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Preface

The modern theory of nonstandard (= infinitesimal) methods had its
origins in Abraham Robinson’s investigations in the early 1960s. Robinson
established the possibility of completely rigorous arguments with infinitesimal
and infinitely large numbers. The first approach to nonstandard analysis was
model-theoretic or “constructive”, see Robinson [31], [32]. Lindstrem’s large
article [21], part I of Albeverio et al [1], and many other sources, among them
Davies [4], Kanovei [14], Lutz and Gose [23], Lyubetskii {24], Uspenskii [35],
present this approach in all the necessary detail. Universal constructions of
ultrapowers and ultralimits (iterated ultrapowers) gave many fruitful
nonstandard extensions of various mathematical structures. Meanwhile many
properties of different extensions were found to be similar. This was the
reason for searching for an appropriate axiomatization.

Several axiomatic systems were proposed: Nelson [28], [29], Kawai [17],
[18], Hrbacek [10], [11], Henson and Keisler [9], Vopenka [36] and some others
(see [20] for a survey). Edward Nelson’s internal set theory (briefly, IST)
appears to be the most fruitful among them. IST extends the usual set theory
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ZFC by adding a new unary predicate of standardness and three intuitively
acceptable and easy to use new axioms governing its action.

Today IST is certainly accepted as a base for the nonstandard mathematics.
The following investigations are in any event connected with IST: Diener and
Stroyan [5], Diener and Diener [6), Shubin and Zvonkin [34], the monographs
of Robert [30] and van den Berg [2], and some other textbooks and applied
works, including Gordon [7] and [15], [16] of the author, where some previous
variants of the theorems of this paper were presented. Lutz and Gose [23],
Kusraev and Kutateladze [20] considered IST among some other nonstandard
systems.

It is the applied side of IST that has been the usual topic of nonstandard
investigations concerning the IST. Purely logical questions, as a rule, were
avoided. Meanwhile problems concerning the boundaries of the area of the
provable and the area of the undecidable are among the most important in
logic, especially for theories of set theoretic type, see Jech [13]. Being a
conservative extension of ZFC, IST takes over a lot of famous undecidabilities
from ZFC (the continuum hypothesis, the Souslin hypothesis, and so on).
Hence only those undecidable sentences may be of real interest which are
much more connected with the spirit of the nonstandard mathematics, and
those which discover this spirit.

The aim of this article is to prove the undecidability of some sentences, or
hypotheses, in IST. All of them are in fact the extensions of some ZFC axiom
or theorem to the case of an external (that is, containing the predicate st) core
formula. (All ZFC axioms and theorems hold in IST only in the case when
the core formula is internal—that is, without the st.) Among those hypotheses
are the following four:

(a) Vix e X Ay O(x, y) = 3§ V' € X O(x, §(x));

(b) Vix € X A%y ®(x, y) - 3% V¥x e X O(x, §(x));

© V'xeXIyeYd(x y) > 3Ij:X > Y V% e X O(x, fx));

(d) Veitx 3ty O(x, y) - 3§ V' O(x, §(x))
(X, Y are arbitrary standard sets). We show that (a), (b), (c), (d) are
undecidable in IST. Moreover each of them holds for all standard X, ¥ and
all ® in Nelson’s ultralimit model and fails for X = ¥ = N and some special
® in another model of IST. (We allow ® to be an external formula.) We
recall that (c) is the well-known extension principle. We study the question
about how complicated ® may be in non-provable examples.

Three more results. Theory IST +(b) is strong enough to prove the
consistency of ZFC and IST. It is possible to express in IST the truth of all

internal formulae with standard parameters by some external formula (this
fails if nonstandard parameters are allowed). The following collection axiom

VX 3Y Vx € X [Ay ®(x, y) = Iy € YO(x, y)]
holds in IST for all formulae ® (internal as well as external).
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Also we study the bounded set theory BST. This is the modification of IST
which guarantees that all sets are members of standard sets. BST is
equiconsistent with IST and ZFC and is sufficiently strong to make (a)—(d)
decidable.

It is a pleasure to thank V.A. Uspenskii, A.G. Dragalin, A.K. Zvonkin,
V.A. Lyubetskii, V.A. Molchanov, E.1. Gordon, An. A. Muchnik,
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Lambalgen for his friendly help in preparation of the text, and to A. Enayat,
A. Miller and other participants of Tehran 1991 Summer Logic School for
attention to this investigation, and to the Institute of New Technologies
(Moscow) for their support.

§1. Introduction. Hypotheses and results

1.1. Internal set theory.

The IST language contains the equation = and two predicates: the
membership relation € and the standardness st; st x means “x is a standard
set”.

A formula of the IST language (shortly, st-e-formula) that does not contain
the symbol st is called internal, a formula containing st is called external.
Internal fomulae are just e-formulae or those of the ZFC language.

Two simple abbreviations are often used:

3tz @(z) means Iz [st z & @(2)];
Vstz @(z) means Vz st z— ¢(2)].

