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1. INTRODUCTION

In the present paper we address algorithmic issues of the problems of decomposing a finite-
valued transducer into a union of single-valued ones and inclusion of an arbitrary transducer in
a finite-valued one. These questions were studied by Weber in [1–4] and also by Sakarovitch and
de Souza in [5–8]. In these works polynomial decidability of finite-valuedness of a transducer was
proved, possibility of decomposing a finite-valued transducer into a union of single-valued ones was
shown, and an algorithm for testing inclusion of an arbitrary transducer in a finite-valued one was
proposed. We propose simpler constructions, which partially improve estimates of the previous
authors. The single-valued transducers obtained in the decomposition have sizes of the order of
a single exponent of poly(n), where n is the size of the finite-valued transducer; testing inclusion
of an arbitrary transducer in a finite-valued one requires space estimated by a single exponent.
Note that in [5,6] the corresponding estimate is exponential not only in n but also in k, where k is
valuedness of the transducer (in those works k was assumed to be constant). Taking into account
that k can itself be exponential in n, this bound has the order of a double exponent of n. Our
estimate does not contain k under the exponent and thus improves the previously known ones. The
same concerns the problem of testing inclusion of an arbitrary transducer in a finite-valued one,
which in [8] is solved with space estimation of the order of exp(poly(n, k)), whereas our estimate
is of the order of exp(poly(n)). On the other hand, the number of single-valued transducers in
constructions from [4–6] equals the valuedness of a given finite-valued transducer, which does not
follow from our construction. Thus, each of the constructions have its own advantages. Note also
the work [9], which contains a detailed presentation of automata and transducers theory.

Section 2 contains basic definitions, examples, and facts introducing the reader to the subject
of the paper. In Section 3 we present constructions underlying the decomposition of a finite-
valued transducer. Section 4 describes the decomposition itself. In Section 5 we address questions
of the smallest input and output length on which noninclusion of one finite-valued transducer
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Fig. 1. Two-valued transducer; to the input of i symbols a there correspond two outputs: of i
symbols b and of (i+ 1) symbols b.

p q
a | b

a | bc a | cb

Fig. 2. Two-valued transducer; to the input of i symbols a there correspond two outputs consisting
of alternating symbols b and c: both begin with b, but one ends with c and the other ends with b.

in another can be ascertained. Finally, Section 6 presents results on algorithmic testing of such
noninclusion.

2. FINITE-VALUED TRANSDUCERS

A finite nondeterministic transducer A is a sextuple 〈A,B,Q,Q0, F, δ〉, where A is a (finite) input
alphabet, B an output alphabet, Q a finite set of states, Q0 ⊆ Q a set of initial states, F ⊆ Q a sets
of final states, and δ a set of transitions. Each transition is a quadruple 〈q1, a, v, q2〉, where q1 is a
state before transition, q2 a state after transition, a ∈ A ∪ {λ} (λ is the empty string) a transition
input, and v ∈ B∗ a transition output. We represent A as a directed graph whose vertices are states
and edges are transitions. Each edge is labeled with the input and output of the corresponding
transition. By paths in this graph we mean directed paths. A word obtained by concatenation of
inputs along some path l will be referred to as the input of l and denoted by in(l); a word obtained
by concatenation of outputs will be called the output of l and denoted by out(l). A path starting
in an input state and ending in an output state is said to be accepting. The graphic Γ(A) of a
transducer A is the set of pairs 〈u, v〉 such that u = in(l) and v = out(l) for some accepting path l.
We say that a transducer A1 is included in a transducer A2 if Γ(A1) ⊆ Γ(A2). Transducers A1

and A2 are said to be equivalent if Γ(A1) = Γ(A2). The size |A| of a transducer A is the sum of
the number of its states, transitions, and lengths of their outputs. Clearly, given a transducer A,
in time polynomial in |A| one can construct an equivalent transducer in which through each state
there passes at least one accepting path. Therefore, throughout what follows we assume that all
transducers that we consider possess this property.

A basic definition for further presentation is as follows.

Definition. A transducer A is said to be finite-valued if there exists a constant c such that for
any word u there exists no more than c different words v such that 〈u, v〉 ∈ Γ(A). The smallest of
such constants c is called the valuedness of A. If the valuedness equals 1, then A is single-valued.

For example, the transducers shown in Figs. 1 and 2 are two-valued, and the one shown in Fig. 3
is four-valued.

Valuedness of a transducer may be exponential in its size. As the following example shows, even
the number of different lengths of outputs for one input can be exponential.
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q1 q2

q′1 q′2

a | c b | c

a |λ

a |λ

a |λ

a |λ

a |λ b |λ

Fig. 3. Four-valued transducer; to the input aaab there correspond four outputs: λ, c, cc, and ccc.

Example 1. Consider a transducerB withm+1 pairs of states: (q1, q
′
1), (q2, q

′
2), . . . , (qm+1, q

′
m+1).

Initial states are q1 and q′1; final states are qm+1, q
′
m+1. Transitions are as follows:

〈qi, ui, λ, qi+1〉, 〈qi, ui, λ, q′i+1〉, 〈q′i, ui, λ, qi+1〉,
〈q′i, ui, λ, q′i+1〉, 〈qi, ui, c, qi〉, 〈q′i, ui, λ, q′i〉,

where ui = a for odd i and ui = b for even i; a, b, and c are symbols (Fig. 3 shows the
transducer B for m = 2). Clearly, B is finite-valued. Let f(k) = 2m−k. Then, for the input
af(0)a bf(1)b af(2)a bf(3)b . . . a2a bb (let m be even), the transducer B, obviously, can produce any
output ck where the number k written in binary notation contains at most m binary digits. In total,
there are 2m such numbers, which is exponential in |B|.

We say that a transducer A is reduced if has exactly one initial and one final state and all paths
with empty input lead from the initial state to the final. In [1], the following statement is proved.

Lemma 1. Given a transducer A, in polynomial time one can either construct a reduced trans-
ducer equivalent to it or ascertain infinite-valuedness of A.

Proof. If the transducer A is finite-valued, then it obviously has no cycles with empty input and
nonempty output. Clearly, checking the absence of such cycles is performed in polynomial time.
If this condition is not fulfilled, infinite-valuedness of A is ascertained. Assume that it is fulfilled.

By adding no more than two states and 2|A| transitions, we can obviously assure that A contains
exactly one initial state with only outgoing transitions and exactly one final state with only incoming
transitions. Next, on states of A we define a transitive relation R: q1Rq2 if there exists a path
from q1 to q2 with empty input. Assume that q1Rq2 and q2Rq1. Then any path from q1 to q2 with
empty input must have empty output. We can naturally glue each maximal set of states on which
R is identically true into a single state. Then we delete all loop transitions with empty input and
empty output. We obtain a transducer A′, which is obviously equivalent to A. Assume that in A′

there is a noninitial and nonfinal state q such that there exists a transition with empty input which
is either incoming to or outgoing from q. Now we perform the following reduction operation. For
each pair of transitions 〈q1, a1, v1, q〉, 〈q, a2, v2, q2〉 such that either a1 = λ or a2 = λ, we add the
transition 〈q1, a1a2, v1v2, q2〉. After that we delete all transitions with empty input incoming to and
outgoing from q. Clearly, the reduction operation does not change the graphic of the transducer.
Moreover, if before the reduction for some state q′ there were no incident transitions with empty
input, there will be no after the reduction as well. Therefore, in no more than |Q| reduction
operations we will obtain the desired reduced transducer. �

It is easily seen that, for all problems considered below, existence of transitions with empty input
in a reduced transducer is not essential. Therefore, we will assume that no such transitions exist.
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p q

a | b

a | c

a |λ

Fig. 4. Infinite-valued transducer: the greater the input length, the more variants for the output.

Remark 1. A reduced transducer can be infinite-valued. For instance, such is the transducer
shown in Fig. 4.

Let us state a criterion for finite-valuedness of a transducer (Theorem 1). Note that a similar
criterion is stated and proved in [1].

Theorem 1. A transducer A of size n is finite-valued if and only if for any two of its states s1
and s2 (not necessarily distinct) and any three of its paths p1, p2, and p3 with the same input u
such that p1 starts in s1 and ends in s1, p2 starts in s1 and ends in s2, and p3 starts in s2 and
ends in s2 the following two conditions hold :

(1) If out(p1) �= λ, then out(p2) is a head (initial segment) of an infinite word (out(p1))
∞;

(2) For any u′ ⊆ u (i.e., u′ is a head of u) we have |d(p1, p2, u′)| ≤ n4, where d(p1, p2, u
′) is the

difference of output lengths of heads of p1 and p2 on input u′.

Example 2. For the transducer shown in Fig. 4, condition (1) is not fulfilled, though condition (2)
holds. If we replace the c in it with λ, condition (2) will be violated, but condition (1) will hold.
In both cases the transducer is infinite-valued.

