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Abstract. We consider generic-case complexity of the multidimensional sub-
set sum problem. Several heuristic algorithms have been known. So, in 1994,
Nikolai Kuzyurin published such an algorithm. Nevertheless, the more meth-
ods are known, the more opportunities exist for solving certain problems. We
propose a sub-exponential algorithm to verify that there is no binary solu-
tion to a general system of sufficiently many linear equations with integer
coefficients. Roughly speaking, the algorithm checks whether there exists a
low-degree algebraic hypersurface passing through each point with binary co-
ordinates but not intersecting the given affine subspace.

Introduction
The subset sum problem is NP-complete. A commonly held view was that its
worst-case complexity cannot be sub-exponential [1, 2]. Moreover, if we restrict our
computations by so-called linear machines, then the problem is proved hard [3].

Generic-case complexity of a decision problem is sub-exponential when the
set of hard inputs is negligible (or empty), but almost all inputs can be solved
in sub-exponential time. Moreover, the negligible set containing hard inputs can
be discerned explicitly. Such algorithms are also known as deterministic errorless
heuristics. An example of fast generic-case algorithm is the condensation method
for computing determinants [4]. For general matrices, the method is very nice.
Nevertheless, if some intermediate matrix contains a zero entry, then the algorithm
can fails.

By means of variable elimination, searching for a {0, 1} solution to a system
of m linearly independent linear equations in n variables is reduced to a parallel
check whether a binary solution to a subsystem in n−m variables can be extended
to a {0, 1} solution to the whole system of equations in n variables. Hence, the
initial problem is polynomial-time solvable when the difference between the num-
ber of variables and the number of linearly independent equations is bounded by
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a function of the type n −m = O(log2 n). In this work, we consider generic-case
complexity when both m and difference n−m are sufficiently large.

The Kuzyurin Algorithm
Let us denote by A a m× n matrix with nonnegative entries and by b a column.
One can enumerate all {0, 1} solutions to the system of inequalities Ax ≤ b using
dynamic programming. If m > 9 log2 n and some assumptions about the distri-
bution of the entry values hold, then the average number of {0, 1} solutions is
polynomially bounded. Therefore, all solutions can be found in average polyno-
mial time [5]. The proof is based on the tail bounds of the binomial distribution.
Next, one can verify whether a {0, 1} solution to the system of equations Ax = b
exists. The crucial limitation on the applicability of the Kuzyurin algorithm is the
requirement of nonnegativity of the matrix entries. Of course, any system of linear
equations can be reduced to another system with nonnegative coefficients, but the
distribution is warped.

Low-density Problems
Let the density of an instance of the subset sum problem with positive integer
coefficients ak be defined by n

log2 maxk ak
. A polynomial-time algorithm is known

for solving almost all instances of sufficiently low density using a subroutine for
finding the shortest nonzero vector in a lattice [6, 7]. The multiple low-density
problems are considered too [8].

1. Our Main Algorithm
Within the context of the generic-case complexity, we consider machines having
three halting states. So, the machine not only rejects or accepts an input, but it
can also halt in the vague halting state. The latter means denial of response. But
such a failure is possible only on a small fraction of inputs.

Theorem 1. There exist both constant c and machine with the vague halting state
such that for all positive integers d ≥ 2, n, and m < n satisfying the inequal-
ity (n − m + d)(n − m + d − 1) ≤ md(d − 1) and for every m-tuple of linear
forms `j(x0, . . . , xn−m), where n − m < j ≤ n, the machine either rejects the
input or halts in the vague halting state in O(ncd) arithmetic operations. If the
machine rejects the input, then there is no {0, 1} solution to the system of all in-
homogeneous equations of the type xj = `j(1, x1, . . . , xn−m). Moreover, for every
applicable integers d, n, and m, there exists a nonzero polynomial of degree at most
n2(n−m+1)2d−4 in coefficients of all the linear forms `j such that if the machine
halts in the vague halting state, then the polynomial vanishes.

Proof. The algorithm (Fig. 1) verifies whether there exists a solution to a system
of linear equations in at most n(n−m+1)d−2 unknowns λtk and λtj . The sufficient
condition for the solvability is the full rank of a matrix. Of course, the rank can
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Figure 1. Checking whether the system has no {0, 1} solution.
Input: Both integer d ≥ 2 and set of m linear forms `j in n−m+ 1 variables.
if there exist numbers λik and λij such that

∑

t




n−m∑

k=1

λtkxk(xk − x0) +
n∑

j=n−m+1

λtj`j(`j − x0)


 gt = xd0,

where gt is the t-th monomial of degree d− 2 in variables x0, . . . , xn−m
then the machine rejects the input
else the machine halts in the vague halting state.

be calculated easily. But a weaker sufficient condition is that a largest minor does
not vanish. The minor is a polynomial in matrix entries. An entry is a polynomial
of degree at most two in coefficients of linear forms `j . Thus, the minor is a
polynomial of degree at most n2(n−m+1)2d−4. This polynomial does not vanish
identically. �

Roughly speaking, the algorithm checks whether there exists a hypersurface
passing through each {0, 1} point but not intersecting the given affine subspace.
Therefore, for given d, if the algorithm rejects a subsystem, then it rejects the
whole system too.

If n−m = O(
√
n), then one can use a constant degree d. Thus, generic-case

complexity is polynomial, cf. [9].

Theorem 2. There exist both constant c and machine with the vague halting state
such that for all positive integers n > m ≥ 4 log42 n and for every m-tuple of linear
forms `j(x0, . . . , xn−m), where n − m < j ≤ n, the machine either rejects the
input or halts in the vague halting state in O

(
2cn/ logn

)
arithmetic operations. If

the machine rejects the input, then there is no {0, 1} solution to the system of all
inhomogeneous equations of the type xj = `j(1, x1, . . . , xn−m). Moreover, for every
applicable integers n and m, if all coefficients of forms `j picked independently and
uniformly at random from a set of cardinality (1/ε)4dn/ log2 ne, then the machine
halts in the vague halting state with probability at most ε.

Proof. Let us use Theorem 1 with parameter d = dn/ log22 ne. There exists a
nonzero polynomial of degree at most 4dn/ log2 ne in coefficients of all the linear
forms `j such that if the machine halts in the vague halting state, then the poly-
nomial vanishes. In accordance with the Schwartz–Zippel lemma, the machine halts
in the vague halting state with probability at most ε. �
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Conclusion
If all coefficients are nonnegative integers from a large set and picked independently
at random, then the Kuzyurin algorithm has the advantage with high probabil-
ity [5]. But our algorithm works over all integers. Moreover, for nonnegative coef-
ficients, it can also give a quick answer when the Kuzyurin algorithm requires a
long running time.
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