Note that st x is equivalent to 3%z (z = x). Thus the only necessary use of
the standardness predicate is its use in quantifiers 3%, V*. The quantifiers 3%,
V* are called external, while the usual 3 and V are called internal.

Internal set theory contains all the axioms of Zermelo —Fraenkel set theory
ZFC (with choice) formulated in the e-language and three additional principles
or axioms. These are the idealization 1, the standardization S, the transfer T:

I: Vstin 4 J2 Vae=s A @z, a) < Jz Vsia D(z, a)
for any internal formula @;

S: ItY Vsixlz e Y - 2= X & O(z)]
for any st-e-formula ¢ and any standard set X;

T: Jz D(z) — Ttz O(x)

for any internal formula ® with standard parameters.
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Of course none of I, S, T is a single axiom. Principles of such a kind are
called axiom schemes. Their strength depends on our choice of a core
Jormula .

v*fin 4 s an abbreviation for “for all standard finite 4”. The slightly
vague phrase “with standard parameters” means that every free variable
occurring in ® except x may be replaced only by a standard set when T acts
within the universe of internal sets (see below). From a logical point of view
we imply that the list of external quantifiers V*'v; ... V®', (for all the free
variables vy, ..., v, of @ except x) is written down outside T.

We note that core formulae ®(x, g) in I and ®(x) in S can also contain
other free variables which may be replaced by arbitrary sets, standard or
nonstandard. Briefly, ® is a formula with arbirtary parameters in I and S. In
general a parameter is a set that replaces a free variable in a formula.

Thus the main special feature of IST (among other nonstandard systems) is
that it takes into consideration only the following two types of sets: standard
and internal. Unlike IST, many other theories, especially those introduced by
Kawai, Hrbatek, Henson and Keisler, Vopenka, admit the third kind:
external sets. One can say that IST is an internal axiomatization of the
nonstandard mathematics while some other theories gave an axiomatization of
an external world containing a nonstandard model. The last approach makes
the logical structure significantly more complicated, so it prevents one
obtaining a large amount of natural applications. Maybe this is the reason
why, unlike IST, the known external systems are not of common use.

1.2. The universe of internal set theory.

A set-theoretic universe (that is, a collection of sets governed by the axioms of
a theory that we consider) is usually denoted by some form of the letter V.
We choose the double-lined form V to denote the universe of all sets governed
by the axioms of IST (or of ZFC if arguing in ZFC). Historically, sets
contained in V are called internal. So

V = all sets = all internal sets.

The standardness predicate st works in V. Thus we may define the universe
of standard sets

S = {x:stx} = {xeV:xis standard}.

One can easily prove that § is not a member of V, though § < V.
Collections of such a kind are called external. They are considered in IST in
the same manner as proper classes in ZFC.

Every “individual” set of classical mathematics is standard; this is
guaranteed by transfer. Thus N (integers), R (reals), and so on, are standard
members of V. The reader familiar with ‘‘superstructural” investigations
must keep in mind that the sets N, R and in general all infinite standard
sets contain both standard and nonstandard elements. For example,
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N corresponds to *N in a superstructure, while the collection
°N = {n e N :stn} = {standard integers}

is analogous to superstructural N. By the way, °N and generally X for all
standard infinite sets X are external collections.

Finiteness is realized in IST in the usual sense, that is, the number of
elements of a set which we say is finite must be equal to some integer n, not
necessarily standard. So it corresponds to hyperfiniteness in a superstructure.

A rigorous ‘‘superstructuralist” may realize the universe V as a model in
the usual set-theoretic Zermelo — Fraenkel world. In fact one can construct V
by Nelson’s [28] adequate ultralimits rather than by direct construction of a
superstructure due to Lindstrem [21]. From this point of view one must
distinguish between two meanings of the notion ‘“‘external”. Firstly, ‘“external”
can be taken to mean “defined in V by an external formula” (or, equivalently,
by some st-e-formula). Secondly, “external” is any X < V that is not a
member of V. According to what has been said above, externality has the
first meaning here. The word “outer” is a good substitute for the second
meaning. Thus its opposite “inner” means internal + external, that is,
definable in V by a st-e-formula. Finally, “outer” means undefinable in V.

1.3. General approach to problems.

Certainly all the axioms and theorems of ZFC remain provable in IST because
IST is an extension of ZFC. However let us look at this proposition more
carefully. We note that ZFC contains, among others, two axiom schemes,
namely, separation

Sep: Y Ve X z=Y oz X & D),

and replacement
Repl: Vze X 3! y®z, y) > F7 Va= X O(z, 7(2)),

where @ is an arbitrary e-formula and X is an arbitrary set. Every variable
with ~ over it designates a function, and an occurrence of a term of type §(x)
means that § is defined at x. Thus Repl 7 is a function with domain
(including) X.

Let us emphasize that Sep and Repl are included in IST only in the case of
internal core formulae ®.

What can one say about external formulae ®?