Let us prove the necessity of this criterion. Let A be a finite-valued transducer.

First we prove condition (1). Let k > c, where c is the valuedness of A. Consider the set
{pi−1

1 p2p
k−i
3 | i = 1, . . . , k} of paths from s1 to s2. It is easily seen that all these paths have

the same input uk. The choice of k guarantees existence of j > 0 such that (out(p1))
j out(p2) =

out(p2)(out(p3))
j . Hence,

(out(p1))
2j out(p2) = (out(p1))

j out(p2)(out(p3))
j

= out(p2)(out(p3))
j(out(p3))

j

= out(p2)(out(p3))
2j ,

and similarly (out(p1))
tj out(p2) = out(p2)(out(p3))

tj for any t, which shows that out(p2) is a head
of (out(p1))

∞.

Condition (2) is proved by contradiction. Assume that |d(p1, p2, u′)| > n4 for some u′ ⊆ u. Let
λ = u0, u1, u2, . . . be all initial segments of u. Note that |d(p1, p2, ui) − d(p1, p2, ui+1)| ≤ n for
any i and that d(p1, p2, u0) = 0; hence, among ui there are at least n3 +1 initial segments uik with
different d(p1, p2, uik). To each uik there corresponds a triple of states at which the paths p1(uik),
p2(uik), and p3(uik) end. Choose ui′ and ui′′ (ui′ ⊂ ui′′) to which the same triple corresponds.
Thus, u = v1v2v3, where v1 = ui′ and v1v2 = ui′′ (see Fig. 5).

By the construction we have |out(p1(v2))| �= |out(p2(v2))|, since

d(p1, p2, v1) = |out(p1(v1))| − |out(p2(v1))|
�= |out(p1(v1))|+ |out(p1(v2))| − |out(p2(v1))| − |out(p2(v2))| = d(p1, p2, v1v2).

If |out(p1)| �= |out(p3)|, then the lengths of outputs of the paths pi−1
1 p2p

k−i
3 are obviously pairwise

distinct, which contradicts the choice of k. If

|out(p1(v1))|+ |out(p1(v3))| �= |out(p3(v1))|+ |out(p3(v3))|,
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Fig. 5. Scheme of paths in the proof of Theorem 1. Only inputs are shown.

then the same contradiction is obtained for the paths [p1(v1)p1(v3)]
i−1p2(v1)p2(v3)[p3(v1)p3(v3)]

k−i.
If equalities hold in both cases, consider different paths from s1 to s2 with input v1v2v3v1v2v2v3 . . .
v1v

k
2v3 passing through p1, p2, and p3. It is easily seen that the length of the output of these paths

monotonically depends of which block v1v
i
2v3 corresponds to the path p2, which contradicts the

choice of k. Condition (2) and the necessity of the criterion are proved. The sufficiency will be
proved in Section 4, together with Theorem 3.

The following theorem was proved in [1].

Theorem 2. There exists a polynomial algorithm which, given an arbitrary transducer, decides
whether it is finite-valued or not.

Proof. This result follows from Lemma 1, finite-valuedness criterion (Theorem 1), and the fact
that, given an arbitrary transducer A without empty inputs, it is possible to decide in polynomial
time whether it satisfies the criterion. Let us show how this can be done. We look through pairs
of states 〈s1, s2〉. For each pair we first check whether condition (2) holds. For that, we construct
the following nondeterministic automaton A1. Its states are order quadruples 〈q1, q2, q3,m〉, where
q1, q2, and q3 are states of A, and m is either an integer such that |m| ≤ n4 or the symbol ∗.
A transition from a state 〈q1, q2, q3,m〉 to a state 〈q′1, q′2, q′3,m′〉 with input a exists if and only if,
first, for each i = 1, 2, 3 there exists a transition in A from qi to q′i with input a (denote its output
by vi) and, second, if m is an integer and |m + |v1| − |v2|| ≤ n4, then m′ = m + |v1| − |v2|, and
otherwise m′ = ∗. The initial state of A1 is 〈s1, s1, s2, 0〉, and the final state is 〈s1, s2, s2, ∗〉. In m
we compute the difference between the lengths of inputs of p1 and p2, and ∗ indicates that its
absolute value exceeds n4.

Clearly, the existence of an accepting path in A1 implies existence of paths p1, p2, and p3 from the
criterion such that on some initial segment u′ of their common input we have |d(p1, p2, u′)| > n4.
Conversely, the existence of such paths obviously implies existence of an accepting path in A1.
Thus, fulfillment of criterion (2) for s1 and s2 is equivalent to the nonexistence of an accepting
path in A1, which, clearly, can be verified in polynomial time.

We say that two words are matching if one of them is a head of another.

Now let us check condition (1) for s1 and s2 provided that condition (2) for them is fulfilled. First
note that conditions (1) is equivalent to the following condition (1′): the words out(p1) and out(p2)
are matching. Indeed, if (1′) does not hold, then (1), clearly, does not hold either. Conversely, if (1)
is violated for p1, p2, and p3, then condition (1′) is violated for the paths p′1 = pk1, p

′
2 = p2p

k−1
3 , and

p′3 = pk3 with k large enough.

Now we construct the following automaton A2. Its states are divided into three sets: Q1, Q2,
and Q3. States in Q1 are quintuples 〈q1, q2, q3,m, a〉, where q1, q2, and q3 (as in A1) correspond
to last states of the guessed paths p1, p2, and p3; in m, the difference of lengths of outputs of p1
and p2 is computed. It is required that |m| ≤ n4; if this condition is violated, the transition does
not exist. In a, the last symbol of the path among p1 and p2 whose output at the current moment
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is strictly longer (if |m| > 0) is computed in a natural way; if m = 0, then a = λ. The initial state
is 〈s1, s1, s2, 0, λ〉, and there are no final states in Q1.

When being in an arbitrary state 〈q1, q2, q3,m, a〉 ∈ Q1 (m �= 0), A2 may “assume” that precisely
in this symbol a a mismatching of out(p1) and out(p2) will occur (let us call it a failure) and pass
(with empty input and empty output) to a state from Q2 of the form 〈q1, q2, q3, a, k〉, where k is at
first equal to m. In q1, q2, and q3 the usual information is computed; a is the symbol of the assumed
failure; k indicates by how many symbols the “short” output must be enlarged to check if a failure
will indeed occur in this place. Transitions between states of Q2 obviously reduce |k|, while the
“short” output is enlarged, and the sign of k indicates the path with the “short” output. When
in the “short” output the symbol occurs in which by the assumption there should be failure, it is
checked whether this symbol actually does not equal a. If so, A2 can pass to a state from Q3 of the
form 〈q1, q2, q3〉. If, when being in a state 〈q1, q2, q3, 0, λ〉 ∈ Q1, A2 detects a mismatching of outputs
of p1 and p2 in a current transition, it can also pass to 〈q′1, q′2, q′3〉 ∈ Q3. When A2 is in a state
from Q3, this means that a failure has occurred and it remains to complete the construction of the
paths p1, p2, and p3. Transitions in Q3 are defined in a natural way; the final state is 〈s1, s2, s2〉. It is
clear that condition (1′) is satisfied for s1 and s2 if and only if there is no accepting state in A2. �

By Theorem 2, the question of inclusion of an arbitrary transducer in a finite-valued one reduces
in polynomial time to the question of inclusion of one finite-valued transducer in another. Indeed,
check finite-valuedness of the first transducer. If it is infinite-valued, it obviously cannot be included
in a finite-valued one.

A particular case of single-valued transducers are automata, i.e., transducers with empty input.
Even for them, it is possible that noninclusion can be detected on an exponentially long input only.
This immediately follows from the fact that for any n there exists a nondeterministic automaton A
of size poly(n) which does not accept some word w of length exp(poly(n)) but accepts all words
of smaller lengths. Indeed, take for w the concatenation of strings representing all n-digit binary
numbers (low-order bits being written on the left) arranged in ascending order, starting from the
all-zero string and ending with the all-one string. When operating, the automaton A “guesses” the
reason for why the word being read is not equal to w. The reasons can be as follows: the first string
is not all-zero; some of subsequent numbers does not equal the preceding number increased by 1
(in this case the position is guessed which does not match w in the next number); the length of the
whole word is not a multiple of n; the last string is not all-one. In the states of A (before guessing)
there are stored the number of the last read digit, its value, and information on whether in the
current number there are zeros to the left of this digit. This information is sufficient to determine
the corresponding digit in the next word. Further details are obvious.

3. PATH DIAGRAMS AND THEIR PROPERTIES

For decomposition of a finite-valued transducer, we are going to assign to each accepting path in
it a certain information which is not too large, admits not too many variants, but at the same time
uniquely determines the output for a given input. Here we describe the corresponding constructions
and prove necessary lemmas.

