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1. Reconciliation of a set of gene trees. A long recognized problem is inference of a tree S that 

reconciles a set of input trees Gi, with leaves in each Gi being assigned homologous sequences from an i-
family (homologous genes or regulatory regions with or without the regulated gene, etc.). Usually the tree 
S is a tree of species or other taxonomic units. Assume leaves in S are labeled with species names, leaves 
in Gi – with pairs of gene-species names; paralogs are allowed. We further develop a traditional approach 
to find the tree S such that it minimizes the total cost of mappings of individual trees into S, [1]. Let us 
call S a supertree, each Gi – a gene tree, each sequence – a gene. A mapping of Gi into S implies a fixed 
set of evolutionary events. The standard set contains only gene duplications and losses. The extended set 
additionally contains horizontal gene transfers, gains, etc. The total cost is the sum of “individual” costs 
for all Gi mappings into the tree S, and is similar to the cost from [1] in case of the standard set. Is 
computing total/individual costs possible in small polynomial time? This question is tackled below. 

Under a traditional approach, the supertree building problem is NP-hard, i.e., any algorithm to 
solve it correctly must possess exponential complexity. Numerous heuristics exist, but they generally do 
not find the global minimum of the total mapping cost. We proposed a reformulation of this problem that 
allows a computationally effective deterministic algorithm and meets many biological prerequisites. 
Namely, the supertree S is sought for such that it contains the majority of clades from input trees Gi. With 
the standard event set, the algorithm is mathematically correct and possesses the running time of 
O(n3×m3), where n is the number of gene trees, and m is the total number of species [2]. For simplicity, 
here we assume that the average number of leaves in input trees is a multiple of m. With an extended 
event set, the algorithm is heuristically correct and cubic in complexity. The authors are unaware of 
analogous approaches in published literature. A relevant biological discussion of our approach is 
provided in [3]. Problem 1: is a correct inference of the supertree possible in similar or polynomial time 
with the extended event set?  

2. Reconciliation of gene and species trees. Edges in S may be broken by inserting additional 
nodes, thus formally producing another tree S0, with nodes producing two descendant edges or only one 
edge. It imposes time slices such that horizontal transfers are allowed only within one slice, see [4]; in 
particular cases S=S0. With the extended event set, we developed an algorithm that reconciles any gene 
tree G and S0, i.e., correctly computes the mapping of G into S0 and its cost in time O(|G|×|S0|), which 
gives O(|S|3). Here | | is the number of nodes in a tree. A mathematical proof is given in [4, 5] (refer also 
to a later study [6], which has used [4, 5]). Refresh that a phylogenetic net of genes or species is an 
acyclic directed graph with one vertex (the “root”) that can be connected by a path with any other node, 
and terminal vertices (the “leaves”); the leaves are labeled with species names or species-gene name 
pairs. An important special case is a binary net, where for each node, except for the root, one of the 
following is true: the node possesses only one incoming edge and no outcoming edges, or two outcoming 
and one incoming edge, or two incoming and one outcoming edge. In a species net, introducing time 
slices ordinarily generates edges with one incoming and one outcoming edge. The definitions and costs of 



mapping of a gene net into a species net and mapping of a gene tree into a species tree are identical. 
Problem 2: for phylogenetic nets, is a correct computation of the mapping and its cost possible in the 
same or other polynomial time with the standard or extended set? 

3. Mapping a gene tree to a species tree and its cost. Thus, Problems 1-2 are reduced to the 
extended event set case. We do not know their solutions in general case, but the principal question 
remains: what is a mapping of gene tree G into the tree S and its cost in the case of extended event set 
(Problem 3)? We proposed a possible definition in [4, 5] and formulate the idea below; informal 
motivation can be found in [4]. 

Below e runs over all edges of G, and d – over all edges (also referred to as tubes) of S0. The root 
is pictured at the top in all. A formal edge (the so-called root edge) enters the root from above. By 
definition, e' < e if an edge e' is strictly below e, and e' ≤ e if e'<e or e'=e. One of at most 15 evolutionary 
events can occur on fixed edge e in tube d; such events are marked by index i. Two tubes d and d' belong 
to the same (temporal) slice, by definition, if the lengths of path from the root tube to d and d' are equal, 
correspondingly. Assume d is a terminal tube, and e is a terminal edge. If gene e belongs to species d, 
then the mapping f<e,d>(e) = <d,fin> and the cost c(<e,d,fin>) = 0. Otherwise, if e belongs to species d', 
then the mapping f<e,d>(e) = <d,tr(d,d')> and the cost c(<e,d,tr->) = 13, where 13 is the cost of gene 
transfer without retention (all costs are conditional). Here fin indicates “e belongs to d”, tr(d,d') indicates 
that gene e is transferred from tube d to tube d' such that no copy of e remains in d. Thus, mapping 
f<e,d>(e) is defined by induction; the basic step is defined.  