The main aim of our investigation is to make clear the status of ‘“‘external”
forms of separation, replacement, choice and collection in IST. Exact
formulations will be given below after some preliminaries that we need in
order to select the forms of real interest and to discard trivialities. We shall
investigate, together with Sep and Repl, two more axiom schemes, choice Che
and collection Coll, and a principle of another kind, uniqueness Uniq. We
consider all of these schemes as hypotheses in IST because it is not quite clear
whether one should accept or reject them.
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1.4, Separation,
We wish to select “reasonable” forms of the separation axiom with external
formula ®. First of all let us get rid of trivial variations, trivially true or
trivially false in IST.

We note that the true (= provable) form is Sep with

m X ={1,2, .. n}, ne N finitely large (= standard)

and with arbitrary @, internal or external. One can easily derive Sep in this
case with the help of the external induction theorem, see Nelson [28) or 2.6
below.

The false (= disprovable) form is Sep with

) X ={1,2,..,n}, neN infinitely large (=nonstandard)

and the formula st x as ®. (The collection °N of all standard integers is not
an internal set in IST.)

To recognize the crucial difference between these two cases, let us look at
elements of a set of the kind (1) and of the kind (2). Any set of the first kind
contains only standard elements but not all standard integers (n+1 ¢ X).
Any set of the second kind contains all standard integers together with some
part of nonstandard integers (those less than or equal to n).

The really interesting and non-trivial case may be the “‘intermediate”
collection X, that is, the collection of all standard integers. (This collection is
not an internal set in IST, of course.) The required property of a set Y in
Sep takes the form

Vitzlze Y o z= N & O(z)].

Natural generalization to an arbitrary standard set X or to the whole universe
V leads to the following three forms of Sep:

Sep;: st X) BY Vstz e =Y oz = X & O@2)];
Sep,: (st X) Y Vzlze= Y « ze= X & O(2);
Sepg: JY Vszlz =Y « O@)l.

We write st X in brackets instead of the quantifier V*'X.

Some comments. Sep; is just the standardization axiom. Hence Sep; and
of course Sep, are true in IST. Thus only Sep; is really new. Note that there
is (in IST) a set Y such that S < Y, see 2.9, hence Sep; does not produce an
immediate contradiction. Further we cannot require the standardness of Y in
Sep; (let ® be x = x). Also we cannot extend Sep; to nonstandard sets X.

It is easy to check that Sep, for nonstandard sets X is equivalent to Seps.

1.5. Replacement.

The approach to the selection of external forms which is taken above is
applicable to replacement as well. Of course, Sep is Repl restricted by the
assumption that values of the variable y may be 0 or 1 only. Generalizing to
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all standard values, we obtain three variants of Repl similar to the
corresponding forms of Sep. They are as follows:

Reply: (st X) Vstze X Jisty Oz, y) - It§ Vile = XDO(2, §(2);
Repl,: (st X) Vstz = X Jisty Oz, y) —

— 37 Vstz = X [P(z, §(2)) & st §(@));
Repl,: Vstz sty D(z, y) > 37 Vsiz [O(z, F{z)) & st G ()]

Generalization to all nonstandard values leads to two more forms:

Repl,: (stX) Vize X Iy D(z, y) - 37 Vshae X (a2, j(a);
Repl ;: Vsix Ny O(z, y)— A7 Vsz D(z, §(2)).

Here @ is an arbitrary st-e-formula, internal or external, X is an arbitrary
standard set, 3!*y means: ‘“there is a unique standard y such that ... (and
maybe many nonstandard such sets y exist too)”.

Of course, “7 is a function and x € domain of 7 is assumed on the right-
hand sides, thus § is defined at all standard x in Repl;s and at all standard
x € X in Repl; 54 (at least). In fact the additional requirement that § is
defined at all x € X should not really strengthen Repl; ;4. Finally, the
additional term st #(x) is not necessary in Repl; because the value (x) is
standard provided ¢ and x € dom § are standard.

The following relations are easily provable in IST:

Repll———l

Repl;, —— Repl, —— Repl,
Repl; <————— Sep;

1.6. Choice.
Within ZFC the choice scheme

Che: Vze= X Jy @z, y)— 37 Vz = X Oz, j(z))

follows from the usual axiom of choice AC by replacement and separation
schemes. However, such a reasoning is impossible in IST if @ is external.
Hence it would be interesting to consider the following analogues of the five
forms of Repl given above, obtained by deleting the uniqueness on the left-
hand sides.

Che,: (st X) Vstz = X Ity O(a, y) > PG Ve = X O (2, §(z));
Che,: (st X) Vslz = X Ity O(z, y) —
— 37 Vstz = X [D(z, j(z)) & st F(z)];
Che,: Ve Iy D(z, y) — 37 Voiz [z, Ji(z) & st F(@);
Che,: (st X) Viz = X Jy Oz, y) > A7 Vstz = X D(z, §(2));
Che,: Vstz Jy O(z, y) — 37 Vstz D (z, §(2)).
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Evidently Chc; — Repl;, i = 1, 2, 3, 4, 5, and the chart as in 1.5 is valid
for these five variants of choice:

Che,

!

Chc; —> Che, —— Che,

———> Che,

In fact Che; — Repl; in IST, see 2.7 below.