Let us be given a transducer A satisfying the finite-valuedness criterion of Theorem 1. Let q1
and q2 be states of A. We say that q1 ≥ q2 if there exists a path from q1 to q2. We say that states q1
and q2 are equivalent if q1 ≥ q2 and q2 ≥ q1. Then the state set Q is split into equivalence classes
of states. A transition 〈q1, a, v, q2〉 will be called a state transition if q1 is not equivalent to q2.

Lemma 2. Let two states q1 and q2 in A be equivalent. Then for any two paths l1 and l2
from q1 to q2 such that in(l1) = in(l2) we have out(l1) = out(l2). For any head u′ of the word
u = in(l1) we have |d(l1, l2, u′)| ≤ n4.
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Proof. Denote w1 = out(l1) and w2 = out(l2). Since q1 and q2 are equivalent, there is a path l
from q2 to q1. If |w1| = |w2|, apply condition (1) of Theorem 1 with s1 = s2 = q1, p1 = l1l, and
p2 = p3 = l2l. We obtain out(l1l) = out(l2l), which implies w1 = w2. Let |w1| �= |w2|. Let us
assume that |w1| > 0. Then we obtain a contradiction with condition (2) by letting s1 = s2 = q1,
p1 = (l1l)

k, and p2 = p3 = (l2l)
k for k > n4. The last claim of the lemma follows from condition (2)

of Theorem 1. �
Let Q1 and Q2 be subsets of Q. We say that Q2 is accessible from Q1 on a word w if there exists

a set L of paths from Q1 to Q2 with input w such that for any q1 ∈ Q1 there exists a path in L
starting from q1 and for any q2 ∈ Q2 there exists a path in L ending in q2. We say that Q1 ≥ Q2 if
there exists a word on which Q2 is accessible from Q1. Clearly, the introduced relation is transitive
and extends the relation already introduced on words: q1 ≥ q2 if and only if {q1} ≥ {q2}. We say
that sets Q1 and Q2 are equivalent if Q1 ≥ Q2 and Q2 ≥ Q1. Then the set Q of subsets is split
into equivalence classes of subsets.

Lemma 3. Given two subsets Q1 and Q2, it is decidable in time exp(poly(n)) whether Q1 ≥ Q2

or not.

Proof. Let us construct an automaton that checks whether Q2 is accessible from Q1. Its states
are tuples of subsets of Q of length m = |Q1|. Each subset corresponds to “its own” element of Q1;
the initial state is the tuple of one-element subsets of “their own” elements. A transition with
input a leads from a tuple 〈P1, P2, . . . , Pm〉 to a tuple 〈R1, R2, . . . , Rm〉 if for each i all transitions
from Pi with input a lead to Ri and for each state in Ri there exists a transition from Pi with input a
leading to it. Final states of the automaton are tuples 〈R1, R2, . . . , Rm〉 such that each Ri has a
nonempty intersection with Q2, and Q2 is contained in the union of all the Ri. Clearly, Q1 ≥ Q2

if and only if there exists an accepting path in the automaton. It is easily seen that constructing
this automaton and checking this condition requires no more than exponential time. �

Let us have a word u, and let u′ ⊆ u. The double-sided accessibility set Mu(u
′) is the set of

all states q such that there exists an accepting path l with in(l) = u and the path l(u′) ends in q.
It is easily seen that if u1 ⊆ u2 ⊆ u, then Mu(u1) ≥ Mu(u2). Let there be a transition p on an
accepting path l; let l1 be the head of l ending directly before p, and let l2 be the head of l ending
immediately after p. We say that p is a set transition on l if Mu(u1) is not equivalent to Mu(u2),
where u1 = in(l1) and u2 = in(l2).

Lemma 4. Let M1 and M2 be arbitrary equivalent sets of states, q1 ∈ M1, q2 ∈ M2, and let l′ be
a path from q1 to q2 such that M2 is accessible from M1 on the word v = in(l′) and |out(l′)| > n4.
Then for any two paths l1 and l2 from q1 to q2 with input v the words out(l1) and out(l2) are
matching, and for any v′ ⊆ v we have |d(l1, l2, v′)| ≤ 2n4.

Proof. let us assume that q1 is not equivalent to q2, since otherwise the claim immediately
follows from Lemma 2. Since M1 and M2 are equivalent, M1 is accessible from M2 on some
word v1. Then M1 is accessible from itself on the word vv1. Therefore, there exists an infinite
sequence q0, q−1, q−2 . . . of states in M1 such that for any i ≤ 0 there is a path γi from qi to qi+1

with input vv1. Fix a state b1 = qi = qj for some i < j ≤ 1. We obtain a closed path from b1
to b1; denote it by p (Fig. 6). Furthermore, there exists an infinite sequence q3, q4, . . . of states
in M1 such that there is a path γ2 from q2 to q3 with input v1 and for any i ≥ 3 there is a path γi
from qi to qi+1 with input vv1. Here we have qi �= qj for all i ≤ 1 and j ≥ 2, since q1 and q2 are
nonequivalent. By fixing b2 = qi = qj for some 3 ≤ i < j, we obtain a closed path from b2 to b2;
denote it by p′ (Fig. 6).

Denote by γ the path from b1 to b2 consisting of three segments: from b1 to q1 through paths γi
(i ≤ 0), from q1 to q2 through l′, and from q2 to b2 through paths γi (i ≥ 2). Clearly, |in(p)| = kn1,
|in(γ)| = kn2, and |in(p′)| = kn3, where k = |vv1| and n1, n2, n3 are natural numbers. Choose a
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s
p p′

b1 b2

M1 M2

v1

q1 q2

q3

l′ (v |>n4)

(vv1)
∗ (vv1)

∗

(vv1)
∗

(vv1)
∗

Fig. 6. Scheme of paths in the proof of Lemma 4. Symbol ∗ stands for natural numbers (which may
be different in different places).

state s on p such that the path starting at s, going along the cycle p all the time, and having the
length k(n1n2n3 − n2) ends in b1; denote this path by γ′. Consider three paths: path p1 from s
to s making n2n3 turns around the cycle p, path p2 from s to b2 equal to γ′γ, and path p3 from b2
to b2 making n1n2 turns around p′. Clearly, we have in(p1) = in(p2) = in(p3) = kn1n2n3. Since
|out(p2)| ≥ |out(l′)| > n4, by condition (2) of Theorem 1 we have |out(p1)| > 0. The path p2 can be
drawn along l1 or l2 instead of l′. By condition (1), outputs of any of these three variants of p2 are
heads of the word (out(p1))

∞. Hence it follows that the words out(l1) and out(l2) are matching.
It is easily seen from condition (2) that |d(l1, l2, v′)| ≤ 2n4. �

If l is an accepting path in A with input u and l1 is its head with input u1, we will call Mu(u1)
the two-sided accessibility set of the path l with respect to l1 and denote it by M(l, l1). An obvious
consequence of Lemma 4 is as follows.

Corollary. Let l be an accepting path in A, let l1 and l2 be two its heads (l1 being shorter),
and let M(l, l1) be equivalent to M(l, l2). Denote by l′ the segment of l complementing l1 to l2,
and denote by q1 and q2 the initial and final states of l′, respectively. Let |out(l′)| > n4. Then
for any two paths p1 and p2 from q1 to q2 with input v = in(l′) the words out(p1) and out(p2) are
matching, and for any v′ ⊆ v we have |d(p1, p2, v′)| ≤ 2n4.

Let l be an accepting path in A. To each head l′ of l there corresponds a pair (q,M), where
q ∈ M is the state in which l′ ends and M = M(l, l′). Let us mark pairs corresponding to some
heads of l. First we mark the pairs corresponding to the empty head and to the whole path. For
each state transition on l that is not a set transition on l, take the nearest from the left and right
set transitions on l (we assume that l is directed rightwards), if they exist. For each of these two
transitions, we mark two pairs corresponding to the heads of l ending directly before the transition
and immediately after it. For each state transition that is also a set transition on l, we mark two
such pairs corresponding to this transition.

Denote by D the sequence of all marked pairs arranged in ascending order of the corresponding
heads. One can easily see that for any two neighboring pairs (q1,M1) and (q2,M2) inD the following
three cases are possible:

1. q1 is equivalent to q2;
2. Heads of l corresponding to these pairs differ by one transition of l which is both a state and set

transition;
3. M1 is equivalent to M2, but q1 is not equivalent to q2.

If the ith case takes place, we say that the segment [(q1,M1), (q2,M2)] is of the ith type. To a
first-type segment, no information is assigned except for its type number. To a second-type segment,
a word is assigned which is the output of the corresponding transition. For a third-type segment,
let l′ be a part of path l between the positions (q1,M1) and (q2,M2), v = in(l′), and w = out(l′).
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Two cases are possible. If |w| ≤ n4, we say that the segment is of the first subtype and assign to it
the word w itself. If |w| > n4, we say that the segment is of the second subtype and assign to it the
number k equal to the difference between |w| and the minimum output length among all outputs of
all paths from q1 to q2 with input v. By the corollary, k ≤ 2n4. Furthermore, among all segments
we select those for which the pairs (q1,M1) and (q2,M2) correspond to two heads of l differing by
one transition. Such segments will be referred to as short.

