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1. INTRODUCTION. THE PROBLEM OF THE CHOICE OF A DEFINABLE ELEMENT

The problem of definability of mathematical objects appeared in the focus of attention of discussions
on mathematical foundations in connection with the axiom of choice by Zermelo and its role in the
construction of a well-ordering of the continuum and other similar arguments. Thus, it is underlined
in the the paper [1], which presents the discussion between Hadamard, Borel, Baire, and Lebesgue on
questions of mathematical foundations, that a pure existence proof of an element in a given set and
a direct definition (or effective construction) of such an element are different mathematical results, of
which the second does not follow from the first. In particular, in his part of [1], Lebesgue pointed out
difficulties in the problem of effective choice, that is, the choice of a definable element in a definable set.1

It was established during the course of development of set theory, and especially descriptive set
theory, that sets in the real line of the second projective class admit such an effective choice (see
P. Novikov and Luzin’s paper [2]). To be more exact, in modern terms, every nonempty Σ1

2 set in the
real line R contains a point of class Δ1

2 and hence an effectively definable element (see Theorem 2.6 and
Corollary 2.7 below.)

As for higher levels of the projective hierarchy2, that is, beginning with Π1
2 , no similar theorem can

be proved. More exactly, there are only hypotheses, which are true under certain assumptions consistent
with the ZFC axioms but false under some other assumptions, also consistent with the ZFC axioms.

Remark 1.1. In modern works on set theory, by reals (real numbers) are usually understood both
elements of the real line proper and the points of the Baire space ωω or the Cantor discontinuum 2ω ⊆ ωω.
It is in this sense that we understand R in this section. The exact meaning depends on the context,
but everything said here is equally related to 2ω , ωω, or the real line proper because of the existence of
definable one-to-one correspondences between these three domains.

Thus, on the one hand, the Gödel axiom of constructibility V = L, which is consistent with ZFC,
implies the existence of a well-ordering ≤L of type ω1 of the whole real line R, which is a Δ1

2 relation,
and this allows us to choose just the ≤L-least element in any set X ⊆ R. An accurate estimation of

*E-mail: kanovei@iitp.ru
**E-mail: lyubetsk@iitp.ru

1“Ainsi je vois déjà une difficulté dans ceci ‘dans un M ′ déterminé je puis choisir un m′ déterminé’ ” in the original paper
[1], which means “Thus, I already see a difficulty with the assertion that ‘in a determinate M ′ I can choose a determinate
m′’ ” (see the English translation of [1] in Appendix 1 of the book [3].

2See [4, Chap. 6] or [5, Chap. 1] on the classes Σ1
n, Π1

n, and Δ1
n of the effective projective hierarchy.
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definability shows that, under the assumption V = L, if n ≥ 3, then every Σ1
n set ∅ �= X ⊆ R contains

a Δ1
n point x ∈ X.

On the other hand, models of ZFC set theory are known in which there exist nonempty Π1
2 sets

X ⊆ R containing no points of class Δ1
n for any n and, in general, no ordinal definable point3, so that

an effective choice of a point in such a set X is not possible not only in the context of the projective
hierarchy, but also in the broadest sense. In the Solovay model [6] and some other models, the Π1

2
set ωω \ L of all nonconstructible points is such a set, and it is definitely uncountable. This category of
models is characterized by the feature that their construction involves sufficiently homogeneous forcing
notions, that is, those which admit fairly rich systems of order automorphisms.

At the same time, the authors have recently defined some models in [7], [8], in which there exist
countable Π1

2 sets containing no definable elements. They are related to nonhomogeneous forcing
notions, that is, those having poor systems of automorphisms, for instance, only rational shifts. On the
other hand, as established in [9], it is true in some models of the first, forcing-homogeneous, category
that every countable OD set ∅ �= X ⊆ R contains OD elements. The following theorem extends this
result from countable sets to arbitrary Borel sets.

Theorem 1.2. Let L[a] be one of the following three generic extensions of the constructible set
universe L:

(A) the extension by one Cohen-generic real a ∈ R;

(B) the extension by one Solovay-random real a ∈ R;

(C) the extension by one Sacks-generic real a ∈ R.

Then it is true in L[a] that if ∅ �= X ⊆ R is a Borel OD set, then X contains OD elements.

On these generic extensions, see, e.g., the papers [10]–[12].