1.7. Replacement and choice with bounded range.

It should be natural to modify Che; and Repl; by restricting the variable y to
some standard set Y. Modified forms of such a kind will have the letter B
(bounded) in front of the usual notation. For example,

BChe,: (st X, Y) Vilz = X Pty Y D(z, y) -
- 3tF Viz e X [§ ) =Y &Pz, 7 (2)],

where the variable y is bounded by a previously fixed standard set Y. The
same reformulation of “y-bounded” forms can be applied to all the hypotheses
Repl;, Che;. “Global” hypotheses are rather senseless in the “y-bounded”
form. So let us look at “local” forms. Nelson [28] proved BChe; in IST, see
2.3 below; thus BChc,, BRepl,, BRepl; also hold in IST. Only the case

i = 4 remains, that is, the extension principle of Lutz and Gose [23], Diener
and Stroyan [5] and others:

BChe,: (stX, V) Vsx e X Jyes Y Oz, y) -
—>3JF Velzr = X [§ (2) =€ Y & O(z, §())],

and BReply with 3!y € Y on the left-hand side.
It is easy to see that Repl; — BRepl, and Che, — BChc,.

1.8. Collection.
The scheme of collection

Coll: VX 3Y Vae X [Ty @z, y) > Iy = Y D(z, y)l

(there are several equivalent forms, see Chang and Keisler [3], Makkai [25];
we choose the most convenient for our use) is an easy consequence of
replacement in ZFC. Hence Coll remains true in IST for internal core
formulae ®. Conversely, Repl is an easy consequence of Coll+ Sep in ZFC
without Repl. Collection is often used implicitly in set-theoretic arguments. It
becomes important and explicitly involved in some modified theories (as the
Kelley —Morse theory of classes or the Kripke —Platek theory of admissible
sets).

Now we want to ‘“‘standardize” some (or all) variables X, Y, x, y as we
have done above in 1.3—1.5. As matter of fact, Coll is provable in IST for
any st-e-formula @ (see §2 below). We do not take into consideration some
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weaker forms. In fact every variant of Coll with 3Y and at least one of the
quantifiers V*X, V*x, 3%y is weaker than the ground form and may be
omitted.

Certainly every variant of type VX 3" is false (disprovable) in IST (we
choose @ to be x = y). Hence the unique reasonable combination for X and
Y (except the basic form, of course) is V*X 3*Y. Let us consider its
subvariants. The first of them is V*x 3%y, that is,

Coll;: VstX Ity Vstz = X [Isty D(z, y) > Py & Y @(z, y)l.

It appears that Coll, is equivalent to Repl; and Chc; in IST (see 2.7).
Subvariants Vx 3y and V*x 3y are false in IST (with the formula V*z (y ¢ 2).
The last subvariant Vx 3%y, that is,

Coll,: VstX Ity Vz = X [Tty D(a, y) - Iy = Y D(z, p)l,

is also disprovable. Indeed, let H be a finite (nonstandard) set containing all
standard sets (see Nelson [28] or 2.9 below for the existence of such a set in
IST). Now we take a surjection A : N onto A and consider the formula

rEN&[(sth(@)&y=h(z)) or (T|sth(z)&y = 0)

as ®(x, y). We clearly violate Coll, by taking X = N.

The evident necessity of some nonstandard set as the parameter in @ in our
argument forces us to a special form of Colly, namely Coll,(st ©). By
Colly(st ®) we denote Coll, restricted by the assumption that only standard
parameters are allowed in the core formula ®.

1.9. The uniqueness property.

The hypothesis we consider next is of a slightly different nature from those
discussed above. In general the property of uniqueness for some class K is as
follows: any set definable by a formula with parameters from K belongs to
K. Let K be the class S of all standard sets. Following Nelson [28], we write

Uniq: (st @) z D (z) > Vz (D (z) — st zl.

The uniqueness hypothesis says that for any st-e-formula ®(x) with standard
parameters, if only one x exists such that ®(x) holds, then this unique x must
be standard.

Clearly Uniq restricted by the assumption that ® is internal is an easy
consequence of the transfer principle T. The real problem appears for external
formulae. Note that T itself does not generalize to external formulae.

1.10. Comments.

After the selection made above the following list of hypotheses is formed for
further study:

Sep,, Repl; and Che;, i=1,2,3,4,5 BRepl,, BChe,,

3) {Coll, Coll,, Coll, (st ®), Unig.
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The main question is: whether they are true or false in IST. Only three
answers are possible for any hypothesis of the list:

a) The hypothesis we consider is true, that is, provable in IST for an
arbitrary internal or external core formula ®. Only Coll is involved in this
case.

b) The hypothesis is false, that is, disprovable in IST for some core
formula. In fact this case has already been eliminated.

¢) The undecidability case. Firstly, the hypothesis (for all @) is consistent
with IST (in other words, one cannot disprove it for any ®). Secondly, the
negation of some example (that is, for some formula @) is consistent with IST
too (in other words one cannot prove this example).