A sequence D with this information assigned to segments will be called the diagram of the path l
and will be denoted by D(l). The information includes also the type number of a segment and (for
the third type) the subtype number, and also an indicator of whether the segment is short. Since
the number of state transitions is at most n, diagrams of all accepting paths in A are of length at
most 4n.

By a diagram (not related to any path previously specified) we call a sequence of pairs of the
form (q,M) in which to each two neighboring pairs there is assigned one of the three segment types
(for the third type, also a subtype) with the corresponding information and with an indicator of
whether the segment is short. A diagram D is said to be correct if

1. Its first pair is 〈q0, {q0}〉, where q0 is the initial state of A; its last pair is 〈f, {f}〉, where f is
the final state of A. For each pair (q,M) in D we have q ∈ M ;

2. The length of D is at most 4n;

3. For each first-type segment [(q1,M1), (q2,M2)], the states q1 and q2 are equivalent;

4. Each second-type segment [(q1,M1), (q2,M2)] is marked as short, q1 is not equivalent to q2,
M1 is not equivalent to M2, the word assigned to the segment is an output of some transition
from q1 to q2;

5. For each third-type segment [(q1,M1), (q2,M2)], the sets M1 and M2 are equivalent, and the
states q1 and q2 are not equivalent. For the first subtype, the assigned word w is of length at
most n4; for the second subtype, the assigned number is not greater than 2n4;

6. Each pair (q,M) (except for, maybe, the first and the last) is an endpoint of a short segment
[(q1,M1), (q2,M2)] such that the sets M1 and M2 are not equivalent (this property guarantees, in
particular, that segments of the first and third types are always separated by a second-type segment
in D).

Lemma 5. The diagram of any accepting path is correct. In total, there are no more than
exp(poly(n)) correct diagrams. Given a diagram, its correctness can be checked using time
exp(poly(n)).

Proof. The first two claims of the lemma are obvious. In the third claim, only the algorithm
for checking equivalence of two sets is nontrivial. It easily follows from Lemma 3. �

We say that an accepting path l satisfies a correct diagram D = (q1,M1), (q2,M2), . . . , (qm,Mm)
if an ascending sequence l1, l2, . . . , lm of heads can be selected in it such that li ends in state qi for
each i, M(l, li) = Mi, all short segments correspond to the same transition, on each segment of the
second type or of the first subtype of the third type the output coincides with that indicated in D,
on each segment of the second subtype of the third type the output is of length greater than n4

and is longer than the minimum output (among outputs of all paths from q1 to q2 with the same
input) by the number indicated in D. Clearly, any accepting path l satisfies the diagram D(l).

Lemma 6. Let l1 and l2 be accepting paths in A with the same input and satisfying the same
correct diagram D. Then out(l1) = out(l2).

Proof. By property 6, any inner pair in D corresponds to a position in a path satisfying D
directly before or after a set transition, and it is seen from D which of these two cases takes place.
Any two-sided accessibility set M which is known to correspond to a position in the path directly
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to the left (or right) of a set transition uniquely determines a head u′ of the word u = in(l1) = in(l2)
such that M = Mu(u

′). Therefore, pairs in D uniquely divide the input u into corresponding parts,
and it suffices to prove the equality of the outputs l1 and l2 on each part of the input. If the
segment of the diagram is of the first type, coincidence of outputs on the corresponding part of
the input follows from Lemma 2. For a segment of the second type or of the first subtype of the
third type, the output is explicitly given in the diagram. On a segment of the second subtype of
the third type, the outputs l1 and l2 are matching (see the corollary), and the same difference of
the length with the same number ensures their coincidence. �

4. DECOMPOSITION OF A FINITE-VALUED TRANSDUCER

We say that a finite-valued transducer A is decomposed into single-valued transducers A1,A2,

. . . ,AK if Γ(A) =
K⋃

i=1
Γ(Ai). It is proved in [2] that any finite-valued transducer A can be effectively

decomposed into exactly k single-valued transducers in time exp(exp(poly(n))), where k is the
valuedness of A. Moreover, the size of each single-valued transducer is at most exp(exp(poly(n))).
In [5], the time and component size estimates are reduced to a single exponent, but the argument of
the exponent contains k, which itself can be exponential in n (see Example 1 in Section 2). In the
next theorem we propose a decomposition method with “purely” exponential estimates, which,
however, does not guarantee that the number of single-valued transducers will be equal to k.

Theorem 3. There exists an algorithm which, given any finite-valued transducer A of size n,
computes in time at most exp(poly(n)) its decomposition into at most exp(poly(n)) single-valued
transducers of sizes at most exp(poly(n)).

Proof. As in Section 3, instead of finite-valuedness of A we will assume that the finite-valuedness
criterion (see Theorem 1) is satisfied. Since the possibility for decomposing a transducer implies
its finite-valuedness, along with Theorem 3 we will prove the sufficiency of the criterion.

By Lemma 5, to prove Theorem 3 it suffices, for each correct diagram D, to construct in
exponential time a transducer A(D) whose graphic consists of only the elements of Γ(A) that are
realized by paths satisfying the diagram D. By Lemma 6, A(D) will be a finite-valued transducer.

By the left-sided accessibility set for a word u, we will call the set of states q for which there
exists a path from the initial state to q with input u. If a diagram D is given, then by the local
two-sided accessibility set on the a segment [(q1,M1), (q2,M2)] of the diagram D for an input u
and its head u′ we call the set of states q for which there exists a path l from q1 to q2 such that
in(l) = u and the path l(u′) ends in q. By the local left-sided accessibility set on this segment for
an input u, we call the set of states q for which there exists a path from q1 to q with input u.

Let us describe A(D). States of A(D) are tuples of the form 〈Q1, Q2, q, L〉. In Q1 there is
computed the left-sided accessibility set for the head of the input already read, in Q2 ⊆ Q1 the
two-sided accessibility set for all the input and the current head of the input, in q ∈ Q2 the current
state of the path in A being guessed. Clearly, Q2 uniquely determines the current first- or third-type
segment [(q1,M1), (q2,M2)] of D such that M1 ≥ Q2 ≥ M2, if it exists. L is nonempty if and only
if this segment exists and is of the third type. In the case of the first subtype, L is the number m,
which can take all values from 0 to the length of the output indicated in D (in m, the length of the
output on the segment is computed). In the case of the second subtype, L is a tuple 〈Q′

1, Q
′
2, P 〉.

In Q′
1 there is computed the local left-sided accessibility set on the current segment, and in Q′

2 the
local two-sided accessibility set, q ∈ Q′

2 ⊆ Q′
1. P is a set of pairs 〈q′,m〉, one pair for each state

q′ ∈ Q′
2, where 0 ≤ m ≤ 2n4, plus one current pair with q′ equal to the current state q. Denote

by ut the part of the input that has been read by the current time in A(D) on the considered
segment. In the current pair 〈q,m〉, in m there is computed the difference between the length of
the output of the guessed path on the input part ut and the minimum output length among the
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outputs of all paths with input ut from q1 to the set Q′
2. To keep trace of this minimum length, in

each noncurrent pair 〈q′,m〉 in m there is computed the difference between the minimum output
length among the outputs of all paths from q1 to q′ with input ut and the minimum output length
among the outputs of all paths with input ut from q1 to the set Q′

2. Initial states of A(D) are those
with Q1 = Q2 = {q0} and q = q0; if the first segment of the diagram is of the third type, then L
is nonempty: for the first subtype, L = 0, and for the second, Q′

1 = Q′
2 = {q0} and both pairs

are 〈q0, 0〉. The current pair is 〈q, 0〉. Final states of A(D) are those with Q2 = {f} and q = f ;
if the last segment in D is of the third type, then L is nonempty: for the first subtype, m equals
the length of the output indicated in D, for the second subtype, Q′

2 = {f}, and the current pair
is 〈f,m〉, where m is the number indicated in D.

