Minimal collapse maps at arbitrary projective level

Vladimir Kanovei ¹ Vassily Lyubetsky ²

 1 IITP RAS and MIIT, Moscow. Supported by RFBR grant 17-01-00757 2 IITP RAS, Moscow. Support of RSF grant 14-50-00150 acknowledged

Descriptive Set Theory in Turin
September 6–8, 2017

Generic collapse maps

Generic collapse maps

Back

1 Cohen: there exist generic cofinal maps $\boldsymbol{a}:\omega\to\omega_1$ (in fact, for any two cardinals)

- Cohen: there exist generic cofinal maps $\boldsymbol{a}:\omega\to\omega_1$ (in fact, for any two cardinals)
- **2** Prikry: there exist **minimal** cofinal maps $m{a}:\omega o\omega_1$,

- Cohen: there exist generic cofinal maps $\boldsymbol{a}:\omega\to\omega_1$ (in fact, for any two cardinals)
- **2** Prikry: there exist **minimal** cofinal maps $\boldsymbol{a}:\omega\to\omega_1$, the minimality means that if $\boldsymbol{b}\in\mathbf{V}[\boldsymbol{a}]$, $\boldsymbol{b}:\omega\to\omega_1^\mathbf{V}$ is cofinal then $\boldsymbol{a}\in\mathbf{V}[\boldsymbol{b}]$

- **①** Cohen: there exist generic cofinal maps $\boldsymbol{a}:\omega\to\omega_1$ (in fact, for any two cardinals)
- ② Prikry: there exist **minimal** cofinal maps $\boldsymbol{a}:\omega\to\omega_1$, the minimality means that if $\boldsymbol{b}\in\mathbf{V}[\boldsymbol{a}],\ \boldsymbol{b}:\omega\to\omega_1^\mathbf{V}$ is cofinal then $\boldsymbol{a}\in\mathbf{V}[\boldsymbol{b}]$
- **13 Uri Abraham 1984**: if $\mathbf{V} = \mathbf{L}$ is the ground model then there exists a minimal cofinal map $\mathbf{a}: \omega \to \omega_1^{\mathbf{V}}$ such that \mathbf{a} is (coded by) a lightface Π_2^1 real singleton in $\mathbf{V}[\mathbf{a}]$.

- **①** Cohen: there exist generic cofinal maps $\boldsymbol{a}:\omega\to\omega_1$ (in fact, for any two cardinals)
- **2** Prikry: there exist **minimal** cofinal maps $\boldsymbol{a}:\omega\to\omega_1$, the minimality means that if $\boldsymbol{b}\in\mathbf{V}[\boldsymbol{a}]$, $\boldsymbol{b}:\omega\to\omega_1^\mathbf{V}$ is cofinal then $\boldsymbol{a}\in\mathbf{V}[\boldsymbol{b}]$
- **3** Uri Abraham 1984: if $\mathbf{V} = \mathbf{L}$ is the ground model then there exists a minimal cofinal map $\mathbf{a} : \omega \to \omega_1^{\mathbf{V}}$ such that \mathbf{a} is (coded by) a lightface Π_2^1 real singleton in $\mathbf{V}[\mathbf{a}]$.
- **VK** + **VL**, the main result: if **V** = **L** is the ground model and $n \ge 3$ then there exists a minimal cofinal map $\boldsymbol{a}: \omega \to \omega_1^{\mathbf{V}}$ such that it is true in $\mathbf{V}[\boldsymbol{a}]$ that

Generic collapse maps

- Cohen: there exist generic cofinal maps $\boldsymbol{a}:\omega\to\omega_1$ (in fact, for any two cardinals)
- ② Prikry: there exist **minimal** cofinal maps $\boldsymbol{a}:\omega\to\omega_1$, the minimality means that if $\boldsymbol{b}\in\mathbf{V}[\boldsymbol{a}],\ \boldsymbol{b}:\omega\to\omega_1^\mathbf{V}$ is cofinal then $\boldsymbol{a}\in\mathbf{V}[\boldsymbol{b}]$
- **3** Uri Abraham 1984: if $\mathbf{V} = \mathbf{L}$ is the ground model then there exists a minimal cofinal map $\mathbf{a} : \omega \to \omega_1^{\mathbf{V}}$ such that \mathbf{a} is (coded by) a lightface Π_2^1 real singleton in $\mathbf{V}[\mathbf{a}]$.
- VK + VL, the main result: if $\mathbf{V} = \mathbf{L}$ is the ground model and $n \geq 3$ then there exists a minimal cofinal map $\mathbf{a} : \omega \to \omega_1^{\mathbf{V}}$ such that it is true in $\mathbf{V}[\mathbf{a}]$ that
 - **1 a** is (coded by) a lightface Π_n^1 real singleton, but