Some “fine structure” investigations are natural for the third case. We
may look for a type of “simple’” core formulae for which one can prove some
hypothesis of the list in IST, and for a slightly more “complicated” core
formula which generates an undecidable example of the hypothesis. Of course,
a certain notion of complexity of st-e-formulae must be given.

The second part of the introduction contains formulations of our main
results. We begin with the consistency (1.11) and the independence (1.12),
then turn to the collection hypothesis and truth definitions (1.13). We next
present some “fine structure” results (1.14), “hierarchical” investigations, and
some comments on the special role of bounded formulae (1.15). Finally we
introduce (1.16) bounded set theory BST as a modification of IST which
allows only those internal sets that are members of standard sets. BST makes
decidable all the hypotheses we consider. Many related problems remain
open; some of them are included in the exposition.

1.11. Consistency.

Let Cons T be the statement saying that the theory T is consistent. By ZFCI
we denote the theory ZFC plus the existence of a strongly inaccessible
cardinal.

Theorem 1A [Cons ZFCI]. The union of all the hypotheses of the list (3) from
1.10 is consistent with IST.

Theorem 1B [Cons ZFC). The union of Uniq, Seps, Repl;, and Che;,
i =2, 3,4,5 (but not 1!), BChcy, BReply is consistent with IST.

Theorem 1A is proved by the inner model method. In fact we show
(in IST) that V, is a model for Theorem 1A provided x is a standard strongly
inaccessible cardinal. (V, is the xth level of von Neumann set hierarchy.)
The proof of Theorem 1B is almost similar, but an additional logical trick is
involved.

Is it possible to prove Theorem 1A with only Cons ZFC assumed? The
answer is “no”’ because the following hypotheses are *“‘transcendentally” strong
over IST:

(4) Repl,, Che,, Coll;, Coll, (st @)
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(the first three of them are mutually equivalent in IST, see 2.7). The
following theorem shows the effect we have in mind.

Theorem 2. Let H be a hypothesis from the list (4). Then H — Cons ZFC in
IST.

Thus “IST + any hypothesis of the list (4)” is not equiconsistent with IST
by the second incompleteness theorem. However Theorem 2 is not really
surprising. It is easy to recognize that the hypotheses (4) are just axioms of
infinity (in some sense) for the class S of standard sets in IST. No other
hypothesis (3) possesses this property.

The inaccessibility assumption is perhaps too strong for proving
Theorem 1A.

Problem 1. Does Theorem 1A remain true when only Cons KMC is assumed?
KMC is the Kelley—Morse impredicative theory of classes, see Kelley [19],
Jansana [12], Chang and Keisler [3]. Is IST + (4) equiconsistent with KMC?

As a matter of fact, KMC is interpretable in IST + Repl; + Seps. In the
interpretation we have constructed Sep; ensures comprehension (or class
formation) while Repl; guarantees the replacement axiom.

We note that Che;, Ches, Colly(st ®), Uniq are maximally strong in the
list (3).

Problem 2. Prove that the four hypotheses just mentioned are mutually
independent over IST.

Problem 3. Show that Chc; is not provable in IST + Repl; for i = 2, 3, 4, 5.
(1t fails for i = 1.)

1.12. Independence.
This word means the consistency of the negation.

Theorem 3 [Cons ZFC]. All the hypotheses of the list (3) except maybe Uniq
are independent of IST.

Problem 4. Prove that Uniq is independent of IST.

The independence of BChc, is especially important. Theorem 3 shows that
in general one cannot freely use the extension principle for arbitrary core
formulae. Nevertheless, Nelson [28] has shown that BChe, holds in IST for
all ext-bounded (see below) core formulae. In fact this result justifies all the
known applications of BChc,.

To prove Theorem 3 we use the adequate-like ultralimit construction of
Nelson [28]. However, our ultralimit differs in an essential way from Nelson’s.
Namely we use only definable functions to create the ultralimit, as well as a
special choice of the ground ZFC model.
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1.13. Collection and truth definitions.
The main difference between the collection hypothesis Coll on the one hand
and Sep, Repl and Chce on the other is the provability of the first:

Theorem 4 [IST). Coll holds for every internal or external core formula.
One can easily infer the following:

Corollary. There is no st-e-formula 1(x) with only one free variable x such that
for any internal formula ®(x,, ..., x,) the following is provable in IST:

Vi, ... Vz, @y, ..., z,) 1 (D, ..., z))].

In other words, the truth of internal formulae (with parameters allowed) cannot
be expressed in IST by a st-e-formula.

By "®' we denote the finite sequence of (coded) logical symbols and sets
(used as parameters) by which @ is written down.

In fact the nonstandardness of parameters plays a key role in the corollary.
Otherwise we obtain the opposite result:

Theorem 5. There is an external formula 1(x) such that for each internal
Jormula ®(x,, ..., x,) the following holds in IST:

Vet .. VS, (O, .00y 2) < T (@(2y, - . o0 23)]

Thus the truth of internal formulae with standard parameters can be
expressed in IST. The result remains true for the wider class of bounded
parameters.

