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Molecular phylogenetics of microbial eukaryotes has reshaped the tree of life by
establishing broad taxonomic divisions, termed supergroups, that supersede the

traditional kingdoms of animals, fungi and plants, and encompass a much greater
breadth of eukaryotic diversity'. The vast majority of newly discovered species fall
into a small number of known supergroups. Recently, however, ahandful of species
with no clear relationship to other supergroups have been described**, raising
questions about the nature and degree of undiscovered diversity, and exposing the
limitations of strictly molecular-based exploration. Here we report ten previously
undescribed strains of microbial predatorsisolated through culture that collectively
form adiverse new supergroup of eukaryotes, termed Provora. The Provora
supergroup is genetically, morphologically and behaviourally distinct from other
eukaryotes, and comprises two divergent clades of predators—Nebulidia and
Nibbleridia—that are superficially similar to each other, but differ fundamentally
inultrastructure, behaviour and gene content. These predators are globally
distributed in marine and freshwater environments, but are numerically rare and
have consequently been overlooked by molecular-diversity surveys. In the age of
high-throughput analyses, investigation of eukaryotic diversity through culture
remains indispensable for the discovery of rare but ecologically and evolutionarily
important eukaryotes.

Before the advent of high-throughput sequencing methods, cultivation
and microscopy were the main approaches for exploring the diversity
of microbial organisms. Molecular surveys of microbial communities
have bypassed the restrictive lack of cultivation methods for most of
microbial life, and led to an explosive increase in the known diversity
of bacteria and archaea®®. The same molecular strategies also revealed
new eukaryoticgroups”®, but notably fewer than for prokaryotes. This is
dueinparttothe factthat much of the eukaryotic diversity was already
recognized through morphological studies, but alsobecause even deep
molecular survey data predominantly uncover relatively abundant
taxa. Rare taxa are more easily overlooked, and eukaryotes include
an entire ecological class of organisms that tend to be numerically
rare—predators™. Recent years have witnessed a resurgence of culti-
vation as a method to discover new microbial predators. These rare
butimportant organisms often appear as ‘orphan’ lineagesin the tree
of life, and have already substantially impacted our understanding of
early eukaryotic evolution**""3, Beyond highlighting the blind spots
of molecular survey data, the orphan lineages also raise animportant

biological question as to whether these organisms are phylogeneti-
callyisolated relicts, or the tip of aniceberg of more elusive diversity.

Like their animal counterparts, microbial predators are expected to
be comparatively rare in nature. But rarity does not preclude either a
high level of diversity or ecological importance any more than it does
for animals that fill similar ecological niches. Continued discovery of
new lineages will beimportant for resolving many issuesin the eukary-
otic tree of life, but it is also important that each newly discovered
lineage is examined in some detail to better understand the structure
oftheir diversity, how they have evolved, and the roles they might have
played in evolution and still have in ecology.

Morphology of new microbial predators

Ten new microbial predators wereisolated from geographically distinct
marine habitats, including coral reefs of Curacao, nearshore sediments
of the Black and Red seas, and the water columns of the North-East
Pacific and Arctic oceans. These strains are all small, fast-swimming
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and superficially unremarkable flagellates that prey on other micro-
bial eukaryotes. To obtain the isolates, water samples were enriched
with Pseudomonas fluorescensbacteria to stimulate the growth of bac-
terivorous nanoflagellates, which in turn stimulated the growth of
eukaryovorous protists. New strains were isolated by micropipette and
propagated in a predator-prey culture on the bodonid Procryptobia
sorokini as a steady food source.

The general morphological features of the new strains include a
ventral feeding groove, acomplex cell envelope, extrusive organelles
and two heterodynamic flagellainserted into separate pockets. This
same overall body plan describes the previously discovered orphan
species Ancoracysta twista® and a strain formerly known as Colponema
marisrubri**, which here we rename Nebulomonas marisrubri. How-
ever, these similarities are only cursory and are shared with other
distantly related protist groups; individually, these organisms are
fundamentally different structurally and behaviourally, and probably
occupy different niches in microbial communities. Notably, different
strains of these predators exhibit different modes of feeding—one
group feeds by nibbling on their prey, and the other group engulfs
whole prey. We refer to these two groups as nibblerids and nebu-
lids, respectively (see the Supplementary Discussion for taxonomic
diagnoses).

The nebulids comprise the species A. twista and N. marisrubri. They
are approximately 10-um-long ovoid flagellates that phagocytose entire
prey cells. Nibblerids, which include Ubysseya fretuma gen. nov., sp.
nov. and four new species united under Nibbleromonas gen. nov., are
much smaller (about 3 um) (Fig. 1a-o0) and have sickle-shaped starved
cells with a distinct thorn under the ventral groove that contains five
or six large complex extrusive organelles (Fig. 1p,s,t) that are used for
attacking prey. Nibblerids can also engulf whole prey (Supplemen-
tary Video 1), but more characteristically feed by a unique behaviour
whereby they bite off and ingest a part of a large prey cell by closing
their ventral groove (Fig. 1s,u and Supplementary Video 2) and using
tooth-like protrusions that nibble pieces of the larger prey (Fig. 1s). This
feeding mode is unique, and demonstrates how pico-sized flagellates
canfeed onlarger cells, whichis often not considered in the modelling
of microbial food webs.

Nibblerids are also ultrastructurally unique (see the Supplemen-
tary Discussion for a morphological description) and different from
Ancoracysta®. Characteristic morphological features include 1-2 dorsal
layers of alveolar vesicles beneath the plasma membrane (Fig.1p,q), the
internalmembranes used asadepot for the formation of afood vacuole
around the prey (note the absence of the internal membranein Fig.1r),
micropores between the alveoli (Fig. 1p (inset)), a row of equidistant
cytoplasmic microtubules supporting the cell coverings (Fig.1q), a
flagellar transition zone with an axosome, a curved transverse plate at
thelevel of the cell surface and a transition cylinder distal to the trans-
verse plate (Fig.1v), wide bands of microtubules armouring the walls of
the ventral groove (Fig. 1s,u), a posterior flagellum with two opposite
longitudinal folds (Fig.1r (inset)), alarge mitochondrion with sac-like
cristae and afilamentous inclusion (Fig. 1p,t,w) and amicrobody next
to the mitochondrion (Fig. 1w).

The two longitudinal folds seen in nibblerid flagella is a rare trait
among eukaryotes that is otherwise found only in malawimonadids,
some metamonads and discobids. The peculiar filamentousinclusion
inthe mitochondrion is characteristic of tubular cristae insome ochro-
phytes (Chrysophyta, Xanthophyta). The characteristics shared with
distant relatives suggest that these aspects of their body plan may be
very ancient, potentially reminiscent of the ancestral state of several
large eukaryotic supergroups.

The new strains form an ancient lineage

We obtained transcriptomes for the new strains and investigated
their position in the phylogeny of eukaryotes using a 320-gene

dataset encompassing a broad spectrum of eukaryotic diversity®.
Bayesian inference and maximum-likelihood tree reconstructions,
performed using site-heterogeneous models (Methods), revealed a
new supra-kingdom-level group of eukaryotes, here named Provora
(devouring voracious protists) (Fig. 2). The nibblerids and nebulids
form two deeply diverging lineages of Provora. The phylogenetic
position of Provora relative to other established eukaryotic groups
varies slightly depending on the phylogenetic method, with conflict-
ing placements in the Bayesian inference and maximum-likelihood
reconstructions. The Bayesian inference tree places Provora sister to
asupergroup comprising TSAR (the SAR supergroup plus Telonemia)
and Haptista with 0.95 posterior probability (Fig. 2). By contrast, the
maximum-likelihood analysis strongly favours (98% bootstrap sup-
port) aunion of Provorawithanother group of uncertain phylogenetic
affinity, the Hemimastigophora, and places both as sister to TSAR and
Haptista (Extended Data Fig. 1a).

To examine the possible impacts of mutational saturation and
compositional bias on the phylogeny, we conducted analyses using
site-elimination and alignment recoding approaches' (Methods).
Elimination of the fastest-evolving sites or the most heterogeneous
partitions produces phylogenies that are broadly congruent with the
original maximume-likelihood and Bayesian inference trees. Removal
of compositionally heterogeneous partitions preserves the original
maximume-likelihood tree topology when up to 70% of the align-
ment is eliminated (Supplementary Table 1). With up to 40% of the
fastest-evolving sites eliminated, the original maximum-likelihood
tree topology remains unchanged, and support for the grouping of
Provora with Hemimastigophora decreases only slightly (from 98%
to 84% bootstrap support) (Supplementary Table 1). When 50% of the
fastest-evolving sites are eliminated, the analysis switches to weakly
supporting the sister position of Provorato TSAR + Haptista (65% boot-
strap support), recovering the relationship obtained in the Bayesian
inference tree (Fig.2). Further removal of variable sites quickly desta-
bilizes the entire tree, including the TSAR clade, which was shown to
require a substantial alignment length to maintain stability”, and the
Provoraitself, splitting the group into the individual Nebulidia and
Nibbleridia clades.