2. THE CHOICE OF AN ELEMENT IN Σ1
1 AND Σ1

2 SETS

For the convenience of the reader, the proof of Theorem 1.2 is preceded by a brief survey of results
on the effective choice of elements in sets of initial levels of the projective hierarchy. In this survey,
we give references to the seminal book [13] of Moschovakis and also to the books [4] and [14] for a
Russian-speaking reader. The content of this section is not connected with the proof of Theorem 1.2.

We begin with Σ1
1 sets of general form. The following two results show that the choice of a Δ1

1

element is not generally possible even in the case of Π0
1 sets, and yet it is always possible to pick an

element only slightly more complex than Δ1
1. Note that, when the points x ∈ ωω are classified, the

unilateral classes Σ1
n, Π1

n reduce to Δ1
n because of the equivalence

x(k) = n ⇐⇒ ∀n′ �= n (x(k) �= n′).

Theorem 2.1 (Kleene’s Basis Theorem [13, 4E.8], [14, 7.11]). There is a Σ1
1 set U ⊆ ω of natural

numbers such that every Σ1
1 set ∅ �= X ⊆ ωω contains a real recursive relative to U .

Example 2.2 (Kleene; see [13, 4D.14] or [4, 9.2.4]). The cocountable set X of all reals x ∈ ωω not
belonging to Δ1

1 is of class Σ1
1 and, obviously, contains no Δ1

1 element. Now consider any Π0
1 set

P ⊆ ωω × ωω, which projects onto X, so that

x ∈ X ⇐⇒ ∃ y P (x, y).

Then the set P also contains no Δ1
1 points 〈x, y〉. Hence there exists a Π0

1 set Q ⊆ ωω which contains
no Δ1

1 reals. Namely, Q is the image of P under any recursive homeomorphism ωω × ωω onto ωω.

3The class OD of all ordinal definable sets, or simply ODsets, consists of all sets definable by set-theoretic formulas
which may contain ordinals as parameters. The classes Σ1

n, Π1
n, and Δ1

n are subsets of OD, of course.
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Example 2.3. The example of a Σ1
1 set X ⊆ ωω in 2.2 containing no Δ1

1 elements can be strengthened
by the requirement of compactness. Indeed, consider a pair of disjoint Δ1

1-inseparable Π1
1 sets U, V ⊆ ω

(see [13, 4B.12] or [4, 8.1.3]) and the corresponding nonempty Σ1
1 compact set

X = {x ∈ 2ω : ∀n ∈ U (x(n) = 0) ∧ ∀n ∈ V (x(n) = 1)}.
The set X contains no Δ1

1 elements x0 ∈ X, since any such element implies the separation of U from V
by the Δ1

1 set S = {n : x0(n) = 0}.

Theorem 2.4 ([13, 4F.11 and 4F.15], [4, 10.6.4]). If a Δ1
1 set ∅ �= X ⊆ ωω is at least σ-compact, then

it contains a Δ1
1 element x ∈ X.

A fairly elementary proof for the compact case is as follows. First of all, given a compact Δ1
1 set

X ⊆ ωω, we define a Δ1
1 tree T ⊆ ω<ω which determines X in the sense that

X = [T ] = {x ∈ ωω : ∀m (x � m ∈ T )}.
Then, using the Koenig lemma (note that T has finite branching nodes), we prove that the lexicograph-
ically leftmost element xleft ∈ X belongs to Δ1

1.
Theorem 2.4 holds for countable sets X, as they are σ-compact, but, in this case, the following

theorem extends the result to Σ1
1 sets as well, which is not the case for σ-compact and even compact Σ1

1
sets due to Example 2.3.

Theorem 2.5 ([13, 4F.5], [4, 10.4.1]). If a Σ1
1 set X ⊆ ωω is at most countable, then it consists only

of Δ1
1 points.

Theorems of this kind are also known for Δ1
1 sets large in the sense of measure or category. A standard

reference to this case, which will not be discussed here, is the book [13, 4F.19 ff.] by Moschovakis; see
also our book [4, Sec. 11.4 and 11.5]. Theorem 2.5 is proved by means of the Gandy – Harrington
topology generated by nonempty Σ1

1 sets as the base. This topology is widely used in proofs of
dichotomical theorems; see, e.g., [15].

For sets more complex than Σ1
1 , the following fundamental result known as the Novikov–Kondo–

Addison theorem holds. It was established by Kondo [16] for the projective class Π1
1 on the basis

of Novikov’s method published in [2], and the result for the effective class Π1
1 was presented by

Addison [17].