Theorem 5 is involved in the proof of Theorem 3. In addition, it throws
some light on the question about which models of ZFC can be extended to a
model of IST. Indeed, if M is a model of ZFC and the standard part of a
model *M of IST, then the set

Ty = {*®" @ is an e-sentence (without parameters) true in M}

belongs to M according to Theorem 5 (and the standardization). So
“Tra € M” is a necessary condition for M to be extendable to a model of
IST. We recall that being of the form V, with strongly inaccessible % is a
sufficient condition.

Problem 5. Find reasonable necessary and sufficient conditions for an e-model
of ZFC to be extendable to a model of IST. We suppose that being the “‘set
part” of a model of KMC (or maybe some piece of KMC) can serve as the
condition we look for.

1.14, Fine structure results.
A rather interesting problem concerning Theorem 3 is to find an extremely
simple core formula giving the unprovable example. But what should be the
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measure of simplicity? Several different approaches to this problem, by taking
into a consideration the number and the positions of quantifiers in a formula,
are generally possible. A criterion of choosing the best must be coordinated
with the IST axioms. We choose the definition grounded mainly on the
external quantifiers 3", V™.

Firstly we define the class or ext-prenex formulae, that is, formulae of type

t t L
Qi le: Zg. . . szl'nly (%1, Tay + « +y Zn),

where ¥ is an internal formula and each Q is 3 or V. This class of formulae
splits into the hierarchy of classes £ and II3, defined as usual:

() Iz, V%, I, . . . V @) zn (21, 2, T3y - « -5 Zn),
(Hsff) VSt‘Zl 3it'z:2 VStZ.'i D 3 (V)Stxnw(xlv Zgy Lgq + - -5 xn)’

¥ is an internal formula. (We learned the notation X%, IT¥' from van den
Berg [2].) The simplest cases of non-ext-prenex formulae are 311§ and V¥,
that is, of the form

IzV*y I ¥ and Vz 3y V2 ¥

respectively with an internal V.

This piece of hierarchy is rich enough for the following two “fine
structure” theorems to be formulated. These theorems almost cover the case
of core formulae with standard parameters.

Theorem 6 [IST]. (a) The hypotheses Uniq and Seps, Repl; 2345, Che; s, Coll;,
Coll,(st @), BChey, BReply are true for ext-prenex core formulae ® with
standard parameters.

(b) Chey holds for %' core formulae with standard parameters.

(c) Ches holds for TIY formulae (with arbitrary parameters).

(There is nothing reasonable for Chc; in this series.)

Theorem 77 [Cons ZFC). (a) Any hypothesis from the list Seps, Repl; 2345,
Che, 5,3, Coll;, Colly(st ®) is non-provable in IST for some “parameter-free”’
1Y core formula and for some “parameter-free” VE§ core formula.

(b) Che, and Ches are non-provable in IST for some “parameter-free’ I1%
core formula.

“Parameter-free” formulae are those that do not contain any parameter
(see 1.1).

An essential gap remains between the results of Theorems 6 and 7 as
regards the hypotheses Che; and Ches. Namely, assuming that Theorem 6 is
the best possible, the required counterexamples might be given by some
internal formula ® (for Chcs) and some Zf' formula ® (for Ches), both having
no parameters, but this is somewhat stronger than Theorem 7 guarantees.
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Problem 6. Show that Che; is non-provable in IST for some internal core
formula without parameters.

It is not hard to realize that the model of ZFC chosen to be the ground
model for an IST-model where Che; fails in the manner just mentioned must
possess some special properties—for example, the non-existence of a definable
well-order.

Certainly Theorem 7 is a more precise form of Theorem 3 with the
exception of the hypotheses BRepl, and BChe,4 of replacement and choice with
bounded range. The case of those two hypotheses is covered by the following
theorem:

Theorem 8 [Cons ZFC]. BChc, is non-provable in IST for some I1§ core
formula. BReply is non-provable in IST for some core formulae of types 315
and VZ.

Unfortunately all the non-provable examples of BReply and BChc, we
know need a nonstandard parameter in the core formula.

Problem 7. Show that BReply; and BChcy are non-provable for a ‘“‘parameter-
free” core formula. (All non-provable instances of BReply, and BChc, that we
know need a nonstandard parameter.)

Problem 8. Does there exist a “parameter-free” st-e-formula ®(k, n) such that
following is consistent with IST: @ defines a 1—1 map of °N (= all standard
integers) onto a cofinal part of N?

One more open question is connected with the uniqueness property
(Problem 3). The following theorem gives a partial answer.

Theorem 9 [IST). For any st-e-formula ®(x) with standard parameters, if there
is a unique x such that ®(x) holds, then this unique x belongs to some standard
set.

Elements of standard sets will be called bounded sets below.

We note that Nelson [28], [29] has shown that Uniq is provable for
%-formulae ® and Che, is provable for Z%-formulae of special kind (the
external quantifier 3* must be bounded by some standard set).

Problem 9. Study the case of core formulae with nonstandard parameters.

At least one part of Theorem 7 does not remain true when nonstandard
parameters are allowed: Repl; is not provable in IST for some internal
formula ® with nonstandard parameters.