Bayesian inference with the six-state recoded alignment yields a
monophyletic Provorain positionsister to Haptistawith alow posterior
probability (0.58 pp) (Extended Data Fig. 1c). The alternative, which
receives 0.42 pp, places Provorasister to TSAR + Haptista—similar tothe
non-recoded dataset (Fig. 2). Applying four-state recoding to further
decrease the effects of saturation and compositional biases appears
to also dissolve much of the phylogenetic signal for deep tree nodes.
With the four-state recoding, we obtained paraphyletic Provora and
unresolved relationships between major lineages in Diaphoretickes
(Extended DataFig. 1d).

Anapproximately unbiased test with arange of possible phylogenetic
relationships for Provoraand Hemimastigophoradid notreject 10 out
ofthe 63 tested topologies at the 5% significance level when analysing
the full dataset (Supplementary Table 2). The approximately unbiased
test is most restrictive when 20% to 30% of the sites are eliminated.
Specifically, after eliminating 20% of sites by the evolutionary rate,
the approximately unbiased test rejects all but two of the topologies:
those recovered by the Bayesian inference and maximum-likelihood
analyses. ThetesthighlightsthesisterrelationshiptotheHaptista + TSAR
assemblage as a unique non-conflicting solution for the placement of
Provora—this tree topology is observed in the Bayesian inference analy-
seswith the native and six-state recoded data (Fig.2 and Extended Data
Fig.1b,c),anditisthe only other alternative in the maximum-likelihood
analyses thatavoids rejectionby the testin the site-elimination series.
Overall, the phylogenomic analyses cannot currently distinguish
between the alternatives, but do strongly support the monophyly of
Provora and show that they are distinct and distantly related to other
eukaryotes.
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Fig.1|Cellmorphology. a-i, Living cells, visualized by light microscopy,
showing U. fretuma (a,b), Nibbleromonas arcticus (c,d), Nibbleromonas
kosolapovi (e), Nibbleromonas curacaus (f), Nibbleromonas quarantinus

(g,h), N. marisrubri(i).j-o, Cells, visualized by scanning electron microscopy,
showing U. fretuma (j), N. arcticus (k), N. kosolapovi (1,m), N. quarantinus

(n), N. marisrubri(0). p-w, Cell sections, visualized by transmission electron
microscopy (exemplified by N. quarantinus (p,q,s-w) and N. arcticus (r)).

p, Sectionthrough the middle part of the starving cell, showing the non-uniformity
ofthe cell coverings and thorn; theinset shows alongitudinal section of a
micropore with typical alveoli. q, Complex multimembrane coverings with
underlying microtubules. r, Cell with engulfed prey; the inset shows a transverse
section of the posterior flagellum with two longitudinal folds (arrowheads).

s, Section through the base of the flagellum and cytostomal ventral groove with
protruding ‘denticles’. t, Longitudinal section of a thorn with five extrusomes.

Provorais distributed globally

To characterize the distribution of Nibbleridia and Nebulidia species
innature, we comprehensively searched 18S rRNA gene (SSU) surveys
from diverse environments (Supplementary Data 1). We retrieved
amplicons belonging to Provora globally and predominantly in
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u, Cross-section of the cytostomal band of microtubules with the plate facing
into the cytostomal ventral groove. v, Longitudinal section of kinetosome and
transition zone of flagellum. w, Mitochondrion with sac-like cristae containing
filamentous inclusions (arrowheads) and amicrobody. af, anterior flagellum;
al, alveoli; ax, axosome of flagellum; cb, cytostomal band of microtubules; cm,
central microtubules of flagellum; cy, cytostomal ventral groove; d, denticles;
es, extrusomes; fl, flagellum; fp, flagellum of prey; fv, food vacuole; im, inner
membranes; k, kinetosome of flagellum; m, mitochondrion; mb, microbody;
mi, micropore; mp, mitochondrion of prey; mt, microtubules; n, nucleus;

np, nucleus of prey; pf, posterior flagellum; pl, transversal plate; pm, plasma
membrane; tc, transitional cylinder; th, thorn. Scale bars, 3 um (a-0),400 nm
(p, mainimage), 100 nm (p, inset), 400 nm (r, mainimage) 150 nm (r, inset) and
200 nm (qand s-w). These experiments were repeated 50 (a-i) and 3 (j-w) times
withsimilarresults.

marine environments with wide ecological variety, including coral
reefs, open ocean surfaces, the deep chlorophyll maximum, mes-
opelagic waters and marine sediments (5,000 m), and also found
evidence for their presence in brackish and fresh waters, but not
in soil. Provora appear in relatively low abundance in all surveys
(Extended Data Fig. 1e).
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Fig.2|Phylogeny of eukaryotesreconstructed withaconcatenated
320-genedataset. A Bayesianinference consensus tree obtained using
PhyloBayes with fourindependent analysis chains (CAT + GTR + G4 model),
featuring supportvalues obtained in the analyses with the recoded alignments,
and the maximume-likelihood analysis (posterior mean site frequency (PMSF)
model, bootstrap with100 replicates). Tree nodes withincongruence between
analyses or simply lacking maximal support valuesin atleast one type of
analysis are marked with red circles, and the corresponding support values are

Note that, although high-throughput environmental sequencing did
sample these organisms, the deep evolutionary divergence of Provora
means that phylogenetic trees based on the SSU hypervariable regions
used in such surveys cannot recover their phylogenetic relationship
without support fromabroader phylogenomic framework. Asaresult,
such sequences are consistently misidentified, annotated as unclas-
sified orphans, or even more often simply excluded from analyses or
ignored owing to their low numbers. Comparing the SSU survey data
with the ten strains now characterized by culturing and microscopy
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shown. Supportvalues from top to bottom, the PhyloBayes posterior
probability with the native dataset, the PhyloBayes posterior probability with
the Dayhoff 6-recoded dataset, the PhyloBayes posterior probability with the
SR4-recoded dataset and the maximum-likelihood bootstrap support
percentage. Supportvalues for bipartitions that were not recovered in the
consensus tree for the corresponding analysis are giveninred. The newly
described species of Provoraare giveninbold. The branches of Bodo saltans
and Carpediemonas membranifera were shortened by 30% for the illustration.

analysis suggests that the diversity of Provoraat the genuslevelis even
higher than represented among cultured representatives (Extended
DataFig.2).

Characteristics of gene family content

Finding that Provora are distantly related to all other eukaryotes, we
surveyed their gene content to establish some of their basic features,
and to compare the two main subgroups to one another. At the highest
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level, Provora appear to have gene-rich genomes and, despite their
apparentlowabundance, thereis no evidence of accelerated evolution
often associated with small population sizes'®*—no excessive gene loss
was observed (Extended DataFig.3a), and phylogenomic datashow that
their genes are among the least divergent in eukaryotes, as reflected
intheir short branch lengths (Fig. 2).

Functional annotationand trophic mode analysis of the transcriptomic
datainProvorais consistent with a predatory lifestyle. No characteristic
proteins of plastid-bearing lineages, such as plastid import proteins, are
detected in the transcriptomes of provorans. Microtubule-associated
proteins, which are crucial for flagellar motility, are conserved in Pro-
vora (Extended Data Fig. 3), and they possess a rich suite of proteases
and lysosomal nutrient-sensing complexes, including Ragulator-Rag,
GATOR1, GATOR2 and KICSTOR, that are involved in the regulation of cell
growth (Supplementary Data2). Acomparison of protein domains with
other eukaryotes shows an abundance of proteins involved in calcium
signalling in Provora (Supplementary Data 3), including an enriched
repertoire of calcium-activatedion channels of the intermediate/small
conductance potassium channel family, anoctamin family chloride chan-
nelsand proteins withaninteraction module for cellular calcium sensors
(IQ calmodulin-binding motif)®. Phylogenetic analysis with eukaryotic
members of theinositol trisphosphate receptors, which orchestrate the
release of calciumions from the endoplasmic reticulumstores®, infers
multiple deep lineages and independent expansions in Nibbleridiaand
Nebulidia (Extended Data Fig. 4), suggesting that these receptors and
the calciumssignalling system have animportant rolein the coordination
of cellular behaviours in Provora.

Among the protein domains that are most prominently enriched in
Provorarelative to other eukaryotes, we found a family of membrane-
attack complex and perforin domains (MACPF). Members of the MACPF
family are known predominantly as pore-forming cytolytic proteins
that function in the immune systems of animals and plants®?, or in
host cell invasion by parasitic protists?>, and were also reported to
constitute lethal toxins of the sea anemone extrusive organelles®,
which are analogous to the extrusomes of Provora. Protein domain
searches identified 7 to 30 proteins with MACPF domains in the tran-
scriptomic dataof the Provoraspecies. The family is equally abundant
inNibbleridiaand Nebulidia and shows multiple lineage-specific expan-
sions (Extended Data Fig. 5). MACPF domains in Provora are found in
association with EGF-like domains, and many sequences are predicted
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with a secretory signal peptide, supporting probable extracellular
targeting of these proteins.