Theorem 2.6 ([13, 4E.4], [4, 8.4.1]). Every Π1
1 set P ⊆ ωω × ωω can be uniformized by a set of

class Π1
1. Every Π1

1 set P ⊆ ωω × ωω can be uniformized by a set of class Π1
1 .

Corollary 2.7. Every Π1
1 set ∅ �= X ⊆ ωω contains a Π1

1 singleton {x} ⊆ X, and x ∈ Δ1
2. Every Σ1

2

set ∅ �= X ⊆ ωω contains a Δ1
2 element x ∈ X.

3. BOREL CODES
Theorem 1.2 refers to a standard coding system for Borel sets, as in [18] or [4, Section 9.5], which

includes the set of Borel codes BK containing all pairs of the form c = 〈Tc, fc〉, where Tc ⊆ ω<ω is a
nonempty well-founded tree, fc : ω<ω → ω<ω is any function, and ω<ω is the set of all strings (finite
sequences) of natural numbers containing the empty sequence Λ.

If c ∈ BK, then each string s ∈ Tc is assigned a Borel set Bc(s) ⊆ ωω so that if s ∈ max Tc (that is,
s is a terminal node), then

Bc(s) = [F (s)] = {x ∈ ωω : fc(s) ⊂ x},
and if s /∈ maxTc, then

Bc(s) = ωω \
⋃

s�k∈Tc

Bc(s
�k).

We finally set Bc = Bc(Λ); this is a Borel set in ωω coded by c ∈ BK. For every ordinal ξ < ω1, let BKξ

denote the set of all codes c ∈ BK such that Tc is a tree of height ξ.
The main properties of this coding system are as follows:
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(1) the set of all codes BK is a Π1
1 set in the Polish space

B = P(ω<ω)× (ω<ω)(ω
<ω),

and every set BKξ is a Borel set in B;

(2) if c ∈ BKξ, then the set Bc ⊆ ωω is a Borel set of class Π0
ξ ;

(3) conversely, if X ⊆ ωω is a set of class Π0
ξ , then there is a code c ∈ BKξ such that X = Bc;

(4) the following sets in the Polish space B× ωω belong to Π1
1 :

W = {〈c, x〉 : c ∈ BK ∧ x ∈ Bc} and W ′ = {〈c, x〉 : c ∈ BK ∧ x ∈ ωω \Bc}.

For details, see, e.g., [19, Section 5.7] or [5, 2.9].

This coding system naturally extends to Borel sets of the space ωω × ωω. Namely, first of all, if
x ∈ 2<ω , then we set

F (x) = 〈y, z〉,

where y(n) = x(2n) and z(n) = x(2n+ 1) for all n, so that F is a homeomorphism of the space ωω onto

ωω × ωω. Now we define B
(2)
c = {F (x) : x ∈ Bc}; this is a Borel set in ωω × ωω coded by c ∈ BK.

This coding system also extends to Borel maps. We set BF = BKω×ω, and if c ∈ BF (that is, c
is a map from ω2 = ω × ω to BK), then we define a function ϑc : ω

ω → ωω by setting ϑc(x)(n) = k if
and only if either k = 0 and x /∈

⋃
�≥1Bc(n,�) or k ≥ 1 and x ∈ Bc(n,k) \

⋃
1≤�<k Bc(n,�). Claims similar

to (1)–(4) hold for the functional coding system; thus,

(5) BF is a Π1
1 set in the Polish space B

ω×ω;

(6) the following sets in B
ω×ω × ωω × ωω belong to Π1

1 :

Φ = {〈c, x, y〉 : c ∈ BF ∧ x, y ∈ ωω ∧ y = ϑc(x)},
Φ′ = {〈c, x, y〉 : c ∈ BF ∧ x, y ∈ ωω ∧ y �= ϑc(x)}.

To admit Borel codes as values of coded functions, we fix a recursive homeomorphism K : ωω onto−−→ B.
If c ∈ BF and x ∈ ωω, then we set κc(x) = K(ϑc(x)), so that κc(x) ∈ B (but not necessarily
κc(x) ∈ BK!).