1.15. Hierarchy.

The hierarchy theorem for a given X/II hierarchy of formulae claims that
every class of the hierarchy contains a formula that is not equivalent (in some
sense) to any formula of the dual class at the same level. For the hierarchy
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Z/TIY the question is whether there is a I formula that is not equivalent (in
IST) to any II% formula, and conversely.

The natural answer “yes” is easy for n = 1. Indeed the formula st x of
class I} (for st x « 3%z (x = z)) is not equivalent to any II}' formula. The
following theorem ensures the answer “‘yes” for n = 2 too; 1ts proof is
essentially more complicated.

Theorem 10. The % formula
O(X) =ger 3"a V"5 ((a, b) € X)
is not equivalent in IST to any TI% formula ¥Y(X).
The author has no results for » > 3.
Problem 10. Prove the hierarchy theorem for n > 3.

Problem 11. Define a reasonable hierarchy involving all external formulae
(not necessarily ext-prenex).

One can significantly simplify some questions concerning the hierarchy by
considering those st-e-formulae that contain the standardness predicate st only
through the bounded external quantifiers 3%z € Z and V*z € Z, where Z is a
standard set. Formulae of such a kind are called ext-bounded below.

Nelson [28], [29] has shown that his class of formulae is, logically speaking,
rather simple. Indeed, every ext-bounded formula is equivalent to some
ext-bounded X% formula as well as to some ext-bounded II% formula.
Hence the hierarchy of ext-bounded formulae contains only four classes:
internal, Y, II{* and those that are I as well as II§ up to the equivalence in
IST. According to Theorem 10 at least one more level is adjoined by
non-ext-bounded formulae.

Thus a large part of Theorem 6 is automatically applicable to ext-bounded
formulae paying no regard to the number of quantifiers. Let us recall a result
that does not follow directly from Theorem 6: Chc, is true in IST for any
ext-bounded core formula. This is the saturation theorem of Nelson [29].

Nevertheless one can arrange matters so that every formula will be
ext-bounded. The way is to construct something like a type-theoretic
superstructure over the ZFC/IST pair. This theory, the super-IST, is organized
so that every set is placed into some level n, n € N. The level 0 is the usual
IST universe of (standard and nonstandard) sets, while every (internal)
collection of sets of level n is a set of level n+ 1. For any » the set V, of all
sets of level n is a set of level n+1. Moreover, V, is standard according to
transfer. Finally, every variable has its own level; therefore every quantifier is
bounded by an appropriate standard set V,. See Nelson [28] for the details.
(Our exposition is somewhat different from Nelson’s.) Super-IST is much
stronger than IST itself, of course.
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1.16. Bounded set theory.

Theorems 1 and 3 show that internal set theory IST is strongly incomplete as
regards the hypotheses we discuss. We claim that a reason for the
incompleteness is connected with the vague behaviour of some very large sets
that do not belong to any standard set, or more exactly with insufficient
regulation of their behaviour by the IST axioms.

To justify this claim we modify IST in order to exclude “bad” sets. The
modified theory is the bounded set theory BST, see [16]. We define BST as
the extension of ZFC by transfer T, standardization S, the weakened form of
idealization (bounded idealization)

BI: (st A, int @) Vstind C 4, J2 Va = 4 D(z, a) <«
— Jzx Vstaes 4, (a2, a)
and the bounded sets axiom
B: Vz X (z = X).

Certainly B contradicts the full idealization I, therefore I really must be
weakened.

The BST has an inner model in IST. We say that a set x is bounded if
and only if x € X for some standard set X. Thus B claims that every set is
bounded. (We chose the name “bounded” in {16] bearing in mind the notion
of bounded quantifier, which is deeply rooted in logic.) Let us define

B ={z = V:z is bounded} = {zr = V: %X (z & X)}

(the class of all bounded sets in IST). Thus S & B € V; in fact both
inclusions are strict in IST.

Theorem 11 [IST). B is a model of BST.

Thus the theories ZFC, BST, IST are equiconsistent.

Certainly the global forms of the hypotheses we consider, that is, Seps,
Repl; s, and Chcs s, are senseless in BST since BST does not allow a set
containing all the standard sets. Local forms have the affirmative solution:

Theorem 12 [BST]. The hypotheses
Repl, , ,, Che,,,, Coll, Coll;, Coll, (st @) and Uniq

hold for any internal or external core formula ®.

One can add the “y-bounded” forms BRepl; ;4 and BChe; 4 to the last
theorem because each of them is a consequence of the corresponding Repl; or
Che; in BST as well as in IST.

The following theorem serves as a key technical tool in proofs of the two
preceding theorems, as well as discovering one more difference between IST
and BST (compare with Theorem 10!).
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Theorem 13. Given a ‘‘parameter-free’’ st-e-formula ®(x,, ..., x,) with only
X1, .. Xn @5 free variables, there is a % Jormula o(xy, ..., x,) of the same kind
such that

Vz,...Vz, @z, ..., 25) <> (24 « -+ Tl
is provable in BST.