Now let us describe transitions of A(D). We say that a state q′′ from A is a successor of q′ by
symbol a if there is a transition from q′ to q′′ with input a. A transition from state s1 to state s2
with input symbol a and output word v exists if and only if all the following conditions are satisfied:

1. Q1(s2) (this is the notation for the component Q1 in state s2) is the set of all successors of
states from Q1(s1) by a. Thus, the component Q1 is computed deterministically;

2. In A there exists a transition from q(s1) to q(s2) with input a and output v;

3. For each state q′ in Q2(s1), at least one of its successors by a belongs to Q2(s2). For each
state q′ in Q1(s1) \Q2(s1), all its successors by a do not belong to Q2(s2);

4. In D there exists a segment R : [(q1,M1), (q2,M2)] either of type 1 or 3 such that M1 ≥
Q2(s1) ≥ M2 and M1 ≥ Q2(s2) ≥ M2 (clearly, there can be only one such segment) or of type 2
such that M1 = Q2(s1), M2 = Q2(s2), q1 = q(s1), q2 = q(s2), and v equals the output indicated
for R. In this latter case, if the preceding segment of D (before (q1,M1)) is of the second type, then
we must have the following: Q′

2(s1) = {q1}, m in L(s1) equals the length of the output indicated
in D (for the first subtype) or m in the current pair equals the number indicated in D (for the
second subtype). Similarly, if the succeeding segment in D (from (q2,M2)) is of the third type,
obvious initial conditions must hold. In the case where R is of the third type, the conditions given
in the next paragraph must hold.

The set Q′
1(s2) consists of all successors of states from Q′

1(s1) by a. For each state q′ in Q′
2(s1),

at least one of its successors by a belongs to Q′
2(s2). For each state q′ in Q′

1(s1) \ Q′
2(s1), all its

successors by a do not belong to Q′
2(s2). In the case of the first subtype, the output v extends the

head of length m(s1) of the output indicated in D andm(s2) = m(s1)+|v|. In the case of the second
subtype, P (s2) is obtained according to the following rules. First, to each q′ ∈ Q′

2(s2) we assign the
minimum number among all sums m+ |w| such that for some q′′ we have 〈q′′,m〉 ∈ P (s1) and there
exists a transition from q′′ to q′ with input a and output w. Among all thus assigned numbers,
take the smallest number k. If k �= 0, reduce all these numbers by k. All the obtained numbers do
not exceed 2n4. These numbers in pairs with the states corresponding to them form P (s2). In the
current pair we have m(s2) = m(s1) + |v| − k ≤ 2n4.

Finally, if the segment R is short, then M1 = Q2(s1), M2 = Q2(s2), q1 = q(s1), and q2 = q(s2).

It is clear that if in A there is an accepting path l satisfying the diagram D, then in A(D) there
exists an accepting path l′ such that in(l) = in(l′) and out(l) = out(l′). Conversely, let in A(D)
there be an accepting path l′. Let us show that the corresponding path l in A satisfies D. The
component Q1 is computed correctly, since it is deterministic. Let us show that Q2 is also computed
correctly. Assume the contrary. Let Q2 at some time has a superfluous state. Then, since elements
of Q2 have at least one successor in Q2 at each step, at the end the component Q2 cannot consists
of the superfluous state only, which yields a contradiction. Now assume that Q2 does not contain
some state which actually belongs to the two-sided accessibility set. Since all successors of states
from Q1 \Q2 do not belong to Q2, then at the end the final state f should not belong to Q2, which
is impossible. Correctness of computation of Q′

1 and Q′
2 on segments of the third type is proved
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{p}, {p}, p

{p, q}, {p, q}, p

{p, q}, {p, q}, q

a | b

a | b

a |λ

a | bb

a | bb

D = D1

D = D2

Fig. 7. Single-valued transducers obtained by decomposing the two-valued transducer shown in
Fig. 1 differ in their final states only. Components of states are given in the order Q1, Q2, q.
The middle state is final for A(D1), and the lower for A(D2), where D1 = 〈p, {p}〉, 〈p, {p, q}〉 and
D2 = 〈p, {p}〉, 〈q, {p, q}〉.

similarly. The transitions of A(D) are such that, being in D on some segment of the first or third
type, it is possible to leave it only trough a transition corresponding to the next segment of the
second type and only when the information on the first segment corresponds to D. Correctness
of computing this information is obvious. Clearly, A(D) is constructed in polynomial time. Thus,
Theorem 3 and correctness of the finite-valuedness criterion are proved. �

Remark 2. The presented construction can be applied to finite-valued transducers without empty
inputs which need not necessarily have one initial and one final state (i.e., they need not be reduced).
The only changes concern the form of an initial pair of a correct diagram (now the set M in it is a
subset of the set Q0 of initial states), the form of a final pair of a correct diagram (M in it is a subset
of the set Qf of final states), and the definition of initial and final states of the transducer A(D).
In its initial states we have Q1 = Q0, and in its final states the set Q1 \Q2 does not contain states
from Qf .

Remark 3. If for some reasons it is known that on any segment of the third type all paths with
the same input have matching outputs (for instance, outputs of all transitions in A are words in an
alphabet of one symbol), then, clearly, we can consider only diagrams where all third-type segments
are of the second subtype.

Remark 4. After constructing all transducers A(D) as above, one should delete all states in
them through which an accepting path does not pass. Then both the sizes of these transducers and
their number can often be reduced.

Example 3. In the transducer shown in Fig. 1, the states p and q are equivalent, and the possible
two-sided accessibility sets {p} and {p, q} are also equivalent. One can easily see that only two
diagrams of accepting paths are possible, 〈p, {p}〉, 〈p, {p, q}〉 and 〈p, {p}〉, 〈q, {p, q}〉, which consists
of a single segment of the first type. Taking into account Remarks 2 and 4, we see that the finally
obtained decomposition consists of two transducers differing in their final state only (see Fig. 7).

Example 4. In the transducer shown in Fig. 2, the states p and q are not equivalent, and the
possible two-sided accessibility sets {p} and {p, q} are equivalent. Taking into account Remark 3,
one can easily see that only two diagrams of accepting paths are possible, 〈p, {p}〉, 〈p, {p, q}〉 and
〈p, {p}〉, 〈q, {p, q}〉, which consists of a single third-type segment of the second subtype with number
k = 0 assigned to it. Taking into account Remarks 2 and 4, we see that the finally obtained
decomposition consists of two transducers shown in Figs. 8 and 9.
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a | bc

a | bc

{p}, {p}, p, {p}, {p}, 〈p, 0〉 | 〈p, 0〉

{p, q}, {p, q}, p, {p, q}, {p}, 〈p, 0〉 | 〈p, 0〉

Fig. 8. Single-valued transducer corresponding to the diagram 〈p, {p}〉, 〈p, {p, q}〉 (k = 0) in the
decomposition of the two-valued transducer shown in Fig. 2. Components of its states are given in
the order Q1, Q2, q, Q

′
1, Q

′
2, P ; the current pair is separated by a vertical line.

a | ba | b

a | b

a | b

a | bc

a | bc

a | cb

a | cb

{p}, {p}, p, {p}, {p}, 〈p, 0〉 | 〈p, 0〉

{p, q}, {p, q}, p, {p, q}, {p, q}, 〈p, 1〉, 〈q, 0〉 | 〈p, 1〉

{p, q}, {p, q}, q, {p, q}, {p, q}, 〈p, 1〉, 〈q, 0〉 | 〈q, 0〉

{p, q}, {p, q}, q, {p, q}, {q}, 〈q, 0〉 | 〈q, 0〉

Fig. 9. Single-valued transducer corresponding to the diagram 〈p, {p}〉, 〈q, {p, q}〉 (k = 0) in the
decomposition of the two-valued transducer shown in Fig. 2.

Example 5. In the transducer shown in Fig. 3, all states are not equivalent, and possible two-
sided accessibility sets {q1, q′1} and {q2, q′2} are also not equivalent. One can easily see that only
four diagrams of accepting paths are possible, 〈q1, {q1, q′1}〉, 〈q2, {q2, q′2}〉, 〈q1, {q1, q′1}〉, 〈q′2, {q2, q′2}〉,
〈q′1, {q1, q′1}〉, 〈q2, {q2, q′2}〉, and 〈q′1, {q1, q′1}〉, 〈q′2, {q2, q′2}〉, which consist of a single second-type seg-
ment. Taking into account Remarks 2 and 4, we see that the finally obtained decomposition consists
of four transducers differing in a pair of current states only. The transducer for the first diagram
is shown in Fig. 10.

Let us state one consequence of our constructions.

Theorem 4. For any word u in A there exists a set M(u) consisting of exp(poly(n)) accepting
paths with input u such that for any accepting path l with input u there exists a path l′ ∈ M(u)
such that out(l′) = out(l) and for any u′ ⊆ u we have |d(l, l′, u′)| ≤ 2n4.

In particular, as is shown in [1], valuedness of a finite-valued transducer of size n is not greater
than exp(poly(n)).

To prove Theorem 4, take for M(u) one path from each possible diagram. The statement easily
follows from Lemmas 2 and 6 and the corollary of Lemma 4.
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a | c

a | c

b | c

b | c

a |λ

a |λ

{q1, q′1}, {q1, q′1}, q1

{q1, q′1, q2, q′2}, {q1, q′1}, q1

{q1, q′1, q2, q′2}, {q2, q′2}, q2

{q2, q′2}, {q2, q′2}, q2

Fig. 10. Single-valued transducer obtained by decomposing the four-valued transducer shown in Fig. 3
for the diagram 〈q1, {q1, q′1}〉, 〈q2, {q2, q′2}〉 (components of states are given in the order Q1, Q2, q). The
other three transducers are obtained from it by replacing the pair (q1, q2) of current states with one
of the other three pairs.

