditions

(1) if X,Y ∈ W , then X ∩ Y ∈ W and

(2) if D ⊆ P belongs to OD and is dense, then W ∩D �= ∅.

Proposition 5.1. Under Ω-SM, if a set G ⊆ P is P-generic, then the intersection
⋂

G contains a
unique point.

Proof. See Lemma 14 in [19].

The set P is uncountable; therefore, the existence of P-generic sets does not directly follow from
Ω-SM. However, fortunately, P turns out to be locally countable in a certain sense.
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Definition 5.2 (Ω-SM). We say that a call set X ∈ OD is regular if the OD part

POD(X) = P(X) ∩OD

of its power set P(X) is at most countable. By P∗ we denote the set of all regular X ∈ P.

For example, under Ω-SM, the set X = N ∩OD = N ∩L of allOD points in the Baire space belongs
to P∗. Indeed, we have

POD(X) = P(X) ∩OD = P(X) ∩ L;

therefore, POD(X) admits an OD bijection onto the ordinal ωL
2 , and ωL

2 < Ω by Lemma 4.1 (ii).

Recall that, for λ ∈ Ord, Coll(ω, λ) = λ<ω is the collapse forcing poset for the collapse ordinal λ.

It consists of all (finite) tuples of ordinals α < λ and generates a generic function f : ω
on−→ λ; see [12,

Sec. 9.7].

Lemma 5.1. Under Ω-SM, if λ < Ω, then the set Cohλ of all functions f ∈ λω Coll(ω, λ)-generic
over L is regular.

Proof. First, we have Cohλ ∈ P from obvious considerations. Next, consider any set Y ⊆ Cohλ,
Y = {f ∈ Cohλ | ϕ(f)} ∈ OD, where ϕ is a formula in which all parameters are ordinals. By
Lemma 4.2 (ii), we have

Y = {f ∈ Cohλ | ϕ(f) in L[f ]}

for some other formula ϕ(f) whose parameters are ordinals. Therefore,

Y = Cohλ ∩
⋃

p∈S
{f ∈ λω | p ⊂ f},

where S consists of all conditions p ∈ Coll(ω, λ) forcing ϕ(ḟ), and ḟ is the name of a Coll(ω, λ)-generic
element. But the family S of all such sets S belongs to L (because forcing over L is expressible in L)
and has cardinality ℵL

λ+1 in L. Therefore, again according to Lemma 4.1 (ii), S is countable under
Ω-SM. However, it follows from the above considerations that each set Y ⊆ Coh, Y ∈ OD, is uniquely
determined by suitable S ∈ S .

Lemma 5.2 ([19] (Ω-SM)). The set P∗ is dense in P; i.e., for any X ∈ P, there exists a condition
Y ∈ P∗ such that Y ⊆ X.

Proof. Take any condition X ∈ P. By definition, we have X �= ∅; take any point x ∈ X. Under Ω-SM,
according to Lemma 13.6.5 in [12], x belongs to a certain subclass L[G≤λ] of Solovay’s entire model,
where λ < ω1 = Ω, and this subclass itself is a Coll(ω, λ)-generic extension of L, i.e., L[G≤λ] = L[f ],
where f ∈ Cohλ (see the proof of Lemma 13.6.5 in [12]). This implies the existence of a OD map
H : λω → N for which x = H(f). The set

P = {f ′ ∈ Cohλ | H(f ′) ∈ X}

belongs to OD as well, and it is nonempty (contains f ); the same is true for its image

Y = {H(f ′) | f ′ ∈ P} ⊆ X

(it contains x). Finally, the set Cohλ is regular by Lemma 5.1, which implies the regularity of the set Y .
Thus, Y ∈ P∗.
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6. PROOF OF THE EFFECTIVE σ-BOUNDEDNESS THEOREM

In this section, we prove Theorem 3.
We argue in Solovay’s model, i.e., assume Ω-SM.

Lemma 6.1. Conditions (I) and (II) in Theorem 3 are inconsistent.

Proof. In Solovay’s model, the set S =
⋃

ξ<ωL
1
[Tξ] in (I) is a countable union of compact sets; therefore,

it is σ-compact. Hence if Y ⊆ A is superperfect, as in (II), then it is covered by σ-compact set, which is
impossible.

Now, consider any OD set A ⊆ N . Let U denote the union of all sets of the form [T ], where T ⊆ ω<ω

is a compact tree in OD. Obviously, the sets U and A′ = A \ U belong to OD.

Lemma 6.2. Under the assumptions of Theorem 3, the topological closure in N of any OD set
∅ �= Y ⊆ A′ is noncompact.