The antiquity of the split between the two deep lineages comprising
Provorais also reflected in their gene family contents. Nibblerid and
nebulid species share only 20-25% of inferred orthologous groups,
similar to the proportions shared with distantly related eukaryotic
species (Fig.3and Extended DataFig. 6). The orthologous groups also
indicate that their genomes arerelatively generich, providing an esti-
mate of 16-24 thousand families in total for the three representatives
of Provora with the highest completeness estimates.

Mitochondrial genomes of Provora

Themitochondrialgenomeof A. twistawas previously showntobeunusu-
allygenerich,andthisfeaturewasfoundtobeconservedacrossthewhole
Provoralineage (Extended DataFigs.7and 8 and Supplementary Table 3).

s}
<
)
pd
>

pl10, R(TCG), @ Kj

T(TGT), W(CCA) AR

N. curacaus K /

/Qrg”g‘m Introns—J Y(GTA)" f\

el e @ S O ® @ B % &

N I XXXXXI

-176 ’ N

et @ 0 @ © @ & @ B

cox11, nad8.

; ! e A tWist:

mismmmd e @ O QOO @ B B ©

W(TCA) 4L432 7432 1110 65 ms__rnl

8 14 2
2 0D (=) € D SrrsD
7§90 o7 1956575 s~ mpB

Fig.4 |Mitochondrialgenomes supportthe distinctness and diversity of
Provora. Asubsection of aglobal mitochondrial multiprotein phylogeny
focused onProvorais presented, with a Coulson plot showing variationin
nibblerid and nebulid mitochondrial genome repertoires. Each functional
complexisshownasa pie chart withindividual mitochondrial genes as wedges.
Empty wedgesindicate the absence of agene; the genes areidentified in the
legend below. The evolutionary dynamics of mitochondrial genome contentis
summarized withatree, listing the gene losses next to the corresponding
branches;I-Vrepresent the respiratory chaincomplexes NADH dehydrogenase
(I), succinate dehydrogenase (II), cytochrome c reductase (III), cytochrome
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coxidase (IV) and ATP synthase (V). rps, small-subunit ribosomal proteins; rpl,
large-subunit ribosomal proteins. ‘RNA’indicates RNA-encoding genes: rns,
small-subunit ribosomal RNA; rnl, large-subunit ribosomal RNA; rrn§, 5S
ribosomal RNA; rnpB, RNA component of RNase P. cob corresponds to
apocytochrome b. Mitochondrial tRNA genes are specified according to
thesingle-letteraminoacid code, withanticodon sequencesin parentheses.
Ultrafastbootstrap scores areincluded as a measure of statistical support,
and broadly supportthe conclusions of Fig.1. The solid black dots indicate full
support.



Their mitochondrial genomes share a conserved set of 51 proteins,
with only minor variations, such as patchy presence of a few riboso-
mal proteins, tRNAs and bacteria-like rnpB (Fig. 4 and Extended Data
Fig. 9a). In many cases, the missing genes are found in the transcrip-
tomes as putatively nucleus-encoded homologues, suggesting that
the variability is the result of functional endosymbiotic gene transfers.
Most of the differences in the genome size are due to species-specific
variations inthe number and size of mitochondrial group lintrons and
the associated homing endonuclease genes, which apparently arose
within the genus Nibbleromonas, potentially aided by lateral transfer
from fungal mitochondria (Extended Data Fig. 9b).

Two noteworthy functional variations that distinguish Nibbleridia
and Nebulidia affect electron-transport-chain complexes and their
assembly factors (Fig. 4). Allmitochondrial genomesin Provora encode
atypelcytochrome ¢ maturation system (ccmA, ccmB,ccmCand ccmfF),
inherited from the ancestor of mitochondria, and Nebulidia also pos-
sessanucleus-encoded typelll cytochrome c maturation system (holo-
cytochrome c synthase; HCCS), as reported previously in A. twista
(Extended Data Fig.10), which has replaced the type I system in most
eukaryotes. The presence of dual cytochrome c maturation systemsin
N.marisrubriand A. twista suggests that both systems have co-existed
over extended evolutionary time, arguing against the proposed ongo-
ing replacement of type I system?, and suggests that comparisons of
nibblerid and nebulid mitochondriamay provide unique insightsinto
theevolution of cytochrome cbiogenesis in eukaryotes. Together, both
transcriptomic dataand mitochondrial genomes of Provoraemphasize
the deep evolutionary distance betweenits lineages with, for example,
mitochondrial diversity exceeding all known diversity of metazoan
mitochondria.

Conclusions

Provorais anancient supergroup of eukaryotes that rivals traditional
Kingdoms of animals, fungi or plants in terms of antiquity and the
level of divergence between its few described members. Itincorpo-
rates the orphan species A. twista, revealing it to be the first clue of a
diverse major lineage that has gone undetected through thousands
of environmental molecular surveys, rather than a remote relict.
Despite their diversity and global distribution, Provora are numeri-
cally rare, but as eukaryovorous predators, their rarity relative to
other microbesis not surprising and does notindicate alack of eco-
logical impact any more thanalion’s rarity compared to wildebeest
does. These findings underscore how high-throughput sequencing
methods are valuable, but alone are insufficient for understand-
ing the diversity and phylogeny of eukaryotes: all methods have
different biases, and culturing continues to be a crucial tool for
discovering rare and genetically divergent lineages of ecological
importance, and deducing their biology and relationship to other
established groups.
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Methods

Cellisolation and culture establishment

U. fretuma (clone TD-3) was obtained from a sea water sample taken
in the Strait of Georgia, British Columbia, Canada (49°10" 366"’ N,
123°28’50” W) at 220 m depth, salinity 35%., using a Niskin bottle
on 13 June 2017. N. kosolapovi clone Colp-32 was isolated from Arctic
waters of the Kara Sea (75° 53’16.8” N, 89° 30’ 28.8"" E), at 20 m depth
(total depth 52 m), water temperature 0.66 °C, salinity 32.8%. on 19
September 2015. N. arcticus clone Colp-45 was obtained from Arctic
waters of the East Siberian Sea (71° 27" 59.8” N, 152° 53’ 59.3” E), at 11 m
depth, water temperature 2.76 °C, salinity 25.1%. on 5 September 2017.
N. quarantinus clones Colp-41and Colp-44 wereisolated from the sam-
ple of silty sand (salinity 18%.) taken in the shoreland of Quarantine
Bay (44°36’41.4” N, 33° 30’ 6.2” E) in Sevastopol city, Crimea, Black
Seaon13May 2017. N.curacaus clones Cur-5and Cur-12 were obtained
from the sea waters (salinity 35%o) of the eastern point of the Curacao
island (12°12’ 32.3”” N, 68° 48’ 58.8”” W) on 24 April 2018, scraping from
the sponges Agelas conifera Schmidt 1870 and Callyspongia vaginalis
Lamarck 1814, respectively, at 24.7 m depth. N. marisrubri clones
Colp-4b, Colp-4c and Cur-8 were isolated from the Red Sea, Sharm El
Sheikh, Egypt (27° 50’ 50.5”” N, 34° 18’ 59.4"” E), scraping from coral at
75 mdepth, April 2015 (Colp-4b); from the scraping from stone (salinity
18%o.) in Kazachya Bay (44° 34’ 18.8” N 33° 24’ 40.2” E) in Sevastopol
city, Crimea, Black Sea, on 1 September 2018 (Colp-4c); and from the
coral sand at 24.7 m depth at the eastern point of the Curacao island
(12°12"32.3” N, 68° 48’ 58.8”” W), on 24 April 2018 (Cur-8).

The water samples were enriched for P, fluorescensbacterium Migula,
1895 at the rate of 0.15 ml of suspension (around 25 million bacteria
cells) per 5 ml of sample. The samples were examined on the third, sixth
and ninth day of incubation in accordance with methods described
previously®. After isolation using a glass micropipette, clones were
propagated onthe bodonid P.sorokinistrain B-69, which were grownin
marine Schmalz-Pratt medium or artificial marine medium (RS-R11040,
Red Sea) using the bacterium P. fluorescens as food". No microbial
eukaryotes other than P. sorokiniwere used in enrichment. Feeding of
the provorans on heterotrophic Spumella-like heterotrophic chryso-
phytes and Pteridomonas spp. (Pedinellales) was also observed in natu-
ral samples. Isolated clones TD3, Colp-32, Colp-41, Colp-44, Colp-45
and Colp-4care currently being stored ina collection of live protozoan
cultures at the Papanin Institute for Biology of Inland Waters, Russian
Academy of Sciences and the University of British Columbia; however,
clones Cur-5, Cur-12, Cur-8 and Colp-4b perished after several months
of cultivation.