- Cohen: there exist generic cofinal maps $\boldsymbol{a}:\omega\to\omega_1$ (in fact, for any two cardinals)
- ② Prikry: there exist **minimal** cofinal maps $\boldsymbol{a}:\omega\to\omega_1$, the minimality means that if $\boldsymbol{b}\in\mathbf{V}[\boldsymbol{a}],\ \boldsymbol{b}:\omega\to\omega_1^\mathbf{V}$ is cofinal then $\boldsymbol{a}\in\mathbf{V}[\boldsymbol{b}]$
- **3 Uri Abraham 1984**: if $\mathbf{V} = \mathbf{L}$ is the ground model then there exists a minimal cofinal map $\mathbf{a} : \omega \to \omega_1^{\mathbf{V}}$ such that \mathbf{a} is (coded by) a lightface Π_2^1 real singleton in $\mathbf{V}[\mathbf{a}]$.
- **VK** + **VL**, the main result: if **V** = **L** is the ground model and $n \ge 3$ then there exists a minimal cofinal map $\boldsymbol{a}: \omega \to \omega_1^{\mathbf{V}}$ such that it is true in $\mathbf{V}[\boldsymbol{a}]$ that
 - **1 a** is (coded by) a lightface Π_n^1 real singleton, but
 - 2 every Σ_n^1 real is constructible.

Definition (Cohen-style collapse forcing)

The forcing $\omega_1^{<\omega}$ consists of all **strings** (finite sequences) of ordinals $\alpha < \omega_1$.

The forcing $\omega_1^{<\omega}$ naturally adjoins a map $\boldsymbol{a}:\omega\stackrel{\text{onto}}{\longrightarrow}\omega_1$.

The forcing \mathbb{P} consists of all **trees** $T \subseteq \omega_1^{<\omega}$ such that

- every node of T has a branching node above it;
- **2** every branching node of T is an ω_1 -branching node.

The forcing \mathbb{P} consists of all **trees** $T \subseteq \omega_1^{<\omega}$ such that

- $oldsymbol{0}$ every node of T has a branching node above it;
- **2** every branching node of T is an ω_1 -branching node.

The Laver-style version \mathbb{P}_{Laver} requires that in addition

 \odot any node of T above a branching node is branching itself.

- every node of T has a branching node above it;
- **2** every branching node of T is an ω_1 -branching node.

The Laver-style version \mathbb{P}_{Laver} requires that in addition

 \odot any node of T above a branching node is branching itself.

 $\mathbb{P}_{\mathsf{Laver}}$ is more difficult to deal with.

The forcing ${\Bbb P}$ consists of all **trees** $T\subseteq \omega_1^{<\omega}$ such that

- $oldsymbol{0}$ every node of T has a branching node above it;
- **2** every branching node of T is an ω_1 -branching node.

The Laver-style version P_{Laver} requires that in addition

 \odot any node of T above a branching node is branching itself.

 $\mathbb{P}_{\mathsf{Laver}}$ is more difficult to deal with.

Both $\mathbb P$ and $\mathbb P_{\mathsf{Laver}}$ naturally adjoin a cofinal map $\pmb a:\omega\to\omega_1^{\pmb V}$, but such a map $\pmb a$ is not definable in $\pmb V[\pmb a]$ since the forcing notions $\mathbb P$ and $\mathbb P_{\mathsf{Laver}}$ are too homogeneous.

Uri Abraham cofinal map

- In **L**, the forcing \mathbb{U} is a subset $\mathbb{U} = \bigcup_{\xi < \omega_2} \mathbb{U}_{\xi} \subseteq \mathbb{P}$, such that
 - **①** each $\mathbb{U}_{\xi} \subseteq \mathbb{P}$ is a set of cardinality \aleph_1 ;
 - $lackbox{0}{}$ U adds a single generic map, so $\Bbb U$ is very non-homogeneous;
 - **1** "being \mathbb{U} -generic" is Π_2^1 .

- In **L**, the forcing \mathbb{U} is a subset $\mathbb{U} = \bigcup_{\xi < \omega_2} \mathbb{U}_{\xi} \subseteq \mathbb{P}$, such that
 - **①** each $\mathbb{U}_{\xi} \subseteq \mathbb{P}$ is a set of cardinality \aleph_1 ;
 - $lackbox{0}{}$ U adds a single generic map, so $\Bbb U$ is very non-homogeneous;
- lacksquare "being \mathbb{U} -generic" is Π_2^1 .