Proof. If the closure Y of such Y is compact, then the tree T = tree(Y ) is compact as well and belongs
to OD; therefore, Y ⊆ Y = [T ] ⊆ U , which contradicts the assumption Y ⊆ A′.

There are two possible cases.

case 1: A′ = ∅, i.e., A ⊆ U . In this case, condition (I) in Theorem 3 holds. Indeed, it suffices to note
that, under Ω-SM, the OD points of the space N are the same thing as constructive points (of L), and
hence there exists an OD-enumeration of all OD trees by the ordinals ξ < ωL

1 .

Case 2: the set A′ = A \ U is nonempty. According to Lemma 5.2, there exists a condition A′′ ⊆ A′

such that A′′ ∈ P∗. The set P = POD(A′′) = P(A′′) ∩OD is at most countable. By Lemma 4.1, there
exists an ordinal λ < Ω and an OD map f : λ

on−→ P . But the set POD(λ) is countable; therefore, so
is POD(P ) (because of the presence of the map f ). Let us fix any enumeration {Dn}n∈ω of all OD sets
D ⊆ P = POD(A′′) dense in P∗ below A′′3.

We claim that there exists a system of conditions Ys ∈ P∗, Ys ⊆ A′′, indexed by the tuples s ∈ ω<ω,
and satisfying the following requirements:

(1) if s ∈ ω<ω and i ∈ ω, then Ys∧i ⊆ Ys;

(2) diamYs ≤ 2− lh s;

(3) if s ∈ ω<ω and k �= n, then Ys∧k ∩ Ys∧n = ∅ and, moreover, the conditions Ys∧k can be covered
by pairwise disjoint (open-and-closed) Baire intervals Js∧k;

(4) if s ∈ ω<ω, then Ys ∈ Dlh s, where the sets Dn are defined as above;

(5) if s ∈ ω<ω and xk ∈ Ys∧k for all k ∈ ω, then the sequence of xk has no convergent subsequences
in N .

To construct the initial condition YΛ, note that the density of D0 implies the existence of a condition
Z ⊆ A′′ in D0. To satisfy (2), we set YΛ equal to the intersection Z with an appropriate Baire interval of
sufficiently small diameter. Then, to satisfy (4), we again narrow the condition thus obtained, using the
density of D0.

Now, arguing by induction on the length of tuples, suppose that s ∈ ω<ω and the condition Ys ∈ P∗,
Ys ⊆ A′′, is already constructed. According to Lemma 6.2, there exists a tuple τ ∈ tree(Ys) for which
the set

Ks = {k ∈ ω | τ∧k ∈ tree(Ys)}
3A set D ⊆ P = POD(A′′) is dense in P∗ below A′′ if the completed set D+ = D ∪ {Y ∈ P∗ | Y ∩ Y ′′ = ∅} is dense
in P∗ in the sense of Definition 5.1. In this case, according to Lemma 5.2, D+ is also dense in P.
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is infinite. This allows us to define a sequence of pairwise different points yk ∈ Ys, k ∈ ω, containing
no convergent subsequences. We cover these points by Baire intervals Uk sufficiently small for the OD
sets Ys∧i = Ys ∩ Ui to meet requirement (5) and then narrow these sets so that (2) and (4) hold; to
satisfy (4), we use the density of the sets Dn. This completes the inductive step of the construction of
the conditions Ys.

After the construction is completed, we note that, for any point a ∈ N , the intersection
⋂

m Ya�m
contains a unique point by Proposition 5.1, because condition (4) ensures the required genericity of the
set

{Ya�m | m ∈ ω}.

Let
⋂

m Ya�m = {f(a)}. The map

f : N on−→ Y = {f(a) | a ∈ N}

is a homeomorphism from fairly obvious considerations.

Let us verify that Y is closed in N . Consider any sequence of points an ∈ N and suppose that the
corresponding sequence points yn = f(an) ∈ Y converges to y ∈ N ; we must prove that y ∈ Y .

We claim that the sequence {an}n∈ω contains a convergent subsequence. Indeed, otherwise, the
sequence {an}n∈ω cannot be covered by compact set. This implies the existence of a tuple u ∈ ω<ω,
an infinite set K ⊆ ω, and numbers n(k), k ∈ K, for which u∧k ⊂ an(k). By construction, we have
yn(k) ∈ Yu∧k. Therefore, (5) implies the divergence of the sequence {yn(k)}k∈ω, which is a contradiction.

Thus, the sequence {an}n∈ω contains a subsequence bk = an(k) converging to some point b ∈ N .
The sequence zk = f(bk) (which is a subsequence of {yn}n∈ω) converges to z = f(b) ∈ Y , as required.

Thus, the set Y is closed and, therefore, condition (II) in Theorem 3 holds for the set A.