Light and electron microscopy

Light microscopy observations were performed using the Zeiss Axi-
oScope A.1 equipped with a DIC water-immersion objective (x63)
and an AVT HORN MC-1009/S analogue video camera. For scanning
electron microscopy, cells were collected by centrifugation (5,500g).
Then, 0.5 ml of 2.5% glutaraldehyde (in 0.1 M cacodylate buffer) was
added to the 0.5 ml of resuspended cells and kept at 4 °C for 30 min
and then processed as described previously?. Transmission electron
microscopy preparations were performed in accordance with a previ-
ously published protocol®.

Preparation of libraries and sequencing

Cellsgrownin clonal laboratory cultures were collected when the cul-
tures had reached peak abundance and after the prey had been eaten
(light microscopy observations). Cells were collected by centrifugation
(1,000g at room temperature) onto an 0.8 pm membrane of a Vivaclear
mini column (Sartorius Stedim Biotech, VKO1P042); this was done
separately for RNA and DNA extractions. Total RNA was then extracted
using the RNAqueous-Micro Kit (Invitrogen, AM1931) and converted
into cDNA using the Smart-seq2 protocol®”. Moreover, cDNA of clones

TD-3, Colp-32, Colp-41, Cur-5, Cur-12 and Colp-4c was obtained from
20 single cells using the Smart-seq2 protocol (cells were manually
picked from the culture using a glass micropipette and transferred to
a 0.2 ml thin-walled PCR tube containing 2 pl of cell lysis buffer (0.2%
Triton X-100 and RNase inhibitor (Invitrogen))). Paired-end libraries
were prepared using the NexteraXT protocol (Illumina, FC-131-1024),
and sequencing was performed on the lllumina MiSeq platform with
read lengths of 2 x 300 bp.

Total DNA was extracted from the filters using the MasterPure Com-
plete DNA and RNA Purification Kit (Epicentre, MC85200). Genomic
DNA libraries of clones TD-3, Colp-41, Cur-12 and Colp-4c were gen-
erated at The Centre for Applied Genomics, and 150 bp paired-end
reads were sequenced on the lllumina HiSeq X machine. Genomic DNA
sequencing of clone Colp-32 was performed on the lllumina MiSeq
platform with read lengths of 300 bp using the Nextera DNA Sample
Prep Kit (Illumina, FC-121-1030) to construct paired-end libraries.

The SSU rRNA genes were amplified by PCR using the general
eukaryotic primers GGF (5’-CTTCGGTCATAGATTAAGCCATGC-3’)
and GGR (5’-CCTTGTTACGACTTCTCCTTCCTC-3') for clone TD-3;
PF1and FAD4 (ref. %) for clone Colp-4b; EukA and EukB® for clones
Colp-32, Cur-8, Cur-12 and Colp-4c; and 18SFU and 18SRU?° for
clones Colp-41, Colp-44, Colp-45 and Cur-5. The PCR products were
subsequently cloned (Colp-4b, Colp-32, Cur-5, Cur-8, Cur-12 and
Colp-4c) or sequenced directly (TD-3, Colp-41, Colp-44 and Colp-45)
using Sanger dideoxy sequencing with two additional internal prim-
ers 18SintF (5’-GGTAATTCCAGCTCCAATAGCGTA-3’) and 18SintR
(5-GTTTCAGCCTTGCGACCATACT-3").

Transcriptomic dataset assembly and decontamination

Raw lllumina sequencing reads were merged using PEAR v.0.9.6 and
the quality of the paired reads was confirmed in FastQC**2, Adapter
and primer sequences were subsequently trimmed using Trimmomatic
v.0.36 and transcriptomes were assembled using Trinity (v.2.4.0)>3*,
Theresulting contigs were then filtered for bacterial and kinetoplastid
prey contaminants using BlobTools as well as BLASTn and BLASTx
searches against the NCBI nt database and the Swiss-Prot database,
respectively®>¢, ORF predictions were carried out using TransDecoder
(v.5.5.0)*. Predicted peptidesin the transcriptomic assemblies of Pro-
voraisolates were clustered by CD-HIT** with a 90% identity threshold
toreduce the redundancy of sequence sets. Before annotating the
peptides, we also screened the data for contamination using similar-
ity searches, and discarded sequences of probable bacterial or prey
origin. The searches were performed using DIAMOND?® against the
NCBI's non-redundant database using the ‘more-sensitive’ search
mode. The taxonomic datawere extracted from the search results using
TaxonKit*. Transcripts with the best hit tobacterial or euglenozoan (prey)
sequences were removed from the assemblies. An additional screening
was performed for the Paraphysomonas-contaminated transcriptome
of N. curacaus Cur-5, by querying the transcriptome against Paraphyso-
monas imperforata and Paraphysomonas bandaiensis, available in the
FukProt database*. The clustered andfiltered peptide sets for eachisolate
were evaluated with BUSCO* using the eukaryota_odb9 dataset.

Annotation of transcriptomic data

The transcriptomes of Provora isolates were investigated using the
KEGG database pathway maps and functional classification system*,
The KEGG orthology assignments for the cleaned peptide sets were
generated by the KEGG Automatic Annotation Server** using the bidi-
rectional best-hit method. For comparative analyses of KEGG annota-
tions, we selected 65 eukaryotic species with available genomic data,
and similarly conducted assignments of KEGG orthology for each
genome using the server. The results of orthology assignments for each
organism were collected into a table, incorporating the KEGG BRITE
classification system for orthologues (Supplementary Data 2). The
KEGG orthology entries were evaluated using the counts of identified



orthologs in each species to highlight entries systematically over- or
underrepresented in Provora against a sample of other eukaryotes.
We used asimple normalized measure for each KEGG orthology entry,
counting the number of species that had less orthologues than the
isolates of Provora and subtracting the number of species that had
more. The values were calculated for eachisolate and an average value
was reported for each KEGG orthology entry.

Conservationin the major functional categories defined by the KEGG
BRITE classification system was summarized by means of a heat map
featuring KEGG orthology entry countsin Provora and other eukaryotic
species. The KEGG orthology entries in each species were reduced to
the presence/absence data, and entries that appeared only in Diapho-
retickes, Discobaor Amorpheawere excluded toreconstruct the ances-
tral eukaryotic complement in accordance with the Dollo parsimony
principle and the probable positions for the eukaryotic root*. The KEGG
orthology counts in the functional categories for each species were
normalized to the inferred ancestral eukaryoticentry count. The heat
map was created using the Python data visualization library Seaborn*.

Protein domain families in the cleaned peptide sets were identi-
fied using HMMER searches* with the PfamScan tool and the Pfam
v.32.0 database*®. The searches were carried out using the default
family-specific gathering thresholds. Pfam domain searches were also
performed for the collection of proteomes in the EukProt database*.
The counts of proteins containing each domain family were extracted
from the individual search results and assembled in a comparative
table (Supplementary Data 3). To highlight the domain families that
areenrichedinProvorarelative totherest of eukaryotesinthe EukProt
database, we applied the same measure that was used for evaluating
over-or under-representation of the KEGG orthologies. Protein domain
architectures for selected groups of proteins were analysed using the
SMART domain annotation resource*, and signal peptides were pre-
dicted using SignalP (v.5.0)*°. Profile searches for selected proteins,
suchas LAMTOR subunits of the Ragulator complex, were performed
with HMMER using the alignments of known family members, con-
structed with MAFFT>., Trophic mode prediction and principal compo-
nent analysis were performed with the Trophic Mode Prediction Tool®
using the default settings with the built-in datasets.

Orthogroup analysis

For the identification of orthologous groups of proteins, we com-
bined the transcriptomic data of isolates that originated from the
same species: Cur-5 and Cur-12 for N. curacaus; Colp-41 and Colp-44
for N. quarantinus; Colp-4b, Colp-4c and Cur-8 for N. marisrubri. The
combined transcriptomic datasets were clustered using CD-HIT*® with
a90%identity threshold. The duplication valuesin the clustered data-
sets were estimated by BUSCO* to be between 2.3% and 5.6% with the
eukaryota_odb9 dataset. Orthogroup inference was performed using
OrthoFinder® for the transcriptomic datasets of Provora species and
the proteomes of 65 eukaryotic species, selected to broadly sample
the eukaryotic diversity and accounting for genome availability. The
searchesinthe OrthoFinder workflow were performed usingthe BLAST
algorithm®*, The data on the shared orthogroups were extracted from
the OrthoFinder output, and the proportions of shared orthogroups
in pairwise comparisons were calculated using arithmetic mean. The
heat map with the proportions of shared orthogroups was created
using the Python data visualization library Seaborn*.