Remark 3.1. Claim (4) can be understood in the sense that the relation x ∈ Bc can be expressed both by
a Π1

1 formula 〈c, x〉 ∈ W , and a Σ1
1 formula 〈c, x〉 /∈ W ′, provided that c ∈ BK (otherwise, the formulas

are nonequivalent). A more complex relation y ∈ Bκc(x) can be expressed by the formulas

ψ(c, x, y) := ∃h(〈c, x, h〉 /∈ Φ′ ∧ 〈K(h), y〉 /∈ W ′) (type Σ1
1 );

ψ′(c, x, y) := ∀h(〈c, x, h〉 /∈ Φ′ =⇒ 〈K(h), y〉 ∈ W ) (type Π1
1 ),

so that we have

y ∈ Bκc(x) ⇐⇒ ψ(c, x, y) ⇐⇒ ψ′(c, x, y)

whenever c ∈ BF and κc(x) ∈ BK.
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4. PROOF FOR COHEN GENERIC EXTENSIONS
Here we prove Theorem 1.2 in Part (A), that is, for Cohen generic extensions. The Cohen forcing

notion Coh = 2<ω consists of all dyadic strings, that is, finite sequences of the numbers 0 and 1. If
s, t ∈ 2<ω , then s ⊆ t means that t extends the string s, and s ⊂ t means proper extension. If t ∈ 2<ω

and i = 0, 1, then t�i denotes the extension of t by i as the rightmost term. If s ∈ 2<ω , then lh(s) is the
length of the string s.

If u ∈ Coh, then the set Iu = {a ∈ 2ω : u ⊂ a}, that is, a Cantor interval in 2ω , is clopen in the
Cantor space 2ω .

Theorem 4.1. If a0 ∈ 2ω is a Cohen generic real over a set universe V, then it is true in V[a0] that
if ∅ �= X ⊆ 2ω is a Borel set definable by a set-theoretic formula with sets in V as parameters,
then X has an element in V.

Remark 4.2. The set universe V in the theorem can be understood both as a fixed (for instance,
countable) transitive model of the ZFC set theory and as the real set-theoretic universe of all sets.
In the latter case, generic extensions, such as, for instance, V[a0] in the theorem, are understood as
Boolean-valued extensions of the universe V.

Theorem 4.1 immediately implies Theorem 1.2, Part (A). Indeed, it suffices to set V = L, and make
use of the fact that L ⊆ OD always holds.

Proof of Theorem 4.1. There is a formula ϕ(x) with sets of the ground universe V as parameters and
a code p ∈ BK ∩V[a0] such that

X = Bp = {x ∈ 2ω : ϕ(x)} in V[a0].

Arguing by contradiction, suppose that X ∩V = ∅, that is, the set X contains no point in the ground
universe V.

Recall that the Cohen generic extensions satisfy the requirement of Borel reading of names, accord-
ing to which there is a code c ∈ BF ∩V satisfying p = κc(a0) (see, e.g., [11, Theorem 2.4(iii)]). There-
fore, it is true in the extension V[a0] that the Borel set Bκc(a0) is equal to the set X = {x ∈ 2ω : ϕ(x)},
where the formula ϕ contains only sets in V as parameters. Accordingly, we have

Bκc(a0) ∩V = ∅.

Hence there exists a Cohen condition (that is, a string) u ∈ 2<ω which Coh-forces, over V, the relations

κc(ă) ∈ BK, Bκc(ă) = {x : ϕ(x)} �= ∅, Bκc(ă) ∩V = ∅.

Here ă is a name for the Cohen generic real.

Lemma 4.3. It is true in the universe V that Y = {x ∈ Iu : κc(x) ∈ BK} is a comeager subset
of Iu.

Proof. The set Y belongs to Π1
1 along with the set BK, since the former set is equal to the Borel

preimage of the latter under the map κc. It follows that Y has the Baire property. Therefore, if Y is not
comeager in Iu, then there is a string v ∈ Coh extending u and such that Y ∩ Iv is, on the contrary,
a meager set. Therefore, this set is covered by a meager Fσ set F ⊆ Iv. The complementary Gδ set
G = Iv \ F is comeager in Iv, and we have κc(x) /∈ BK for all x ∈ G. Let us fix any code g ∈ BK ∩V
for G, so that it is true in V that ∀x ∈ Bg (κc(x) /∈ BK).