There is also a $\mathbb{P}_{\mathsf{Laver}}$ -version, actually used by Abraham.

- In **L**, the forcing $\overline{\mathbb{U}}$ is a subset $\mathbb{U} = \bigcup_{\xi < \omega_2} \mathbb{U}_{\xi} \subseteq \mathbb{P}$, such that
- **①** each $\mathbb{U}_{\xi} \subseteq \mathbb{P}$ is a set of cardinality \aleph_1 ;
- $lackbox{0}{}$ U adds a single generic map, so $\Bbb U$ is very non-homogeneous;
- **3** "being \mathbb{U} -generic" is Π_2^1 .

There is also a P_{Laver}-version, actually used by Abraham.

• The forcing $\mathbb U$ adjoins a cofinal map $\pmb a:\omega\to\omega_1$ to $\pmb L$, and $\pmb a$ is a \varPi_2^1 -singleton in the extension.

- In **L**, the forcing \mathbb{U} is a subset $\mathbb{U} = \bigcup_{\xi < \omega_2} \mathbb{U}_{\xi} \subseteq \mathbb{P}$, such that
- **①** each $\mathbb{U}_{\xi} \subseteq \mathbb{P}$ is a set of cardinality \aleph_1 ;
- $lackbox{0}{}$ U adds a single generic map, so $\Bbb U$ is very non-homogeneous;
- lacksquare "being \mathbb{U} -generic" is Π^1_2 .

There is also a \mathbb{P}_{Laver} -version, actually used by Abraham.

- The forcing $\mathbb U$ adjoins a cofinal map $\pmb a:\omega\to\omega_1$ to $\pmb L$, and $\pmb a$ is a H_2^1 -singleton in the extension.
- The single generic object construction goes back to Jensen 1970 minimal- Π_2^1 -singleton forcing .

The Uri Abraham forcing \mathbb{U} is essentially a Δ_2^1 path through a certain POset \mathfrak{P} of sets $U \subseteq \mathbb{P}$ of cardinality card $U \leq \aleph_1$.

The Uri Abraham forcing \mathbb{U} is essentially a Δ_2^1 path through a certain POset \mathfrak{P} of sets $U \subseteq \mathbb{P}$ of cardinality card $U \leq \aleph_1$.

Definition (Π_n^1 -singleton cofinal map forcing)

Let $n \geq 3$. In **L**, we define \mathbb{U}_n using a Δ_n^1 path through \mathfrak{P} ,

generic so it meets all dense subsets of $\mathfrak P$ of boldface class $\mathbf \Sigma_{n-1}^1$.

The Uri Abraham forcing \mathbb{U} is essentially a Δ_2^1 path through a certain POset \mathfrak{P} of sets $U \subseteq \mathbb{P}$ of cardinality card $U \leq \aleph_1$.

Definition (Π_n^1 -singleton cofinal map forcing)

Let $n \geq 3$. In **L**, we define \mathbb{U}_n using a Δ_n^1 path through \mathfrak{P} , generic so it meets all dense subsets of \mathfrak{P} of boldface class Σ_{n-1}^1 .

The genericity condition makes the forcing properties of \mathbb{U}_n to be very close to those of the whole **homogeneous** forcing notion \mathbb{P} up to the *n*th level of the projective hierarchy.

The Uri Abraham forcing \mathbb{U} is essentially a Δ_2^1 path through a certain POset \mathfrak{P} of sets $U \subseteq \mathbb{P}$ of cardinality card $U \leq \aleph_1$.

Definition (Π_n^1 -singleton cofinal map forcing)

Let $n \geq 3$. In **L**, we define \mathbb{U}_n using a Δ_n^1 path through \mathfrak{P} , generic so it meets all dense subsets of \mathfrak{P} of boldface class Σ_{n-1}^1 .

The genericity condition makes the forcing properties of \mathbb{U}_n to be very close to those of the whole **homogeneous** forcing notion \mathbb{P} up to the *n*th level of the projective hierarchy. In particular \mathbb{U}_n forces all lightface Σ_n^1 reals to be constructible.

A problem

Problem

In the context of the Namba forcing, define a generic extension $\mathbf{L}[a]$ of \mathbf{L} by a cofinal map $\mathbf{a}:\omega\to\omega_2^\mathbf{L}$, such that $\omega_1^\mathbf{L}$ is not collapsed and \mathbf{a} is definable in $\mathbf{L}[a]$.

Acknowledgements

The speaker thanks the organizers for support

Acknowledgements

The speaker thanks **everybody** for patience