Phylogenomic dataset construction

For the construction of the phylogenomic dataset we relied on a pub-
licly available collection of 320 orthologous gene groups that cover
a broad range of eukaryotes'. We limited the existing taxonomic
samplingto 69 species for computational tractability, largely follow-
ing the selection strategy outlined in that study and consulting the
provided phylogeny with 733 taxa. The sampling was then extended
using the transcriptomic data from the newly described species and

also including several important lineages that were available in the
EukProt database* but were missing in the original collection, such
as hemimastigophores, CRuMs, ancyromonadids, colponemids
and several other deep-branching members of eukaryotic groups
(Supplementary Data 4). Orthologous sequences were identified in
the transcriptomes and filtered to remove contaminants using a pre-
viously developed dataset-expansion pipeline®. We used sequences
fromthe following organisms for eukaryotic contamination filtering:
kinetoplastids B. saltans and Trypanosoma cruzi for N. marisrubri
Colp-4b, colponemids and Rhodelphis limneticus; P.imperforata and
P.bandaiensisfor N.curacaus Cur-5; parasitic fungus Malasseziaglobosa
for colponemids and hemimastigophores; additional fungal species
(Saccharomyces cerevisiae, Yarrowia lipolytica and Ustilago maydis)
for Hemimastix kukwesjijk; Spodoptera litura and Amastigomonassp.
for Colponema vietnamica; and Trimastix marina for Ancyromonas
sigmoides and Gefionella okellyi. Orthologous sequences surviving the
contamination filter were added to the 320-gene dataset and aligned
with MAFFT* using the localpair (L-INS-i) algorithm. Single-gene
alignments were inspected manually using BioEdit®, and single-gene
phylogenies were reconstructed using IQ-TREE*® to resolve cases of
questionable orthology or contamination where necessary. Specifi-
cally, sequences from new isolates and the EukProt database were
screened for cross-contamination or residual contaminants surviving
the filtering procedure. Cleaned sequence sets from the inspected
alignments were then submitted to an automated quality-filtering
procedure of PREQUAL® with a 0.95 posterior probability filtering
threshold, realigned with MAFFT using the localpair (L-INS-i) algo-
rithm, and trimmed with trimAl (ref. *®) using an automated trimming
heuristic followed by a gap threshold filter of 0.7. The resulting 320
trimmed alignments were concatenated by SCaFoS* into a data matrix
with 104,691 sites (92,911 variable sites) and 94 operational taxonomic
units. Each new isolate was present in at least 80% of all genes in the
dataset. The recoded versions of the dataset were created with the
recode option of PhyloBayes® by applying the Dayhoff scheme with
sixamino acid groups® or the SR4 recoding scheme® with four groups.

Phylogenomic analyses

Phylogeny reconstructions with the concatenated alignment were
performed with the Bayesian inference approach implemented in
PhyloBayes®® and the maximum-likelihood approach of IQ-TREE®.
PhyloBayes analyses were conducted under the site-heterogeneous
CAT-GTR model® with four discrete Gamma rate categories; the -dc
flag was applied for the input alignment to eliminate constant sites.
Fourindependent chains were run with PhyloBayes for 10,000 cycles
and summarized with a 50% burn-in and 0.02 sampling frequency to
generate the consensus tree. The recoded alignments were analysed
with PhyloBayes using identical parameters, but the computation
was extended to 30,000 cycles. Maximum-likelihood tree reconstruc-
tion with IQ-TREE was performed using the LG + C60 + F + G4 profile
mixture model®*. Node support for the maximum-likelihood tree was
evaluated with nonparametric bootstrapping with 100 replicates and
using the PMSF method for the approximation of the profile mixture
model®,

For the site-elimination analyses, we generated a series of alignments
by progressively removing the most variable sites or the most compo-
sitionally heterogeneous alignment partitions. Approximately 10% of
the original alignment was removed in eachiteration of the dataset. Site
rates in the full alignment were estimated using IQ-TREE concurrent
withthe tree reconstruction and under the same evolutionary model.
Compositional heterogeneity was evaluated using the relative com-
position frequency variability measure by BaCoCa®. Each alignment
in the series was analysed by IQ-TREE similarly to the full alignment:
treereconstruction was performed using the LG + C60 + F + G4 model
and node support was evaluated using nonparametric bootstrapping
with 100 replicates and the PMSF method. Approximately unbiased
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tree topology tests®” were performed with the full alignment and the
alignmentsinthesite-elimination series. The approximately unbiased
tests were performed in IQ-TREE using the site-wise likelihood calcu-
lated under the LG + C60 + F + G4 model for all datasets. Visualization
of phylogenetic trees and construction of topologies was performed
using MEGA®®,

Mitochondrial genome assembly and annotation
Paired-end 150 bp Illumina genomic DNA reads were trimmed of
adapter and low-quality sequences using BBMap (v.37.36) (https://
sourceforge.net/projects/bbmap/). Trimmed reads were assembled
into contigs with SPAdes (v.3.14.1)® using k-mer sizes of 21, 33, 55,77
and 99. Contigs corresponding to putative mitochondrial DNA were
identified by querying assemblies with mitochondrial proteins, using
tBLASTn. Inthe case of N. marisrubri, asingle mitochondrial DNA contig
could notberecovered with SPAdes; here, NOVOPIasty (v.4.3)° was used
with a k-mer value of 55 to recover a single circular contig.

Mitochondrial DNA contigs were annotated automatically with
MFannot (https://megasun.bch.umontreal.ca/cgi-bin/mfannot/
mfannotinterface.pl), using translation table 4 (mold, protozoan and
coelenterate mitochondrial). Mitochondrial large subunit ribosomal
RNA (rnl) genes could not be annotated by MFannotin N. quarantinus,
N. curacausand N. kosolapovi owing to the presence of multiple group
lintrons, so exon/intron boundaries were assigned manually on the
basis of alignment to the intronless U. fretuma rnl gene. Manual edit-
ing of exon/intronboundaries was performed using the NCBI Genome
Workbench (v.3.6.0)”.. Mitochondrial genome maps were generated
with OGDRAW (v.1.3.1)"2

Predicted secondary structures of mitochondrial rnpB genes from
U.fretuma, N.quarantinus and N. curacauswere drawnwith RNA2Drawer”
onthe basis of the predicted structures of jakobid rnpB homologues™.

Individual mitochondrial protein phylogenies

Alignment of mitochondrion- and nucleus-encoded mitochondrial pro-
teins was performed using MAFFT L-INS-i (v.7.313)*". Non-homologous
sequences were trimmed with BMGE (v.1.1.2)”*, and phylogenetic trees
werereconstructed with IQ-TREE (v.2.0.7)*, with evolutionary models
chosenaccordingto the Bayesian Information Criterion. Either of1,000
ultrafast or nonparametric bootstrap analyses—specified in each fig-
ure—were used as measures of statistical support.

Mitochondrial multiprotein phylogeny

A concatenated phylogeny of 21 mitochondrial-DNA-encoded proteins
broadly conserved across eukaryotes was generated using PhyloSuite
(v.1.2.2)"%. Homologues of atpé, atp8, atp9, cox1, cox2, cox3, cob, nadl,
nad2, nad3, nad4, nad4L, nads, nadé, nad7, nad9, rpsi2, rpsi9, rpl2,
rpli4 and rpl16 were aligned with MAFFT L-INS-i (v.7.313)* using the
default parameters, trimmed with trimAL (v.1.2)*® under the ‘strict’
setting and concatenated. A maximum-likelihood phylogenetic tree
was calculated using IQ-TREE (v.1.6.8)”” under the LG + F + R8 model
of evolution, as determined automatically according to the Bayesian
Information Criterion, and 1,000 ultrafast bootstrap replicates were
carried out as a measure of statistical support.