Now we exemplify further induction steps f<e,d>(e') = <d', mark> where e' < e and d' is in a slice 
later or equal then the slice d.  
1) Assume d is a tube with single descendent tube d1 and pass= argi min c(e,d,i). Then f<e,d>(e) = 

<d,pass>, f<e,d>(e') = f <e,d1>(e'), and c(<e,d,pass>) = minic(<e,d1,i>). Here, the “pass” indicates the 
survival of gene e down to the next tube.  

2) Assume d is a tube with two descendent tubes d1 and d2 and passl= argi min c(e,d,i). Then f<e,d>(e) = 
<d,passl>, f<e,d>(e') = f<e,d1>(e'), and c(<e,d,passl>) = mini c(<e,d1,i>)+2, where 2 is the cost of loss. 
Here, the “passl” indicates the survival of gene e into tube d1 and loss of its copy in tube d2. 
Symmetric cases are not discussed everywhere. 

3) Denote e1 and e2 two descendent edges of non-terminal edge e and passlr= argi min c(e,d,i). Then 
f<e,d>(e) = <d,forklr>, f<e,d>(e') = f<e1,d1>(e') if e'  e1, and f<e,d>(e') = f<e2,d2>(e') if e'e2; 
c(<e,d,passlr>) = mini c(<e1,d1,i>)+minic(<e2,d2,i>). Here, the “forklr” indicates divergence of gene e 
into e1 in tube d1 and e2 in tube d2. 

4) For non-terminal edge e and dupl= argi min c(e,d,i), f<e,d>(e) = <d,dupl>, f<e,d>(e') = g<e1,d>(e') if e'  e1, 
and f<e,d>(e') = f<e2,d>(e') if e'e2; c(<e,d,dupl>) = minic(<e1,d,i>)+mini c(<e2,d,i>)+3, where 3 is the 
cost of duplication. Here, the “dupl” indicates the duplication of gene e within tube d into e1 and e2.  

5) For non-terminal edge e and d'[tr1(d,d')= argi min c(e,d,i)], where d' be a tube in the same slice with 
d that differs from d and minimizes the value minic(<e1,d',i>) over d'. Then f<e,d>(e) = <d,tr1(d,d')>, 
f<e,d>(e') = f<e1,d'>(e') if e'  e1, and f<e,d>(e') = f<e2,d>(e') if e'  e2; c(<e,d,tr1(d,d')>) = 
mini c(<e1,d',i>) + mini c(<e2,d,i>)+11, where 11 is the cost of transfer with retention. Here, the 
“tr1(d,d')” indicates that gene copy e1 is transferred from tube d into tube d', and gene copy e2 
remains in d. Etc. 

4. Gene tree reconstruction. Problem 4 of inferring a gene tree from a multiple protein 
alignment has no rigorous solution, like the described above, even in important special cases, and thus 
always relies on heuristics. However, it is known to be NP-hard and can be formulated in terms of 
maximizing a defined functional. Therefore, a correct algorithm of polynomial (especially low) 
complexity to solve the problem is possible only after its reformulation. Importantly, such a reformulation 
was biologically relevant.  

The authors propose the problem restatement and a polynomial algorithm that correctly infers the 
gene tree in special cases. In simulations of a general case the algorithm was shown to be very fast and in 
about 75% cases reconstruct a tree very close to that produced by PhyloBayes v.3.3 in much longer time.  



In the restatement, the tree is sought for among trees consisting of clades from a prebuilt set P 
that possesses the following property: each set in P can be split into two subsets also from P, and so on 
until singlet sets are obtained that correspond to alignment rows (ref. to further as rows). The solution 
found by the algorithm depends heavily on the “correctness” of set P.  

In the algorithm, selected “non-informative” columns of the initial alignment are omitted as in 
[7], dynamic programming is then applied to the refined alignment for a maximum likelihood inference 
of one tree that contains all clades from P per alignment column. The obtained set of trees is reconciled 
using a supertree building algorithm described in section 1 and in [2, 3]. 

5. Construction of set Р. Define the row length as the number of amino acid residues. Define 
the length of a rows pair as the number of non “gap-to-gap” columns. Let X be any set of rows that 
differs from set X of all alignment rows. The set cardinality is designated |·|. Define I(X) the sum of self-
similarities of each row from X divided by the total length of all rows from X. Define S(X) the sum of 
similarities of all row pairs from X divided by the total pairs length and I(X); analogously define S(X). 
Define m(X) the minimal value of S over all pairs from X; M(X) its maximal value over all pairs that 
contain one row from X and another – from its complement. Let l(m) be a linear function, where m 
decreases from |X| to 2, l(|X|) = S(X), and the derivative equals α, the algorithm parameter. 

Set P is constructed with induction. All singlet sets (i.e. consisting of a single row) are included 
in P; at each induction step, if sets X1 and X2 from P do not intersect, and for their union X the conditions 
S(X)  l(|X|), m2(X) + β > M 2(X) are true then X is included in P. Parameters α and β are fitted, and in this 
study typically were α = 0.002556, β = 0.390625. Although this algorithm is also heuristic, Problem 5 
implies a proof of the above mentioned statements, which might be expected to achieve because the 
proof was obtained for Problem 1 that differs from Problem 5 by a single transparent condition.  
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