But this sentence is expressed by a Π1
2 formula, namely, by the formula

∀x∀ y(〈g, x〉 ∈ W ∧ 〈c, x, y〉 ∈ Φ =⇒ K(y) /∈ BK),

where the subformulas 〈g, x〉 ∈ W and 〈c, x, y〉 ∈ Φ of type Π1
1 express, respectively, the statements

x ∈ Bg and y = ϑc(x), according to claims (4) and (6) in Sec. 3. Therefore, by the Shoenfield
absoluteness theorem, the sentence under consideration is true in any generic extension of the form V[a],
where a ∈ Iv is an arbitrary Cohen generic real over V. However, the Cohen generic reals are
well-known not to belong to meager Borel sets coded in the ground model (see, e.g., Theorem 11.3.3
in [19] for the ideal of meager sets). It follows that a ∈ Bg in V[a] and, subsequently, κc(a) /∈ BK. This
is a contradiction, because u ⊆ v ⊂ a, while the string u forces κc(ă) ∈ BK.
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Arguing in the universe V, we conclude, by the lemma, that there exists a comeager Gδ set D ⊆ Iu,
such that κc(x) ∈ BK for all x ∈ D. Now consider the Borel set P = {〈x, y〉 : x ∈ D ∧ y ∈ Bκc(x)} and
the following equivalence relation on the set D: x E x′ if and only if x, x′ ∈ D and Px = Px′ . (As usual,
Px = {y : 〈x, y〉 ∈ P} is the section.)

Lemma 4.4. The relation E is Π1
1.

Proof. The equality Px = Px′ is expressed by the Π1
1 formula

∀ y((¬ψ′(c, x, y) =⇒ ψ(c, x′, y)) ∧ (¬ψ′(c, x′, y) =⇒ ψ(c, x, y)))

(see Remark 3.1) under the condition that c ∈ BF and the reals κc(x) and κc(x
′) belong to BK, which

is satisfied here for all x, x′ ∈ D.

As a Π1
1 subset of the product space Iu × Iu, E has the Baire property.

Case 1: (it is true in V that) all E-equivlence classes are meager sets on Iu. Then the Π1
1 set

H = {〈x, x′〉 ∈ D : Bκc(x) = Bκc(x′)} is meager in Iu × Iu by the Ulam–Kuratowski theorem, and

hence H can be covered by a meager Borel set H ′ = B
(2)
d , H ⊆ H ′ ⊆ Iu × Iu, coded by some d.

Now we make use of a method introduced in [9]. We continue to argue in V. Let us fix a countable
transitive model M of a sufficiently large fragment of ZFC containing the codes c and d and being an
elementary submodel of the universe with respect to all analytic formulas.

Lemma 4.5. There exist reals a, b ∈ Iu Cohen generic over V and such that V[a] = V[b], and, at
the same time, the pair 〈a, b〉 is Cohen generic over the model M.

Proof. We let +2 denote the operation of componentwise addition modulo 2 for infinite sequences. In
the universe V, choose a real z ∈ Z Cohen generic over M and satisfying z(k) = 0 for all k < m = lh(u).
Consider a real a ∈ Iu Cohen generic over V and, hence, over M[z] as well. The pair 〈a, z〉 is then Cohen
generic over M. It follows, by the product forcing theorem, that the real z is Cohen generic over M[a].
But then the real b = z +2 a is Cohen generic over M[a] by the same theorem, since a ∈ M[a]. We
conclude that the pair 〈a, b〉 is Cohen generic over M for the same reason. And we have a, b ∈ Iu by
construction. However, the real b = z +2 a is Cohen generic over V as well, since so is a; at the same
time, z ∈ V, and we have V[a] = V[b].

Recall that Cohen generic reals, as well as pairs of reals, do not belong to meager Borel sets coded in
the ground model by the already mentioned Theorem 11.3.3 in [19]. In particular, 〈a, b〉 do not belong to
H ′ and hence to H , so that we have Bκc(a) �= Bκc(b).

Remark 4.6. The last argument makes use of the absoluteness of the formula

∀ 〈x, x′〉(〈x, x′〉 ∈ B
(2)
d =⇒ Bκc(x) �= Bκc(x′))

in the sense of Shoenfield, which is substantiated by expressing the relation 〈x, x′〉 ∈ B
(2)
d in terms of

the set W in Claim (4) of Sec. 3 and writing the inequality Bκc(x) �= Bκc(x′) as the Σ1
1 formula being

the negation of the Π1
1 formula employed in the proof of Lemma 4.4 above. In this way, we obtain a Π1

2
formula, to which the Shoenfield theorem applies.

At the same time, the generic reals a and b belong to the set Iu by construction. It follows from the
choice of u that one and the same set {x : ϕ(x)} is equal, in the extension V[a] = V[b], both to the set
Bκc(a) and to the set Bκc(b). We conclude that Bκc(a) = Bκc(b). However, it was established above that
Bκc(a) �= Bκc(b). The contradiction obtained witnesses that Case 1 is impossible.