Environmental survey

To search for the presence of Provorain nature, we downloaded envi-
ronmental sequencing datasets’® % targeting the 18S rRNA gene (both
v4 and v9 regions) from marine, freshwater and soil environments (the
fulllist of studiesis provided in Supplementary Data1). The operational
taxonomic units from each study were used as BLAST databases for
BLASTnsearches against Provoral8S rRNA sequences (e=1x10"%)%, All
resulting hits were extracted and incorporated into a eukaryotic-wide
18SrRNA gene alignment, realigned using MAFFT (v.7.222) (--auto)* and
trimmed using trimAL (v.1.2) (gt = 0.6 for the v4 region and gt = 0.8 for
thev9region)®®. Phylogenies were constructed using IQ-TREE (v.1.6.8)”

and manually inspected to remove contaminants and ensure that only
hits branching within the Provora were retained. The newly character-
ized operational taxonomic units were also used as queries to search
GenBank for Provora sequences using BLAST**. Final phylogenies were
generated inIQ-TREE (v.1.6.8) with statistical support from 1,000 ultra-
fast bootstraps”’).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Raw transcriptome reads from Provora are deposited in GenBank
(PRJNA866092), along with the SSU rRNA gene sequences of species
(OP101998-0P102010). Assembled transcriptomes, mitochondrial
genomes, materials of orthogroup and phylogenetic analyses, along
with individual gene alignments, concatenated and trimmed align-
ments, and maximum-likelihood and Bayesian tree files for the phy-
logenomic dataset are available at Figshare (https://doi.org/10.6084/
m9.figshare.20497143). The following databases were used in this
study: NCBI nt (https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nt.gz),
NCBI non-redundant database (https://ftp.ncbi.nim.nih.gov/blast/
db/FASTA/nr.gz), Swiss-Prot (https://ftp.uniprot.org/pub/databases/
uniprot/current_release/knowledgebase/complete/uniprot_sprot.
fasta.gz), EukProt (https://figshare.com/articles/dataset/EukProt_a_
database_of_genome-scale_predicted_proteins_across_the_diversity_
of_eukaryotic_life/12417881/2), KEGG (https://www.genome.jp/
kegg/), Pfam (http://ftp.ebi.ac.uk/pub/databases/Pfam/releases/
Pfam32.0/). The following environmental sequencing datasets were
used for 18S rRNA gene analysis: Tara Oceans (https://zenodo.org/
record/3768510#.Y1ZtKuzMI1l), protists in European coastal waters
and sediments (https://doi.org/10.1111/1462-2920.12955), Autonomous
ReefMonitoring Structures (ARMS) in Red Sea (https://doi.org/10.1038/
$41598-018-26332-5), Stream biofilm eukaryotic assemblages (https://
doi.org/10.1016/j.ecolind.2020.106225), Deep sea basin sediments
(https://doi.org/10.1038/s42003-021-02012-5), eukaryotic plankton
inreefenvironmentsin Panama (https://doi.org/10.1007/s00338-020-
01979-7), eukaryote communities in a high-alpine lake (https://doi.
org/10.1007/s12275-019-8668-8), mountain lake microbial communi-
ties (https://doi.org/10.1111/mec.15469), microbial eukaryotesin Lake
Baikal (https://doi.org/10.1093/femsec/fix073). A 320-gene dataset
was used for constructing alignments for phylogenomic analyses
(https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-
021-22044-z/MediaObjects/41467_2021_22044_MOESMS_ESM.zip).
The new taxahave beenregistered with the Zoobank database (http://
zoobank.org/) under the following accession codes: urn:Isid:zoobank.
org:act:9EE01A01-E294-415B-A36F-0FB4373183DO, urn:lsid:zoobank.
org:act:A54BDOFB-7FA3-42CB-9D3D-2211FA657DCO, urn:Isid:zoobank.
org:act:F6395E20-7BDF-4CBE-95FB-E4CE1E7B8185, urn:lsid:zoobank.
org:act:F1IE8545D-BAC1-44FF-9B6B-8FEE4AC028BB, urn:lsid:zoobank.
org:act:66A5C066-890F-4F25-AAB6-5CDCE2028034, urn:lsid:zoobank.
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Extended DataFig.1|Outline of tree topologies obtainedinthe
phylogenomic analyses and the geographical distribution of Provora.

(a) Maximum-likelihood tree topology obtained with the 320-gene dataset;
nodeswithsupport values below100% (PMSF model, 100 replicates) are
labelled red, and the corresponding values are provided next to the tree nodes;
established eukaryotic groups with full supportin the analysis are collapsed
and showninthe tree schematically with triangles. (b) PhyloBayes consensus
treetopology obtained using four analysis chains with the native 320-gene
dataset; posterior probabilities are shown for tree nodes that fail to achieve

full supportinthe analysis. (c) PhyloBayes consensus tree topology
obtained with the Dayhoff 6-recoded 320-gene dataset; the low posterior
probability (0.58 pp) for the union of Provora and Haptistareflects the
marginal support for this group in all four analysis chains, rather than the lack
of convergence between the chains (maxdiff=0.27). (d) PhyloBayes
consensus tree topology obtained with the SR4-recoded 320-gene dataset.
(e) Geographical distribution ofenvironmental sequences of 1I8S rRNA
belonging to Provora.
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Extended DataFig.2|Phylogenies with variableregions of 18S rRNA based onthe V9region ofthe 18S rRNA gene. The 18S rRNA of Provora
featuring identified environmental sequences belongingto Provora. describedin this paper areshowninred. Environmental sequences related to

(a) Phylogenetic treebased onthe V4 region of the 18S rRNA gene showing themembers of Provora are labelled in blue. Bootstrap values >90% are
thediversity ofenvironmental lineages of Provora. (b) Phylogenetic tree indicated withblackcircles atthetree nodes.
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Extended DataFig. 3 | Conservation of functional categories and trophic
mode predictionfor the transcriptomes of Provora. (a) Heatmap of
annotated KEGG orthology entry counts (presence/absence data) for
functional categories defined by BRITEin the transcriptomic data of
Provoraisolates and the genomic data of eukaryotic organisms; the counts
onlyincludeentriesinferred to be ancestral for eukaryotes by the Dollo
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Prediction Probability

subdivisions (Diaphoretickes, Discoba or Amorphea) were excluded; the
counts were normalized to theinferred ancestral eukaryotic KEGG orthologs.
(b) Principal component analysis plot with gene ontology category

scores for categories associated with free-living phagocytic organisms;
(c) Prediction probabilities of trophic modes (phagocytosis, prototrophy,
photosynthesis) in Provoraisolates, conducted by the Trophic Mode
Prediction Tool.
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Extended DataFig. 4 |Maximum likelihood phylogenetic tree with
eukaryotic members of the inositol trisphosphate receptor family,
identified by the presence ofaRyR and IP3Rhomology associated domain
(RIHa, PF08454) and anion channel domain (PF00520). The phylogeny was
reconstructed by IQ-TREE using analignment with 396 eukaryotic sequences,
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marked with black circles; clades uniting members of asingle taxon are
collapsedinthetree and labelled inaccordance with their taxonomy; branches
thatbelongtoProvoraare colouredred; proteindomainarchitecturesare
displayed for the IP3R family sequencesin Provora:Ins145_P3_rec (PFO08709),
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Extended DataFig. 5| Maximum likelihood phylogenetic tree with MACPF
domain-containing proteinsin Provora. The phylogeny was reconstructed
by IQ-TREE with the best-fitting WAG+F+R5 model of evolution; node support
was evaluated with 1000 UFBoot replicates, and nodes with over 95% support
are marked with black circles; clades uniting putatively orthologous MACPF
sequencesin Nibbleromonasspecies are collapsed; species name abbreviations:

e

—
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At - Ancoracystatwista, Nm - Nebulomonas marisrubri, Uf - Ubysseya fretuma,
Na - Nibbleromonas arcticus, Nk - Nibbleromonas kosolapouvi, Nc - Nibbleromonas
curacaus,Nq - Nibbleromonas quarantinus; the domain architectures of
MACPF proteinsidentified using SMART searches are shown; MACPF domains
outlined with dotted lines correspond to findings below the default detection
threshold.



1

on merolae
ulosus
gaditana

huraria
subcapitata

sch

riopsis chorda
Galdieria sulzZ

hium irregulare

mphimedon queenslandica
Inemiopsis leid,

apsaspora owczarzaki
richomonas vaginalis

alpingoeca rosetta
Naegleria gruberi
Bodo saltans

Cctocarpus

Nannochlorop.
Aureococcus anophagefferens

Phaeodactylum tricornutum
Thalassiosira pseudonana

Aurantiochytrium limacinum
Stentor coeruleus

Aplanochytrium kerguelense
Phytophthora parasitica

Nibbleromonas quarantinus
Nibbleromonas curacaus
Nibbleromonas kosolapovi
Nibbleromonas arcticus
Paviovales sp. CCMP2436
Bigelowiella natans
Plasmodiophora brassicae

Coccomyxa subellipsoidea
Ubysseya fretuma

Micromonas pusilla
Nebulomonas marisrubri
Ancoracysta twista

Ostreococcus lucimarinus
Emiliania huxleyi
Phaeocystis antarctica

Chlamydomonas reinhardtii
Guillardia theta

Acanthamoeba castellanii
Chlorella variabi

Drosophila melanogaster
Entamoeba histol,

Homo sapiens
Blastocladiella britannica
Spizellomyces punctatus
Mitosporidium daphniae
Fonticula alba
Thecamonas trahens
Trypanosoma cruzi
Cyanophora paradoxa
Oxytricha trifallax

Chondrus crispus

Pyricularia oryzae
Gra
Cy:

Trichoplax adhaerens
Coprinopsis cinerea

Aplysia californica
Hydra vulgaris
Raphidoct

£

Aplysia californica
Drosophila melanogaster
Homo sapiens

Trichoplax adhaerens

Hydra vulgaris |
Amphimedon queenslandic
Mnemiopsis leidyi

Coprinopsis cinerea
Pyricularia oryzae
Mortierella verticillata |
Coemansia reversa
Blastocladiella britannica
Spizellomyces punctatus

Fonticula alba
Thecamonas trahens
Acanthamoeba castellanii
Entamoeba histolytica
Dictyostelium discoideum
Giardia lamblia

P
Trichomonas vaginalis
Naegleria gruberi
Bodo saltans
Trypanosoma cruzi
Chondrus crispus
Gracilariopsis chorda
Cyanidioschyzon merolae
Galdieria sulphuraria
Cyanophora paradoxa
Arabidopsis thaliana
Klebsormidium nitens
Raphidocelis subcapitata
Chlamydomonas reinhardftii
Chlorella variabilis
Coccomyxa subellipsoidea
Micromonas pusilla
Ostreococcus lucimarinus
Guillardia theta
Nibbleromonas quarantinus
Nibbleromonas curacaus
Nibbleromonas kosolapovi
Nibbleromonas arcticus
Ubysseya fretuma
Nebulomonas marisrubri
Ancoracysta twista
Emiliania huxleyi
Phaeocystis antarctica
Pavlovales sp. CCMP2436
Bigelowiella natans
Plasmodiophora brassicae [\ |}
Aplanochytrium kerguelense
Aurantiochytrium limacinum
Phytophthora parasitica
Pythium irregulare
Ectocarpus siliculosus
Nannochloropsis gaditana
Aureococcus anophagefferens
Phaeodactylum tricornutum
Thalassiosira pseudonana
Stentor coeruleus
Oxytricha trifallax
Tetrahymena thermophila
Perkinsus marinus
Vitrella brassicaformis
Cryptosporidium parvum
Gregarina niphandrodes
Toxoplasma gondii
Plasmodium falciparum

i

Extended DataFig. 6 | Proportions of shared to total orthogroup countsin
pairwise comparisons of eukaryotic organisms. Arithmetic means of the
proportionsof shared orthogroups between pairs of genomes or transcriptomes
areshownusing aheatmap; the organisms are grouped usingatree, which

Tetrahymena thermophila

Perkinsus marinus
Vitrella brassi

formis
Gregarina niphandrodes

Cryptosporidium parvum
Toxoplasma gondii
Plasmodium falciparum

0.8

0.7

0.6

0.5

—04

—03

—0.2

summarizesthe current concept of eukaryotic phylogeny; orthogroup

inference for members of the Provoralineage relied on the transcriptomic
data; the Provoraspeciesarelabelledinred, and the corresponding intragroup
comparisons are outlined withared squarein the heatmap.



Article

N. kosolapovi

>88,532 bp

14,045 bp

8,352 bp

LegHo
Legyo
yLyo
vipo
Lyepo
£62H0

sui

ms

12 ms

& rpl

VOL-MU.

1kb

18140
9pyHOo

1sdi

I8cyo
gdie
pdie

Q
— 119-Nun g

9peu =8

20,800 bp

0kpeyl
6Lsdy
elsd

oA
oLL3uL
9lds

gsdi
isdl
LLHo

11,206 bp

N. quarantinus

199-sun
gid

O19-HU}

82O
g6cHo

L8cHo

«Gpeu

FLX00

odie

6peu

2gsd) o

Lisdi F1

gkepo

erepo
.q0o
Lgzp0

Lgepo

/sdi k]

009-oun”|

)
=
=)
3

o
<
B
[N
Qo
bt
- @©
o B
e
X
8
2x00
peu
YWoo|
QW
LVO-Wus
99 1-dun
2 olo-qua
5 B
8 2240)
= 9/2}0)
64|
082)
9/20)
d)
vy
001-Hus
101-Hua

100bp

-0 Hids
igwod

Hwod

92410 ++X00
SSe40

L1l
lepeu
gdw =

%

cmC

cmB

N. curacaus

65,762 bp

©
5
£
S

D ribosomal proteins (SSU)

D complex | (NADH dehydrogenase)

. ribosomal proteins (LSU)

. other genes

. complex Il (succinate dehydrogenase)

D complex Il (ubichinol cytochrome ¢ reductase)

O orrs

D complex IV (cytochrome ¢ oxidase)

: ATP synthase

. transfer RNAs

. ribosomal RNAs

and gene-rich. Allmaps

inthelegend.

ialgenomes are typically circular-mapping,

Extended DataFig.7|Mitochondrial genome maps of nibblerids. Nibblerid mitochondr
wereedited toarbitrarily start at the ccmA gene. Genes are colour-coded according to their functional classification, as shown




3
EEENEEOEECOED - . & " >
g = = ” mE-
g5 828585858888 Ié L 8 ey — tmV-TAC 8 o - naddL o 8
2 32 78388 33333 a9 g 3 & | nad3 L |
$3°gS$S82e55%5% g S 3 3 8
3z e 3 33 35 % & % % nQ- IR o & Q
iy $::331%2%2 mei g 3 . 53
D £ g g o B = = 53 rgl31 _tmA-TGC ® cox T 2
Z o S 8 9 08 &5 §5 = tnC-GCA tmW-CCA Y
z g g. g ? s 82 “orplid 3 tmS-TGA ~
2 2 g $ 338 2 nad1o 'PI6 o g s
c 93 S &2 3 & nad9 @ )
o o 2 3 2 a < S pl2 Iy
Eco ® 3 ¢ g cob s
°o 8 2 g S rps19
% 5 § S Hgggl_ =3 rps3
2 3 § nad6é rpl16
8 R i e
a & Q
a | rps8 Q
g 3
8 8 ©
8 = X 8
3 E
o
8 i -
e rnE-TTC — o
trnR-TCG —
cemC tmV-TAC r
ccmB >
pl16 2
ps3 N -
rprsp1lg nadi1
tatC trnK"l_’f‘I{‘:l;1
tmS-TGA or
{mR-ACG orf204. EI
S rpsi
a8
N 8
nad1 ‘ S
trnK-TTT nad9:
:ﬂdﬁ\ nad10
naﬁii e pl6
cob tmW-CCA—— ¥
naco | mATeC k-
6 nadio| | e j 8 tmP-TGG
W BCA trnC-GCA o
mATGC "fg_ D%
— fBwe
- (=}
4 =K
trV-TAC fRT-TGT &
OCC;:A — tmE-TTC % atp9
tmM-CAT——— _tmLTAA TaT—f 3
tmL-TAG g ={E’L6 tmTTeT &
/ BR.cAT cox3 | |
/ rFs nadé
/ gP’? AT tL-TAG —
=N eTT tmL-TAA
—rpl
2
-~ e i 5
mpl -
orf471 2
_ tmH-GTG 3
rps2 rpl27
a0
HaoN orf316
5  neese tmM-CAT
@ trnD-GTC
3 tmN-GTT
3
- orf298
rps10 [
rps2
trnF-GAA 120
2 trnM-CAT "'""Gs‘ﬁ [
S 7
2 @
2 tmR-TCT 3
ot == 19 s
tmD-gTC ™ o
St = rpl1o mmj
tmS-GCT . trnR-TCT—
119 5 g
rpl ~ | =
tmR-TCT == ?
2 @
8 3 s}
L & = =
S 7 my
3 = — fv:
tmM-CAT.__ g orftog IRV-E18
QAR tmG-TCC
El
- 3
3
4
N
ms é I
trnG-GCC ~
g
orf143 3
rplz7  PS2 @
lrnHaﬁ%L}‘ trnﬁn-%i%7
m@:@% tmF-GAA
7 \ tmM-CAT  ye7
\— pl32
trnN-( \ rps14
tm|-&) %
ps o
rps13 - Py
tnM-CAT  atp8 '§,
atp6
E tmL-TAG tmL-TAA
TR ——— UnM-GAT = tmL-TAG
~tatA 13
orfi 11
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Extended DataFig. 9|See next page for caption.




