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Abstract. Multidimensional generalizations of the Weierstrass normal form 
are considered, depending on the Waring decomposition. The straightforward 
generalization exists for Fermat-type cubic forms, but does not exist for the 
general cubic forms in four variables. On the other hand, if a cubic form 
has a sufficiently small rank, then the corresponding hypersurface is invariant 
under a nonidentity birational involution of the complex projective space. The 
involution can be calculated in terms of radicals.

Let us focus on cubic hypersurfaces that are invariant under a nonidentity 
birational involution of the complex projective space. Throughout the paper all 
coefficients are denoted by small Greek letters. A form means a homogeneous 
polynomial over the field of complex numbers. A hypersurface means a projective 
variety of codimension one. A hypersurface given by the form f  is smooth if its 
gradient V  f  is nonzero outside of the origin; otherwise it is singular. Two forms 
f  and g are equivalent to each other if there exists a nondegenerate linear trans­
formation J  such that f  (x) = g(Jx). A cubic form in three variables is equivalent 
to the Weierstrass normal form y2y2 + y3 + ay iy^ +  fty3. It is invariant under the 
linear involution (y0,y i ,y2) ^  (—y0,y i ,y2). The rank of a form f  of degree d is the 
minimal number of linear forms needed to represent f  as a sum of d-powers. This 
sum is known as the Waring decomposition. For example, each ternary cubic form 
can be decomposed as the sum of five cubes (Sylvester Pentahedral Theorem). 
The next example shows the relationship between the Weierstrass normal form 
and the Waring decomposition. Let us consider the linear transformation given by 
two equations xo = j  yi + yo and xi = \y i — yo. Then x 3 + xf = y^yi + Ощy3.

Theorem 1. The general cubic form in four variables is not equivalent to any form 
of the type y f e  +  g(yi,y2,ys).

Proof. Let us suppose the general cubic form f  in four variables is equivalent to 
a form of the type y2y3 +  g(yi ,y2,y3). One can assume that the surface given by 
the equation f  = 0 is smooth. The requirement of smoothness does not reduce the 
dimension of the set of forms. The curve given by the equation g = 0 is smooth. 
Thus, the form g is equivalent to the second normal form g = Z3 + z2 +Z3 — 3Azi z2z3
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with replacement of three variables y1, y2, and y3 by linear forms in three variables 
zi, Z2, and Z3. Then f  = y0(p2zi + p2z2 + P3Z3) +  zj5 +  zf +  zf -  3AZ1Z2Z3, where 
at least one of the coefficients p1, p2, or p3 is nonzero. Otherwise, the form would 
not depend on the variable y0; therefore the point with homogeneous coordinates 
[1 : 0 : 0 : 0] would be a singular point of the surface. One can assume that 
p3 = 0. Replacing the variable y0 = p3z0 yields an equivalent cubic form of the 
type f  = z0(p1z1 + p2z2 + z3) + zi + z3 +  zjj — 3Az1z2z3. So a cubic form in four 
variables with at most 20 monomials is defined by a matrix with 16 entries and 
three parameters A, p,1, and p2. Mapping of the pair consisting of the form f  (x) 
and the matrix J  to another form f  (Jx) obtained by the linear transformation 
of coordinates defines a regular surjection from the 19-dimensional affine complex 
space onto an open set of the 20-dimensional complex space. There is a small 
polydisc such that the map is bijective. This contradicts Brouwer’s theorem. □

Theorem 2. Given the cubic form f  = x3 +  • • • + xn + (a0x0 +  • • • + anxn)3 in at 
least three variables xc, . . .,  xn. There exists a transformation of coordinates such 
that f  is equal to the rational function y2yn + g(yi,. ..  ,yn) in the complement of 
a hyperplane given by the linear equation yn = 0 in at most three variables xc, x 1r 
and xn . The transformation is the identity map for all coordinates except three; 
moreover it can be calculated in terms of radicals.

Proof. Let us consider the linear form £ = a cxc + • • • + anxn and the Hessian 
matrix H , whose entries are equal to dx.gx . . The matrix H  is equal to the sum 
of the diagonal matrix diag(6x0, . . . ,  6xn) and the matrix with entries 6 а а £. 
Let us consider a point u with coordinates ui = 0 for all 2 < i < n — 1 such 
that it is not the origin, and both £(u) and f  (u) vanish. Its coordinates can be 
calculated in terms of radicals. The rank of the matrix H  (u) is at most three and 
does not increase under a linear transformation of the coordinates. Let us consider 
the quadratic form h = u0x 2 +  щ х2 +  unx"n with the matrix H (u). It vanishes at 
the point u because h(u) = f  (u) = 0; likewise both gradients V f  (u) and Vh(u) 
are collinear and nonzero. Both quadric h = 0 and cubic f  = 0 have a common 
tangent hyperplane with defining linear form zn = u2x 0 +  u2x 1 +  Uyxn up to a 
nonzero factor. A linear subspace of codimension two lies on the quadric h = 0. 
It is defined by two linear equations z1 = zn = 0 for some linear form z1 in three 
variables x0, x1, and xn. Let us choose an independent linear form z0(x0,X;L,xn) 
such that z0 (u0, u1,un) = 0. Let us set at last zi = x i for all indices 2 < i < n — 1. 
The linear transformation is nondegenerate. Thus, the set {zjf} is a basis for the 
dual space. If both u0 and un are nonzero, then one can choose the forms z0 = x0 
and z1 = u1x 0 — u0x 1.