Case 2: (it is true in V that) one of the E-equivalence classes is a comeager set on a set of the
form Iv, where v ∈ Coh, u ⊆ v. Then there exists a Borel set U = Bf ⊆ Iv ∩D, f ∈ BK, such that it
is comeager inside the Cantor interval Iv and all reals x ∈ U are pairwise E-equivalent. In other words,
there exists a Borel set B = Be ⊆ 2ω , e ∈ BK in V, such that Bκc(x) = B ∀x ∈ U = Bf .
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Now consider an arbitrary real a ∈ Iv Cohen generic over V. Arguing inV[a], we make use of the fact
that any Cohen generic real has to belong to every Borel set U = Bf comeager on the corresponding
Baire interval Iv; see the proof of Lemma 4.3. As above, it follows, by the Shoenfield absoluteness
theorem, that Bκc(a) = B = Be, where e is a Borel code in the given universe V.

However, we have a ∈ Iv ⊆ Iu by construction. Therefore, by the choice of u at the beginning of the
proof of the theorem, the set Bκc(a) = Be is nonempty. Again by the absoluteness theorem, the set Be

is nonempty in V as well (since the code e belongs to V), that is, it contains an element x ∈ V. Thus,
x ∈ Bκc(a) ∩V in V[a]. This yields a conclusive contradiction to the choice of u, because a ∈ Iu.

5. PROOF FOR SOLOVAY RANDOM EXTENSIONS
Here we prove Theorem 1.2 in Part (B), that is, for Solovay random extensions. The proof largely

follows the line of reasoning in the proof of Theorem 4.1, therefore we skip some common details, for
instance, those related to absoluteness, but highlight some differences.

A set T ⊆ 2<ω is called a tree if, for any strings s ⊂ t in 2<ω , t ∈ T implies s ∈ T . The Solovay
random forcing notion Rand consists of all trees T ⊆ 2<ω containing no terminal nodes and no isolated
branches and such that the set

[T ] = {x ∈ 2ω : ∀n (x � n ∈ T )}
has positive measure μ([T ]) > 0, in the sense of the usual probability measure μ on 2ω . In contrast to
the Cohen forcing Coh, the forcing notion Rand depends on the choice of the ground model, so that
“a real (Solovay) random over a model M” means “a real (Rand ∩M)-generic over M,” and this is
equivalent to the condition that the real does not belong to any Borel set Bc of μ-measure 0 with a code
c ∈ BK ∩M.

Another difference from the Cohen forcing is the fact that a random pair of reals is not a
(Rand×Rand)-generic pair. The notion of a random pair is connected with the forcing by closed
sets in 2ω × 2ω (or trees which generate them), which have strictly positive measure in the sense of
the product measure μ× μ on 2ω × 2ω . The following well-known (see, e.g., [11]) characterization of
random pairs will be quite important in what follows.

Proposition 5.1. Let M be a transitive model of a sufficiently large subtheory of ZFC, and let
a, b ∈ 2ω. Then the following four claims are equivalent:

(1) the pair 〈a, b〉 is random over M;

(2) 〈a, b〉 does not belong to any Borel set B(2)
c of (μ×μ)-measure 0 having a code c ∈ BK∩M;

(3) a is random over M and b is random over M[a];

(4) b is random over M and a is random over M[b].

Theorem 5.2. Let a0 ∈ 2ω be a real Solovay random over a set universe V. Then it is true in V[a0]
that if ∅ �= X ⊆ 2ω is a Borel set definable by a set-theoretic formula with parameters in V, then
X contains a real in V.

This theorem immediately implies Theorem 1.2, Part (B), as above.

Proof. There is a formula ϕ(x) with sets in the ground model V as parameters and a code
p ∈ BK ∩V[a0] such that X = Bp = {x ∈ 2ω : ϕ(x)} in V[a0]. Arguing by contradiction, suppose
that X ∩V = ∅.

Similarly to Cohen extensions, Solovay random ones satisfy the condition of Borel reading of
names, so that there exists a code c ∈ BF ∩V such that p = κc(a0). Thus, in the extension V[a0],
the Borel set Bκc(a0) is equal to the OD set X = {x ∈ 2ω : ϕ(x)}, and hence Bκc(a0) ∩V = ∅. There
is a tree T ∈ Rand ∩V which Rand-forces, over V, the sentence

κc(ă) ∈ BK, Bκc(ă) = {x : ϕ(x)} �= ∅, Bκc(ă) ∩V = ∅.