5. TESTING THE INCLUSION

Now we consider the questions of testing the inclusion, i.e., of what input and output length it is
sufficient to check to ascertain that an arbitrary transducer A1 is included in a finite-valued trans-
ducer A2. By Lemma 1, we may assume that A1 and A2 do not have empty inputs. The following
lemma states that if A1 is not included in A2, this can be detected on inputs of exponential length.

Lemma 7. If a transducer A1 is not included in a finite-valued transducer A2, then there
exists a pair 〈u, v〉 such that 〈u, v〉 ∈ Γ(A1), 〈u, v〉 /∈ Γ(A2), and |v| ≤ exp(p1(n)), where p1(n) is a
polynomial.

Proof. Consider an accepting path l1 in A1 with a minimum-length output such that 〈u, v1〉 ∈
Γ(A1) and 〈u, v1〉 /∈ Γ(A2), where u = in(l1) and v1 = out(l1). Assume that |v1| > exp(p1(n)), where
p1(n) is sufficiently large. Hereinafter, by expressions like “sufficiently large” we mean the magni-
tude of exp(poly(n)) where the degree of the polynomial is large enough to make all the described op-
erations possible. By a “fixed exponent” we mean the magnitude of exp(p(n)), where p(n) is a poly-
nomial whose existence is either obvious or has been proved before. If 〈u, v2〉 ∈ Γ(A2), |v1| = |v2|,
but v1 �= v2, then the first on the left (respectively, right) pair of distinct symbols of the words v1
and v2 equally distant from the beginning (respectively, end) will be called the left (respectively,
right) failure between v1 and v2. By Theorem 4, the number of different v2 such that 〈u, v2〉 ∈ Γ(A2)
is a fixed exponent; therefore, the number of symbols in v1 in which there occurs a failure between v1
and some of such v2 is also small. Take in v1 a sufficiently large subword r in which no failure occurs
and which is located at distance sufficiently many times greater than |r| from the nearest failure.

Select sufficiently many heads u′ of the input u (and thus also heads l1(u
′) of the path l1) so

that the following three conditions hold:

1. The words out(l1(u
′)) for all the selected words u′ end inside r and are pairwise distinct;

2. The state in which the path l1(u
′) ends is the same for all the selected u′;

3. For all the selected words u′, the left- and right-sided accessibility sets in A2 are the same
(the right-sided accessibility set for u′ is the set of states from which there is a path to the final
state with input u′′, where u′u′′ = u).
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. . . . . . . . . .

(a)

(b)

q0

q0 q1 q2

t1

t1

t1

t2

t2

l1 l1

l′2l′2l′2l′2

l′

l′′

u1

u1

ub

ub

ub

u∗

u∗u1

f

f

l′(q1) l′(q2)

Left part Middle part Right part

Fig. 11. Controlling the length of the output of a reconstructed path. (a) Structure of the path l1
in transducer A1. All states corresponding to the dots (bold circles) are the same. (b) Scheme of
reconstructing the path l2 from l′2 in transducer A2. A deleted segment u1 is inserted so that the
points t1 and t2 correspond to the same state.

The plan of the proof is the following. Since the path l1 passes many times through one and
the same state, one can delete from it (moreover, in many ways) some of its segments to obtain an
accepting path with a shorter input and output. Then in A2 there exists an accepting path with
the same input and output. Property 3 makes it possible to “extend” this path to a path with
input u (in what follows, the obtained path will be called reconstructed). The difficulty is to obtain
also an output equal to v1, thus arriving at an obvious contradiction. To this end, we first provide
some “reserve” of accepting paths in A2 with input u in order to find such paths among them to
which (or to parts of which) it is convenient to apply the finite-valuedness criterion.

We will reduce step by step the set of selected words and at the same time construct in A2 a set
of marked states in the following way. At each step, for each unmarked state q in A2 we check
whether there exists an accepting path in A2 with input u for which the heads l(u′) end in q for
at least m/ exp(n) selected words u′, where m is the current number of selected words. If it exists,
we mark q, assign to it one of the described paths, and make the set of selected words 1/ exp(n)
as large, so that to make all the marked heads end in q. The path assigned to q will be denoted
by l(q) and will be called marked. When, at some step, no unmarked state can be marked, the
process terminates. Since there are no more than n steps, the number of marked words after the
process termination is sufficiently large. Each path l(q) in all selected inputs is in state q.

Now we divide all the selected words into three approximately equally large parts consisting
of words arranged in ascending order and fix one of the selected words ub between the left and
middle parts; this word will be referred to as boundary (see Fig. 11a). To each selected word u′ in
the middle part, we assign the set consisting of all tuples 〈q, q1, q2, d〉 such that in A2 there exists
a path l from q1 to q2 with input u′′, where u′ = ubu

′′; q is a marked state; and the difference
between |out(l)| and the length of the output of l(q) on u′′ is d, where |d| ≤ 2n4. The number of
the described sets is a fixed exponent; therefore, in the middle part there are many words to which
one and the same set corresponds. In this part, we regard only these words as selected.

Since all selected heads of l1 end in the same state, we can delete any set of segments between
them to obtain a shortened accepting path l′1 in A1 with some input ū. By the choice of l1, there
exists an accepting path l′2 in A2 such that in(l′2) = in(l′1) = ū and out(l′2) = out(l′1). Let the
segments be deleted in the middle part. By selected heads ū′ of the input ū we will mean its heads
obtained from the heads of the original input u by these deletions. Let us show that for at least one
selected ū′ from the left and right parts the path l′2(ū

′) ends in a selected state. We denote by q(t)
the state in which the path l′2(t) ends. Consider the head t in in(l′2) corresponding to the rightmost
deleted segment. Since the right-sided accessibility sets for all the selected words coincide, there
exists a path from q(t) to the final state with input u′u′′, where u′ is the input of the rightmost
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deleted segment and u′′ is the input of l′2 from t to the end. By joining the old head with the new
tail, we obtain a new accepting path in A2 whose input is now smaller by one deleted segment. In
the same way we insert the other deleted segments and obtain an accepting path with input u. In
the left part of selected heads it passes through some state q1 which occurs in approximately 1/(3n)
of all selected heads. If q1 were not marked, this would contradict the termination of the process of
constructing the marked states. In a similar way (by inserting segments from left to right) one can
show that in the right part there exists a selected head of the path l′2 ending in a marked state q2.

Thus, we have found in A2 the paths l(q1) and l(q2) with input u which are in a convenient (for
applying the finite-valuedness criterion) configuration with the path l′2, which we can reconstruct
to a path with input u but still cannot provide the output v1. First let us make the length of the
output of the reconstructed path to become definite in a sense.

Since the paths l(q1) and l(q2) in all selected heads pass through q1 and q2, in these paths we
can make deletions on the same segments of the input as for l1. Let us denote the paths with
such deletions by l′(q1) and l′(q2). Condition (2) of Theorem 1 (with s1 = q1 and s2 = q2; p1, p2,
and p3 being parts of the paths l′(q1), l′2, and l′(q2), respectively) implies that the difference of
lengths of outputs of the path l′2 on the segment from ub to any selected middle head u′ and of the
path l′(q1) on the same part of the input is not greater in absolute value than 2n4. If there are
no deletions in this part, then l′(q1) coincides with l(q1) on it. Taking this into account, consider
the following process of reconstruction l′2 to a path with input u (see Fig. 11b). Let the leftmost
deleted segment be located between heads t1 and t2, and let its input be u1. Denote by l′ the part
of the path l′2 from ub to t1, and denote its input by u∗. By the construction (coincidence of the
sets of tuples 〈q, q1, q2, d〉 for middle selected heads), there exists a path l′′ from q(ub) to q(t1) such
that in(l′′) = u∗u1 and the difference |out(l′′)| − |out(l′)| equals the length of the output of l(q1)
on the input segment u1. The input of the new accepting path obtained by replacing the part l′

with l′′ in l′2 contains one less deleted segment. We may say that we have inserted a segment in
the input, and the output became longer by the length of the output of l(q1) on the inserted input
segment. After that, we in the same way insert the second to the leftmost segment, etc. Finally,
we obtain a reconstructed path with input u.

Thus, we are controlling the length of the output of the reconstructed path. Now let us make it
be equal to |v1|.