The restriction of h to the subspace vanishes identically. Thus, the cubic form
is equal to f  = p0z2zn +  2p0z0(pizi +------ + Pnzn)zn +  2т ^ 0zf +  s(zb . . . ,  zn),
where pk and т are complex numbers. As the cubic is not a cone, p0 = 0.

In case т = 0, the cubic form can be transformed to f  = y2yn +  g(y1, ...  ,yn), 
where y0 = p0z0 +  p1z1 +  • • • +  pnzn and for all indices i = 0 we set yi = zi.
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In case т = 0, if zn = 0, then f  is equal to

f plzl zn + 2P0 z0 [ Plz1 + • • • + Pnzn + т~
2

n
Zn + s(zi, . . .,Zn).

Let us set y0 = p0z0 + p1z1 + • • • + pnzn + тZ1 and for all indices i = 0 we set 
yi = Zi. Then f  = y0yn + g(y1, ... ,yn), but y0 and g are rational functions. Their 
denominators are powers of a linear form u3x 0 +  u \x1 + пПхп. □

Remark. There are 6(n3 — n) choices of three coordinates xi , Xj, and Xk instead 
of x0, X1, and xn.
Theorem 3. Given the cubic form f  = x3 +  • • • + x 3f  + (a0x 0 + • • • + anxn)3 in at 
least three variables x 0, . . ., xn . The corresponding cubic hypersurface is invariant 
under a nonidentity birational involution of the ambient projective space.
Proof. According to Theorem 2, there is a birational map p from the cubic hyper­
surface f  = 0 to a hypersurface, which is invariant under the action of the linear 
involution [y0 : y1 : • • • : yn] ^  [—y0 : y1 : • • • : yn]. The composition of the map p, 
the involution, and p -1 yields a sought involution. □

Remark. All cubic surfaces are rational. Thus, a large set of birational involutions 
exists for any cubic surface. If there is a regular involution of an open set of the 
surface with a unique singular point, then the point is fixed under the involution. 
In this way, one can either localize the singular point, or verify smoothness of a 
cubic surface having at most one singular point. The requirement for uniqueness 
of the singular point is significant. Otherwise, two singular points can be mapped 
one into another under the involution.

The following theorem improves the result from [1] in case of cubic hypersur­
faces. The homogeneous coordinates of (—1,1)-points are equal to [±1 : • • • : ±1 : 1] 
up to a common nonzero factor.
Theorem 4. Given the cubic form f  = X3 + • • •+x3f  + (a0x 0 + • • •+anxn)3 in at least 
three variables x0, . . .,  xn, where all the coefficients ak are nonzero. There exists a 
one-to-one correspondence between singular points of the cubic hypersurface f  = 0 
and ( — 1,1)-points belonging to the hyperplane defined by the linear form h = 
воУо + • • • + e nyn + yn+1 in n +  2 variables with the coefficients ftk = '■J—a k-
Proof. Let us consider the cubic form g = /30y3 + • • • + РпуП + v3+1. Since all 
the coefficients в k are nonzero, the hypersurface g = 0 is smooth. Its hyperplane 
section is projectively equivalent to the hypersurface f  = 0. If both forms h and 
g vanish simultaneously at a (—1, 1)-point, then the hyperplane is tangent to the 
hypersurface g = 0 at this point. Thus, the section is singular.

At a singular point of the section, the hyperplane h = 0 coincides with the 
tangent hyperplane to the hypersurface f  = 0. Since all the coefficients Pk are 
nonzero, both gradients Vh  and Vg can be collinear only at the points whose 
coordinates satisfy the system of the equations xk = x3 for all indices k and j. All 
the points are (—1, 1)-points. □
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In accordance with the Alexander-Hirschowitz theorem [2], the rank of the 
general cubic form in four variables is equal to five. It is exactly one more than 
the number of variables. If the Waring decomposition is known, then Theorem 4 
solves the system for cubic surface by means of an auxiliary combinatorial task 
that is equivalent to the set partition problem. Unfortunately, it is hard to find 
a ( — 1,1)-point belonging to the hyperplane in high dimensions [3]. On the other 
hand, one can find ( - 1 ,1)-points belonging to the hyperplane given by a linear 
form with integer coefficients near zero, using dynamic programming.
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