The set [T ] = {x ∈ 2ω : ∀m (x � m ∈ T )} is closed, and μ([T ]) = M > 0.
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Lemma 5.3. It is true in the universe V that the set Y = {x ∈ [T ] : κc(x) ∈ BK} satisfies
μ(Y ) = M .

Proof. We follow the proof of Lemma 4.3. The set Y belongs to Π1
1. Therefore, it is measurable. Thus,

if μ(Y ) < M , then there exists a tree U ∈ Rand ∩V satisfying U ⊆ T \ Y and μ([U ]) > 0. Then
the sentence ∀x ∈ [U ] (κc(x) /∈ BK) is true in V. But this sentence is expressible by a Π1

2 formula.
Therefore, by the Shoenfield absoluteness theorem, it is true in any generic extension of the form V[a],
where a ∈ [U ] is an arbitrary Cohen generic real over V. It follows that κc(a) /∈ BK. This implies a
contradiction, because a ∈ [U ] ⊆ [T ], while T forces κc(ă) ∈ BK.

Arguing in the universe V, we conclude, by the lemma, that there exists a tree S ∈ Rand such that
[S] ⊆ Y , so that κc(x) ∈ BK for all x ∈ [S]. Now consider the Borel set

P = {〈x, y〉 : x ∈ [S] ∧ y ∈ Bκc(x)}

and the following Π1
1 equivalence relation on the set [S]: x E x′ if and only if x, x′ ∈ [S] and Px = Px′ ,

where Px = {y : 〈x, y〉 ∈ P}. Being a Π1
1 subset in the product [S]× [S], E is (μ× μ)-measurable.

Therefore, either all E-classes have μ-measure 0 on the set [S] or else one of the E-classes has nonzero
measure on [S]. We consider these two cases separately.

Case 1: (it is true in V that) all E-classes have μ-measure 0 on the set [S]. Then the Π1
1 set

H = {〈x, x′〉 ∈ [S]× [S] : Bκc(x) = Bκc(x′)}

has (μ× μ)-measure 0 by the Fubini theorem. Then H can be covered by a Borel set H ′ = B
(2)
d ,

H ⊆ H ′ ⊆ Iv × Iv, coded by d and having (μ× μ)-measure 0.
We continue to argue in V. Fix a countable transitive model M of a sufficiently large fragment of

ZFC containing the codes c and d and the trees T and S and being an elementary submodel of the
universe with respect to all analytic formulas (in order not to take special care about absoluteness).

Lemma 5.4 (Lemma 3.3 in [9]). There exist reals a, b ∈ [S] such that they are Solovay random
over V and V[a] = V[b], but the pair 〈a, b〉 is random over the model M.

Proof. The argument is more complicated than in the proof of Lemma 4.5. Consider the set

P = {〈x, x+2 y〉 : x, y ∈ [S]}.
If x ∈ [S], then the section Px = {z : 〈x, z〉 ∈ P} has the same measure as the set [S], because
Px = {x+2 y : y ∈ [S]}. Therefore, by the Fubini theorem, P has the same (μ× μ)-measure as
[S]× [S], which is nonzero. Again by the Fubini theorem, the projection Z = {z ∈ 2ω : μ(P z) > 0}
also satisfies μ(Z) > 0.

In the universe V, consider any real z ∈ Z random over M. In this case, we have μ(P z) > 0, and
there is a real a ∈ P z random over V and hence over M[z]. The pair of reals 〈a, z〉 is then random over M
and belongs to the set P . It follows by Proposition 5.1 that the real z is random over M[a]. But then the
real b = z +2 a is obviously random over M[a], because a ∈ M[a]. It follows by Proposition 5.1 that the
pair 〈a, b〉 is random over M. Note that a, b ∈ [S] by construction. Finally, the real b = z +2 a is random
over V, since so is a; at the same time, z ∈ V, and we obviously have V[a] = V[b].

Following the proof of Lemma 4.4, we conclude that 〈a, b〉 does not belong to H ′, because this pair is
random over M, and hence is does not belong to /∈ H , so that Bκc(a) �= Bκc(b).

In the same time, the generic reals a and b belong to the set [S] ⊆ [T ] by construction. It follows,
by the choice of T , that one and the same set {x : ϕ(x)} is equal, in the extension V[a] = V[b], both
to the set Bκc(a) and to the set Bκc(b); hence Bκc(a) = Bκc(b). However, it was established above that
Bκc(a) �= Bκc(b). This contradiction shows that Case 1 is impossible.