Remark 6.1. Condition (I) in Theorem 3 proved above cannot be strengthened to the condition that
there exists an OD sequence {Tn}n∈ω of compact trees Tn ⊆ ω<ω for which A ⊆

⋃
n[Tn]. A

counterexample is A = N ∩ L (all constructive points in N ). This is a countable set in Solovay’s model
admitting an OD bijection onto the ordinal ωL

1 . Therefore, condition (I) in Theorem 3 holds (while (II)
does not); but the existence of a sequence {Tn}n∈ω of compact trees in the class OD (which must be
constructive) is, obviously, impossible.

7. PROOF OF THE EFFECTIVE σ-COMPACTNESS THEOREM

In this section, we prove Theorem 4. We argue in Solovay’s model, i.e., assume Ω-SM.

Lemma 7.1. Conditions (I) and (II) in Theorem 4 are inconsistent.

Proof. As in the proof of Lemma 6.1, the set A =
⋃

ξ<ωL
1
[Tξ] in (I) is σ-compact and, therefore, cannot

contain relatively closed subsets homeomorphic to the Baire space.

Now, consider any OD set A ⊆ N . Let U denote the union of all sets of the form [T ], where T ⊆ ω<ω

is a compact OD tree and [T ] ⊆ A. Obviously, the set U and the complement A′ = A \ U of A belong
to OD.

By Theorem 3 proved above, we can assume without loss of generality that A is σ-bounded (i.e.,
covered by a σ-compact set); therefore, each closed set F ⊆ A is σ-compact as well.

Lemma 7.2. If ∅ �= F ⊆ A′ is a nonempty OD set, then F �⊆ A.
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Proof. Suppose that, on the contrary, F ⊆ A. According to the above assumption, which does not
limit generality, the set F is σ-compact, i.e., F =

⋃
n Fn, where all sets Fn are compact. Clearly, there

exists a Baire interval Ns such that the set X = Ns ∩ F is nonempty and X ⊆ Fn for some n. We have
X ⊆ A, and X is a nonempty compact OD set. Therefore, by definition, X ⊆ U and A′ ∩X = ∅. In
other words, Ns ∩ F ∩A′ = ∅. It follows that Ns ∩ F = ∅ (because F ⊆ A′), which contradicts the
relation X = Ns ∩ F �= ∅.

Case 1: A′ = ∅, i.e., A = U . This implies condition (I) in the theorem.

Case 2: A′ �= ∅. As in the proof of Theorem 3, we take any set A′′ ⊆ A′, A′′ ∈ P∗, and fix an
enumeration {Dn}n∈ω of all OD-sets D ⊆ P = POD(A′′) dense inP∗ below A′′. To obtain a set Y ⊆ A′′

relatively closed in A and homeomorphic to N , we use a system of conditions Ys ∈ P∗, Ys ⊆ A′′,
satisfying requirements (1)–(4) of Sec. 6 and the following requirement instead of (5):

(5′) if s ∈ ω<ω, then there exists a point ys ∈ Ys \ A such that any sequence of points xk ∈ Ys∧k,
k ∈ ω, converges to ys.

The construction is similar to the corresponding construction of Sec. 6. Namely, suppose that
s ∈ ω<ω and the condition Ys ⊆ A′′ is already constructed. Then, for its closure Ys, we have Ys �⊆ A
by Lemma 7.2. Hence there exists a sequence of pairwise different points xn ∈ Ys converging to a point
ys ∈ Ys \ A. Let Un be a Baire interval (containing xn) of diameter smaller than one third of the least
distance from xn to xk, k �= n. We set Ys∧n = Ys ∩ Un for each n and narrow the set Ys∧n in order to
satisfy (2) and (4). This completes the inductive step of the construction.

Having the system of sets Ys, we obtain (see Sec. 6) a homeomorphism

f : N onto−−→ Y = ran f = {f(a) | a ∈ N} ⊆ A′′

such that
⋂

m Ya�m = {f(a)} for all points a ∈ N .
It remains to show that Y is relatively closed in A.
Consider a sequence of points an ∈ N for which the corresponding sequence of images

yn = f(an) ∈ Y

converges to a point y ∈ N ; we must prove that y ∈ Y or y /∈ A. If the sequence {an} contains a
subsequence converging to some point b ∈ N , then, as in the proof of Theorem 3, the sequence {yn}
converges to the point f(b) ∈ Y . If {an} has no convergent subsequences, then there exist a tuple
s ∈ ω<ω, an infinite set K ⊆ ω, and numbers n(k), k ∈ K, for which s∧k ⊂ an(k). In this case,
yn(k) ∈ Ys∧k by construction. Therefore, by (5′), the subsequence {yn(k)}k∈ω converges to a point
ys /∈ A, as required.
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