By a removal we will call deleting a set of segments between selected heads from u together
with deleting the corresponding segments of the output of l1 from v1. For a removal α we will
denote by l′2(α) some accepting path with removal α in A2, by l2(α) some reconstructed path with
input u constructed by the above-described process, by q1(α) some marked state through which
the path l′2(α) passes in the left part of selected heads, by t1(α) some selected head in the left part
in which l2(α) is in q1(α), by q2(α) and t2(α) the same in the right part, by l′α(q1) the path l(q1)
with removal α, and by |α| the sum of lengths of outputs of the segments deleted from l1.

Any segment between two neighboring selected heads in the middle part has one of the three
types with respect to each marked state q: the length of the output of l(q) on this segment can
be greater than the length of the output of l1 on it (positive type), less than this length (negative
type), or equal to it (zero type). Thus, to each such segment there corresponds a collection of
pairs 〈q, type〉. The total number of such collections is a fixed exponent. Let us choose sufficiently
many disjoint segments to which one and the same collection corresponds. Let as order them
from left to right and consider a sequence S of removals in which the mth removal consists of the
first m segments. To each removal α in S we assign a pair 〈q, v〉 with q = q1(α) and v = out(l2(α)).
By Theorem 4, the number of such pairs is a fixed exponent. Let α1 and α2 be two distinct removals
in S to which the same pair 〈q, v〉 is assigned. If the type of all segments with respect to q were
nonzero, then, clearly, the differences between the length of outputs of the reconstructed paths
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Fig. 12. Assuring the “insertion” character of input reconstruction and explicating the structure of
insertions. A case is shown where outputs of the path l′2(α) on inputs from t1(α) to ub and from t1(α)
to t2(α) are longer than the corresponding outputs of l′2(α). Here w′w′′ and w′′′ are heads of the
output w with |w′′| < n4 and |w′′′| < n4.

and |v1| would be different for α1 and α2, and hence these outputs would be different too. The
obtained contradiction shows that the type of all segments with respect to q is zero, which, taking
into account the insertion construction, yields for α1 (and also for α2) the equality |v| = |v1|, where
v = out(l2(α1)).

Thus, we have assured the required length of the output v of the reconstructed path. It remains
to make v coincide with v1. If the input change in the reconstruction always occurred in the
same segment r where by the construction the removals of the output of l1 are located, this would
be easy. Indeed, in this case (if the outputs do not coincide) we would consider the left failure
between v and v1. Then changes of the outputs in A1 and A2 under removals would occur on
the same side from the failure and therefore the outputs could not become equal after removals.
However, the correspondence between the input and output on the path l′2 can be rather “twisted”
as compared to this correspondence on the path l1, and then the changes in the output can be
located, for example, in the zone of possible failures. This problem can be resolved as follows. First
we assure that changes of outputs in path reconstruction are precisely insertions, and then clarify
the structure of these insertions.

We say that a removal α is of the zero type if the type of all segments of α with respect to q1(α) is
zero. Previously we have shown that in any piece of the middle part with sufficiently many selected
heads there exist sufficiently many removals α1, α2, . . . , αk of the zero type, where all the |αi| are
distinct. Therefore, we can take sufficiently many removals on the middle part so that the following
conditions are satisfied:

1. The removals are ordered, i.e., each segment of one of any two removals is located strictly to the
left of each segment of the other and is disjoint with it;

2. All removals have the zero type;
3. For any two removals αi and αj we have |αi| �= |αj |;
4. For all removals α the states q1(α) and q2(α) are the same (denote them by q1 and q2);
5. For all α, the differences between the length of the output of l′2(α) on the segment from t1(α)

to ub and the length of the output of l′α(q1) on the same segment are the same (it follows from
condition (2) of Theorem 1 that this difference is not greater in absolute value than n4);

6. All the l2(α) (and therefore all the l′2(α)) have the same output from the beginning to ub;
7. All the out(l2(α)) are the same (denote this output by v2).

Condition 2 implies that the output of l(q1) is nonempty on any segment included in the removals.
Then conditions (1) and (2) of Theorem 1 and the fact that the difference of outputs of the
paths l′2(α) and l′α(q1) on the segment from t1(α) to t2(α) remains unchanged after insertion imply
that for all α (except for, maybe, the n4 leftmost and rightmost ones) out(l2(α)) is obtained from
out(l′2(α)) by inserting outputs of l(q1) on segments of α (see Fig. 12). Indeed, if w and w1 are
outputs of the paths l′α(q1) and l(q1) on the segment from t1(α) to t2(α), then the output of l′2(α)
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Fig. 13. Scheme of the proof of equality of outputs of the path l1 and the reconstructed path.
(a) Location of the removals αi and αj with respect to failures (a �= b) in the outputs v1 and v2.
(b) After performing the removal αi, the words v1 and v2 turned into the same word v with period of
length |αi| from the beginning to b �= a.

on this segment is a head of the word w∞ ending in an n4-vicinity of the end of the first w, and
the output of l2(α) on the same segment is a head of the word w∞

1 ending in the similar vicinity,
where w1 is obtained from w by insertions made outside the n4-vicinities of the beginning and end.

Thus, we have clarified the structure of insertions in the output. Now let us clarify the position of
these insertions to guarantee their location outside the area of failures. After that we use condition 3
to obtain a contradiction to v1 �= v2.

Condition 5 implies that for all α (except for, maybe, the n4 leftmost ones) the outputs of
all l′2(α) after the head ub repeat the outputs of the paths l′α(q1) starting from the same place on
the common head of the outputs of l′α(q1). Taking into account condition 6, we conclude that if
a removal αi is located strictly to the left of αj , then the insertion in the output for αi is located
strictly to the left (counting over the total length of the output) of the insertion for αj. Let us
call this the monotonicity property. Recall that |v1| = |v2| (by condition 2), and for any removal,
if the corresponding segments are deleted from v1 and v2, they become equal. By the monotonicity,
there exist many removals for which the removal zone of v2 contains neither left nor right failure
between v1 and v2. Take two such removals, αi and αj , where αi is to the left of αj. Recall that
the removal zone of v1 does not contain failures by the construction of the segment r. It is easily
seen that, to make it possible that the words v1 and v2 become equal after the removal αi, it is
necessary that removals from v1 and v2 lie on different sides from both failures. Let the removals
from v1 be located to the left of the left failure; then removals from v2 lie to the right of the right
failure (see Fig. 13a; the symmetric case is treated similarly). Make the removal αi, shifting the
beginning of v1 by |αi| to the right and the end of v2 by |αi| to the left (see Fig. 13b). Denote by a
the symbol of the left failure in v1 and by b the symbol of this failure in v2.

It is clear that the head of the word v into which both words v1 and v2 have turned after
performing the removal αi is periodic with period |αi|. This periodicity is disturbed exactly at
distance |αi| to the right of a in a symbol a′ (see Fig. 13b). Indeed, if it were not violated in
this symbol, the failure would not disappear, and if it had been violated before, the failure would
occur to the left of this position. In particular, the same about the period is valid for the suffix w
of v beginning from the right endpoint of α2. Indeed, by the construction of the subword r,
the length of the head of w up to the failure a is much greater than |αi|, |αj |, and even their
product. By the same arguments for the removal αj , we obtain that the head of w is periodic
with period |αj |, and this periodicity is disturbed precisely at distance |αj | to the right of a. But
then the head of w is periodic with period of length |αi||αj |. Since |αi| �= |αj | (condition 3), we
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obtain a contradiction to the fact that the disturbances of these two periods occurred in different
positions. �

For completeness, let us also consider the estimate for |u| under the conditions of the lemma.
In [2] it is proved that if a transducer A1 is not included in a finite-valued transducer A2, then there
exists a pair 〈u, v〉 ∈ Γ(A1), 〈u, v〉 /∈ Γ(A2), with |u| ≤ exp(exp(poly(n))). Let us show how this
fact can be deduced from Lemma 7. Consider the pair 〈u, v〉 whose existence is proved in Lemma 7
with the smallest |u| for a given v. Assume that |u| > exp(exp(poly(n))), where the degree of the
polynomial is sufficiently large. Since |v| ≤ exp(p1(n)), on an accepting path l1 in A1 with input u
and output v there exists a sufficiently long (double exponential) segment with empty input. On
this segment, let us select many heads of u in which l1 is in the same state. To each selected head u′

we assign a set of pairs of the form 〈q, v′〉, where v′ ⊆ v and q is a state in A2 such that in A2 there
exists a path from the initial state q0 to q with input u′ and output v′. Theorem 4 implies that the
number of such sets is a fixed double exponent; therefore, we can choose two heads u1 and u2 to
which the same set is assigned. By the construction, in A2 there is an accepting path l2 with an
input obtained from u by deleting the segment from u1 to u2 and with output v. Let q be the state
in which l2(u1) ends. Since the corresponding sets coincide, in A2 there exists a path l′2 from q0
to q such that in(l′2) = u2 and out(l′2) = out(l2(u1)). By joining the path l′2 with an extension of
the path l2, we obtain an accepting path in A2 with input u and output v. This contradicts the
condition that 〈u, v〉 /∈ Γ(A2). The estimate for |u| is proved.