Case 2: (it is true in V that) one of the E-classes has positive μ-measure on [S]. Hence there is a
tree Q ∈ Rand, such that Q ⊆ S and all reals x ∈ [Q] are pairwise E-equivalent. In other words, there
exists a Borel set B = Be ⊆ 2ω , e ∈ BK in V, such that Bκc(x) = B for all x ∈ [Q].
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Now consider any real a ∈ [Q] Solovay random over V. The Shoenfield absoluteness theorem
implies that Bκc(a) = B = Be. The concluding part of the proof is the same as the end of the proof
of Theorem 4.1.

6. PROOF FOR SACKS EXTENSIONS

Here we prove Theorem 1.2 in Part (C), that is, for Sacks extensions. Recall that the Sacks forcing
notion is the set PT of all perfect trees ∅ �= T ⊆ 2<ω . In other words, a tree T ⊆ 2<ω belongs to PT if
it has no terminal nodes and no isolated branches. For instance, the complete tree 2<ω belongs to PT,
and [2<ω] = 2ω .

Theorem 6.1. Let a0 ∈ 2ω be a Sacks (that is, PT-generic) real over a set universe V. It is true in
V[a0] that if ∅ �= X ⊆ 2ω is a Borel OD set, then X contains a real in V.

This theorem implies Theorem 1.2 in part (C).

Proof. As at the beginning of the proofs of Theorems 4.1 and 5.2, the contrary assumption leads us to a
formulaϕ(x) with ordinals as parameters, a code c ∈ BF∩V, and a tree T ∈ PT∩V whichPT-forces,
over V, the sentence

κc(ă) ∈ BK, Bκc(ă) = {x : ϕ(x)} �= ∅, Bκc(ă) ∩V = ∅.

We argue in the universe V. Consider the Borel set

P = {〈x, y〉 : x ∈ [T ] ∧ y ∈ Bκc(x)}

and the following equivalence relation: x E x′ if and only if

x, x′ ∈ [T ], Px = Px′ , where Px = {y : 〈x, y〉 ∈ P}.

Clearly, E is a Π1
1 relation. Therefore, by the Silver theorem (see [5, 10.1.1] or [4, 12.1.1]), there exists

a tree U ∈ PT such that U ⊆ T and either [U ] consists of pairwise E-equivalent reals or [U ] consists of
pairwise E-inequivalent reals. Accordingly, we have two cases.

Case 1: (it is true in V that) [U ] consists of pairwise E-inequivalent reals, that is, Bκc(x) �= Bκc(x′)

for all pairs of elements x �= x′ in [U ]. Arguing in V, we consider any homeomorphism h : [U ]
onto−−→ [U ]

satisfying h(x) �= x for all x ∈ [U ] and set d ∈ BF ∩V and h = ϑd � [U ]. Then it is true in V that

∀x ∈ [U ] (Bκc(x) �= Bκc(ϑd(x))).

Now consider any real a ∈ 2ω Sacks generic over the set universe V. We argue in the generic extension
V[a]. The formula saying that the map ϑd � [U ] is a homeomorphism of the set [U ] onto itself satisfying
Bκc(x) �= Bκc(ϑd(x)) for all x ∈ [U ] is true in V, and it is absolute by the Shoenfield theorem. Therefore,
it is true in V[G] as well. It follows that b = ϑd(a) ∈ [U ] and Bκc(a) �= Bκc(b).

However the real b = ϑd(a) is PT-generic over V along with a, because ϑd � [U ] is a homeomor-
phism of the set [U ] coded by d ∈ V, and the Sacks forcing notion PT is invariant with respect to such
homeomorphisms. Moreover, we have b ∈ V[a] and a = ϑ−1

d (b) ∈ V[b]; hence V[a] = V[a′] is one and
the same model. It follows by the choice of [T ] and the fact that U ⊆ T that it is true in V[a] = V[b] that

∀x ∈ 2ω(ϕ(x) ⇐⇒ x ∈ Bκc(a) ⇐⇒ x ∈ Bκc(b)).

We conclude that Bκc(a) = Bκc(b), contrary to the above. The contradiction obtained shows that, in
fact, Case 1 is impossible.

Case 2: (it is true in V that) [U ] consists of pairwise E-equivalent reals. Then there exists a code
e ∈ BK∩V, such that Bκc(x) = Be for all x ∈ [U ]. We consider any real a ∈ [Q] Sacks random over V
and conclude the proof by the same contradiction as at the end of the proof of Theorem 4.1.
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