Extended DataFig.9|Provoran mitochondrial genomesretainancestral
features, but their sizes are variable due to group-lintron accumulation.
(a) Secondary structure predictions of mitochondrion-encoded RNAse P
RNAs from Ubysseyafretuma, Nibbleromonas quarantinus, and N. curacaus;
genesencoding rnpB have beenidentified inasmalland phylogenetically
disparate collection of eukaryotes, and are often very dissimilar from their
counterpartsin Alphaproteobacteria. All nibblerid mitochondrial genomes
described hereencode rnpB, and bear astrong resemblance to bacterial and
jakobid rnpB homologs. Nucleotides with black bordersindicate positions that
arefoundineubacterial consensus and jakobid rnpB homologs, and conserved
helices are noted (P1-19). (b) Group-lintrons thatencode LAGLIDADG

homingendonucleases are presentin mitochondrial genomesinthe genus
Nibbleromonas; phylogenetic relationships between intron-encoded homing
endonucleases of coxI are shown as an exemplar of introns presencein
nibblerid mitochondrial genomes. Some homologous homing endonucleases
arepresentin the same position of N. kosolapovi, N. quarantinus and N.
curacauscoxl (e.g., intron1of each species), indicating that they were present
intheircommon ancestor and have been broadlyretained. Other introns are
foundinonly N. kosolapovi, and one of N. quarantinus or N. curacaus,
suggesting lineage-specificintronloss. In contrast, the endonuclease encoded
inintron 6 of N. kosolapovi coxIwas likely gained via lateral transfer from fungi,
where the endonucleaseis also encoded by coxIintrons.
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Raw transcriptome reads from Provora are deposited in GenBank (PRINA866092), along with the SSU rRNA gene sequences of species (OP101998-OP102010).
Assembled transcriptomes, mitochondrial genomes, materials of orthogroup and phylogenetic analyses, along with individual gene alignments, concatenated and
trimmed alignments, and maximum-likelihood and Bayesian tree files for the phylogenomic dataset are available at figshare with the identifier doi.org/10.6084/
m9.figshare.20497143. The following databases were used in this study: NCBI nt database (https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nt.gz), NCBI non-redundant
database (https://ftp.ncbi.nIm.nih.gov/blast/db/FASTA/nr.gz), Swiss-Prot database (https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/
complete/uniprot_sprot.fasta.gz), EukProt database (https://figshare.com/articles/dataset/EukProt_a_database_of_genome-
scale_predicted_proteins_across_the_diversity_of eukaryotic_life/12417881/2), KEGG database (https://www.genome.jp/kegg/), Pfam database (http://
ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam32.0/). Environmental sequencing datasets were used for 18S rRNA gene analysis: Tara Oceans (https://
zenodo.org/record/3768510#.Y1ZtKuzMI1l), Protists in European coastal waters and sediments (https://doi.org/10.1111/1462-2920.12955), Autonomous Reef
Monitoring Structures (ARMS) in Red Sea (https://doi.org/10.1038/s41598-018-26332-5), Stream biofilm eukaryotic assemblages (https://doi.org/10.1016/
j.ecolind.2020.106225), Deep sea basin sediments (https://doi.org/10.1038/s42003-021-02012-5), Eukaryotic plankton in reef environments in Panama (https://
doi.org/10.1007/s00338-020-01979-7), Eukaryote communities in a high-alpine lake (https://doi.org/10.1007/s12275-019-8668-8), Mountain lake microbial
communities (https://doi.org/10.1111/mec.15469), Microbial eukaryotes in lake Baikal (https://doi.org/10.1093/femsec/fix073); 320-gene dataset was used for
constructing alignments for phylogenomic analyses (https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-22044-z/
MediaObjects/41467_2021_22044_MOESM5_ESM.zip). The novel taxa have been registered with the Zoobank database (http://zoobank.org/)
urn:Isid:zoobank.org:act: 9EE01A01-E294-415B-A36F-0FB4373183D0, urn:lsid:zoobank.org:act:A54BDOFB-7FA3-42CB-9D3D-2211FA657DCO,
urn:lsid:zoobank.org:act: F6395E20-7BDF-4CBE-95FB-E4CE1E7B8185, urn:lsid:zoobank.org:act:F1E8545D-BAC1-44FF-9B6B-8FEE4ACO28BB,
urn:Isid:zoobank.org:act:66A5C066-890F-4F25-AAB6-5CDCE2028034, urn:lsid:zoobank.org:act:830A4372-62D9-4CE1-BFD8-SFE9EED67FED,
urn:lsid:zoobank.org:act:DFE7080B-6201-455A-99CE-903103CBB049, urn:Isid:zoobank.org:act:A230EC14-DC4B-4F05-8D69-8FEOBAB3DEQ9,
urn:Isid:zoobank.org:act:B8894608-40D4-4D16-A4D9-6F448614F22C, urn:lsid:zoobank.org:act:97B89F6F-72D6-482A-9EA7-88E5C63EGEBG.
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Reporting on sex and gender This study did not involve human research

Population characteristics This study did not involve human research
Recruitment This study did not involve human research
Ethics oversight This study did not involve human research

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|:| Life sciences |:| Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.
Study description In this study, we describe ten new strains of microbial predators, which collectively form a diverse new supergroup of eukaryotes

Provora. We performed detailed ultrastructural, transcriptomic/genomic, and phylogenomic analyses, and showed that Provora is
genetically and morphologically distinct from all other eukaryotes

Research sample This research describes three new genera and five new species from a new phylum of predatory eukaryotic
microbes that is the sister lineage of the Haptista+TSAR assemblage, possibly also including Hemimastigophora. The organisms were
collected from marine habitats, including coral reefs, nearshore sediments, and the water column.

Sampling strategy Sample size is not relevant to the present study.

Data collection Samples were collected from marine sediments, water column, and corals, and the new organisms were subsequently grown in the
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Data collection laboratory. Microscopic data were recorded by Denis Tikhonenkov. Sequencing data were generated by D. Tikhonenkov.
Transcriptome and genome data were assembled by K. Mikhailov and R. Gawryluk.

Timing and spatial scale  Sampling relevant to the present study was carried out seven times: in the Strait of Georgia, British Columbia, June 13, 2017; Arctic
waters of the Kara Sea, September 19, 2015; Arctic waters of the East Siberian Sea, September 5, 2017; shoreland of Quarantine Bay,
Black Sea, May 13, 2017; sea waters of the Curacao island, April 24, 2018; Red Sea, Sharm El Sheikh, April 2015; Kazachya Bay, Black
Sea, September 1, 2018. We had no reason to expect to find the organisms that we did, so there is no specific rationale to sampling
sites.

Data exclusions Sequencing data from prey organisms were excluded from the analyses for studied predatory protists. To do this, we subtracted
transcripts derived from prey (kinetoplastids) and any non-eukaryotic transcripts from the total datasets. The raw data associated

with this will be accessible in the raw read files deposited in the NCBI SRA database.

Reproducibility Microscopic analyses were conducted several times. Phylogenomic analyses were carried out with a number of different approaches
(maximum likelihood, Bayesian etc.) and all associated datasets have been made available.

Randomization Randomization is not relevant to the present study because organisms were not allocated into groups.
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Blinding Blinding was not relevant to the present study.

Did the study involve field work? & Yes |:| No

Field work, collection and transport

Field conditions Climatic conditions in the field were not recorded and are not relevant to the study.

Location 1) Strait of Georgia, British Columbia, Canada (49°10'366" N, 123°28'50" W)
2) Arctic waters of the Kara Sea (75°53'16.8" N, 89°30'28.8" E)
3) Arctic waters of the East Siberian Sea (71°27'59.8" N, 152°53'59.3" E)
4) Shoreland of Quarantine Bay, Black Sea (44°36'41.4" N, 33°30'6.2" E)
5) Eastern point of the Curacgao island (12°12'32.3"" N, 68°48'58.8" W)
6) Red Sea, Sharm El Sheikh (27°50'50.5" N, 34°18'59.4" E)
7) Kazachya Bay, Black Sea (44°34'18.8"N 33°24'40.2"E)
8) Curacao island (12°12'32.3" N, 68°48'58.8" W)

Access & import/export  Habitats were accessed via a research vessel (locations 1, 2, 3), a car (locations 4-7), and a diving boat (lication 8). No permissions
were required for sampling in the selected sampling sites.

Disturbance No disturbances to the sites were caused; we sampled a small amount of water and surface sediment from marine habitats.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
XI|[] Antibodies [ ] chip-seq

|:| Eukaryotic cell lines |:| Flow cytometry

|:| Palaeontology and archaeology |:| MRI-based neuroimaging
|:| g Animals and other organisms

g |:| Clinical data

|Z |:| Dual use research of concern

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Ten clonal cultures of protists were isolated from marine habitats

Authentication Phase and DIC contrast light microscopy and 18S rRNA gene sequencing was used for authentication.




Mycoplasma contamination This is not relevant to protist cell culture.

Commonly misidentified lines  Thisis not relevant to protist cell culture.
(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals The study did not involve laboratory animals.
Wild animals The study did not involve wild animals (or any animals).
Reporting on sex This is not relevant to protist cell culture.
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Field-collected samples  Cultures of predatiry protists were established by isolating cells with a glass micropipette. Cultures were maintained at room
temperature and at +4C. Cultures were propagateed using the kinetoplastid protist Procryptobia sorokini B-69 as prey. The
kinetoplastid was grown in marine Schmalz-Pratt’s medium or artificial marine medium (RS-R11040, Red Sea) and preyed upon
Pseudomonas fluorescens.

Ethics oversight No ethical approval was required. The organisms described here are novel eukaryotic microbes (protists) that feed on other protists
and pose no risk.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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