The lower estimate for the length of the output v in the statement of Lemma 7 is exponential
(i.e., noninclusion can be detected on outputs of exponential length only). This estimate easily
follows from the existence of automaton A described at the end of Section 2, which accepts not
all words but all “exponentially short.” It suffices to equip all transitions of A having nonempty
inputs with a fixed single-symbol output, and the same for an automaton that accepts all words.

Remark 5. The authors are unaware of whether there exists a double exponential lower estimate
for the length of the input u in Lemma 7.

6. DECIDABILITY OF INCLUSION OF TRANSDUCERS

Now we pass to question concerning decidability of inclusion of one transducer in another.
In [10], decidability of inclusion of an arbitrary transducer A1 in a finite-valued transducer A2

was proved without estimating the running time of the algorithm. In [2], the decidability in time
exp(exp(poly(n))) was proved, where n is the sum of sizes of A1 and A2. The space required for
this algorithm also is of the order of a double exponent. In [8], these bounds were improved to a
single exponent whose argument involves k, the valuedness of A2. As is well known, k can itself
be exponential in n. We prove a theorem which improves this result by constructing an algorithm
with “purely” exponential space usage.

Theorem 5. There exists a deterministic algorithm with space usage exp(poly(n)) which, given
an arbitrary transducer A1 and a finite-valued transducer A2, decides the inclusion of A1 in A2.

Proof. Let us describe a nondeterministic algorithm which ascertains noniclusion of A1 in A2

requiring exponential space. First the algorithm guesses an output v, |v| ≤ exp(p1(n)), and writes v
on the tape. After that, it step by step guesses an input and a path in A1. At each time moment
the following information is written on the tape: the output v1 ⊆ v of the guessed head of the path
in A1 and the set of pairs 〈v′, q〉, where v′ ⊆ v and q is a state in A2 such that there exists a path
from the initial state to q with the input guessed by this moment and with output v′. At each
next step, the next symbol a of the input is guessed and the next transition in A1 with input a.
The algorithm checks whether the output of this transition extends v1 along v and appends it
to v1. Then, for each pair 〈v′, q〉 and each transition in A2 from q with input a and an output
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which extends v′ along v and does not go beyond it, a new pair is constructed in a natural way.
Repeated pairs are deleted from the newly obtained set. The algorithm operates while v1 is a
head of v and the set of pairs is nonempty. If v1 = v and the set of pairs contains no pair 〈v, f〉,
where f is the final state, the algorithm ascertains that A1 is not included in A2. Correctness of the
algorithm and its exponential space usage are evident. By Savitch’s theorem (see [11, pp. 477–478]),
a nondeterministic algorithm using space S can be simulated efficiently by a deterministic algorithm
recognizing the same language and and requiring space S2. This implies the existence of the desired
algorithm. �

The removal construction used in the proof of Theorem 5 yields the following result.

Theorem 6. Let A1 and A2 be finite-valued transducers without empty inputs, and let A1 be
included in A2. Then for any accepting path l1 in A1 with input u and output v there exists an
accepting path l2 in A2 with the same input and output and such that for any u′ ⊆ u we have
|d(l1, l2, u′)| ≤ exp(poly(n)).

Proof. Denote by M1(u, v) and M2(u, v) the sets of accepting paths with input u and output v
in A1 and A2, respectively. Contrary to the claim of the theorem, assume that there exists a path
l1 ∈ M1(u, v) such that for any path l2 ∈ M2(u, v) there exists u′ ⊆ u with |d(l1, l2, u′)| > k ≥
exp(poly(n)), where the degree of the polynomial is sufficiently large. By Theorem 4, in A2 there
is a no more than exponential set M of paths from M2(u, v) such that for any path l ∈ M2(u, v)
there exists l′ ∈ M such that for any u′ ⊆ u we have |d(l, l′, u′)| ≤ 2n4. Consider the set P of
accepting paths l in A1 possessing the following property: on the input l there exists a set T of
no more than |M | heads such that for any path l′ ∈ M2(in(l), out(l)) there exists a head u′ ∈ T
with |d(l, l′, u′)| > k1 = k − 2n4. One can easily see that l1 ∈ P , and therefore P is nonempty.
Let l0 be a path in P with the smallest output length; denote u0 = in(l0) and v0 = out(l0). By T0,
denote the set of heads corresponding to it. Our assumptions imply that |v0| > k1. Therefore,
there exists a segment r of l0 with sufficiently large output that does not contain heads from T0.
For r, we repeat all the removal construction described in the proof of Lemma 7 (for l1, u, and v1
in Lemma 7 we now take l0, u0, and v0). The only difference is that now as a path l′2 in A2 for
the path l′0 in A1 with removals we now take not an arbitrary path but such path that for any
head u′ ∈ T0 we have |d(l′0, l′2, u′)| ≤ k1. Such a path exists by the condition of the choice of l0 and
the fact that |out(l′0)| < |out(l0)|. Repeating the corresponding arguments, one can easily prove
that the exists a zero-type removal from l0 such that for the reconstructed path l2 in A2 we have
in(l2) = u0 and out(l2) = v0. The latter equality follows from the fact that in the proof of Lemma 7
we have obtained a contradiction when assuming that for all removals α we have out(l2(α)) �= v0.
It is easily seen that, because of the zero type and by the insertion construction, when a segment
is inserted, the deviation d(l′0, l

′
2, u

′) of the path in A1 from the path in A2 can be changed only
for u′ lying between the boundary head ub and the segment inserted in the input (more precisely,
d(l′′0 , l

′′
2 , u

′′) = d(l′0, l
′
2, u

′), where l′′0 and l′′2 are paths before the insertion, l′0 and l′2 are paths after
the insertion, u′ = u′′ if u′ ends to the left of the insertion, and u′ = (u′′ with the insertion) if u′

ends to the right of it). Hence, outside the segment r, and in particular on all heads u′ ∈ T0, we
have |d(l0, l2, u′)| ≤ k1. This contradicts the fact that l0 ∈ P . �

In one particular case, the result of Theorem 5 can be improved. We say that a transducer A

has finite delay if there exists a natural number c such that for any path l the condition |in(l)| ≥ c
implies |out(l)| > 0. Clearly, c ≤ poly(n), where n = |A| (if the transducer is finite-valued and
reduced, then its finite delay is equivalent to the nonexistence of cycles with empty input).

Theorem 7. There exists a nondeterministic algorithm which ascertains noniclusion of an
arbitrary transducer A1 in a finite-valued transducer A2 in nondeterministic time exp(poly(n)),
where A2 has finite delay.
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For the proof of the theorem, we need the following lemma, which improves Lemma 7 in this
particular case.

Lemma 8. If a transducer A1 is not included in a finite-valued transducer A2 with finite delay,
then there exists a pair 〈u, v〉 ∈ Γ(A1), 〈u, v〉 /∈ Γ(A2), with |u| ≤ exp(p2(n)), where p2(n) is a
polynomial.

Proof. Let l1 be an accepting path in A1 of the minimum length such that 〈in(l1), out(l1)〉 /∈
Γ(A2). Denote u = in(l1) and v1 = out(l1). Assume that |u| is sufficiently large. Two cases are
possible.

Case 1. |v1| > exp(p1(n)), where p1(n) is the polynomial from Lemma 7. In this case this
assumption leads to a contradiction in the same way as in Lemma 7.

Case 2. |v1| ≤ exp(p1(n)). In this case there exists a sufficiently large part r of the path l1 with
empty output. We will make removals on it in the same way as in Lemma 7, but instead of the
requirement that the output of the deleted segments is nonempty we require that the length of the
input of each deleted segment is greater than c. Repeating the corresponding arguments, we prove
the existence of a zero-type removal α. However, due to the finite delay property, the output of
any marked path in A2 is nonempty on the deleted segments of the input. This contradicts the fact
that the output of r is empty. �

Proof of Theorem 7. Let us describe the desired algorithm. It guesses an input u and an
output v with |u| ≤ exp(p2(n)) and |v| ≤ n|u|. After that, it deterministically ascertains whether
in A1 and in A2 there is a path with input u and output v. To this end, for each u′ ⊆ u, where u′ is
extended symbol by symbol, it finds the set of pairs 〈v′, q〉 where v′ ⊆ v and q is a state such that
there exists a path from the initial state to q with input u′ and output v′. Details are obvious. The
algorithm detects noniclusion of A1 in A2 if 〈u, v〉 ∈ Γ(A1), 〈u, v〉 /∈ Γ(A2). Clearly, the running
time of the algorithm is approximately n|u||v|. �

The second author is grateful to Yu.L. Pritykin and an anonymous reviewer for careful reading
of the text and numerous valuable remarks leading to a considerable improvement of the paper.
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