Theorem 13 together with Theorems 11 and partially 12 is included in
Kanovei [16].

Bounded sets resemble standard sets in some respects. For example,
Theorem 5 remains true for bounded parameters as well.

Problem 12. Prove Theorems 6 and 10 for core formulae with bounded
parameters.

Problem 13. Find a reasonable hypothesis similar to those we consider that is
undecidable in BST.

1.17. The guide for exposition of the proofs.
The main aim of our paper is to prove Theorems 1A, B to 13.

Section 2 contains some preliminary results, that is, several more or less
well-known facts which are extensively used throughout the text. Among them
we present two theorems of Nelson [28] concerning uniqueness and Che,4 for
=% core formulae.

Section 3 is devoted to the key technical result, namely Theorem 3.1, which
allows us to bound external quantifiers of ext-prenex formulae, hence serves as
a cornerstone in our proofs of Theorems 1A, 1B, 6, 9, 12. As the first
application of that theorem, we present the proof of Theorem 6 in §3.

A second application will be the proof of Theorems 1A and 1B in §4,
arranged by a careful investigation of inner models of type V,. A third
application, that is, Theorem 12, is included in §5, where we also present
proofs of Theorems 11 and 13; all of them are connected with our theory
BST.

Section 6 presents the proof of the hierarchy theorem for second level
(Theorem 10).

Investigations on the truth definability of internal formulae (Theorem 5 and
Theorem 2 as an application) are placed in §7.

The main result of §8 is Theorem 4 about the full collection Coll in IST.
Section 8 also contains proofs of Theorem 9 and the corollary mentioned in
1.13.

Theorem 3 (the independence theorem) will be proved in §9, together with
Theorems 7 and 8.

Finally the last §10 explains how the idea of “‘externalization’ might lead
to some new and (so the author hopes) interesting problems.
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§2. Basic internal set theory

A special feature as well as the power of IST is that the postulates upon
which Nelson constructed IST were not connected with ZFC or any other
standard theory. Rather their action may be applied to any theory of set-
theoretic nature. Nevertheless the ground theory has to be strong enough to
discover all the possibilities of nonstandard methods.

The theory BIST (that is, basic IST) is just sufficiently strong to prove the
most useful (for our aims) classical theorems of nonstandard mathematics and
is sufficiently weak to be the common part of the mutually contradicting IST
and BST. It contains:

1) all the axioms of ZFC,

2) transfer T and standardization S (usual forms, see 1.1);

3) bounded idealization BI as in 1.16.

Note that all the results of this section (except maybe 2.7) are more or less
known from the works of Nelson [28], [29], and some others. However, we
present them with proofs instead of making references, since the original forms
do not cover all the cases we need. The additional reason is that the author
has tried to obtain a self-contained exposition.

All the following theorems are proved in BIST except additional assertions
in 2.9—2.12, where the full idealization is assumed. Theorems are grouped
according to what additional principle (that is, BI, S or T) plays the key role
in the proof. We begin with transfer.

2.1. Theorem [BIST). Let ®(x) be an internal formula with standard
parameters. If there is a unique x such that ®(x) holds, then this unique x is
standard.

The proof is evident: use transfer. []

Let us recall a model-theoretic definition. A model M is called an
elementary extension of a submodel M’ = M (and M’ is called an elemeniary
submodel of M) if every statement (of some fixed language) true in M’
remains true in M. Thus the following theorem claims that the universe V of
all (internal) sets is an elementary extension of the class S of all standard sets
with respect to internal formulae with standard parameters.

2.2, Theorem [BIST]. Let ® be an internal statement with standard
parameters. Let @™ be the result of replacing every quantifier 3, V in ® by I*,
V* respectively. Then ® « ®*.

The proof is carried out by induction on the complexity of ®. Transfer is
used through the induction step 3. (J

Of course, what @ says is the truth of ® within 5.
Now let us turn to standardization.
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2.3. Theorem [BIST). Let ®(x, y) be a st-e-formula (internal or external).
For any pair of standard X, Y the following holds

Vg X Ity Y O, p) « I X - Y Via s X O(a, 7(2)).
Y

Proof. The direction «. If a function § and a set x € dom § are standard,
then the value §(x) is standard too by 2.1.
The direction —. Using S, we obtain a standard W such that

Vtz = X Yoty =Y Ka, y) = W - O(x, )}

Then V*x € X 3"y € Y ({x, y) € W) by the left-hand side, hence

Vxe X3y e Y ((x, y) € W) by transfer. The usual axiom of choice gives a
function y : X — Y such that (x, §i(x)) € W for each x € X. We may assume
that § is standard (apply transfer again). This ends the proof. (]

Let us recall that ext-bounded formulae are those in which the standardness
predicate st occurs only through the bounded external quantifiers 3*'z € Z,
V*'z € Z, Z is a standard set. Theorem 2.3 is involved in Nelson’s reduction
algorithm. This powerful syntactic tool is fairly strong to convert any
ext-bounded formula to an ext-bounded formula of type £¥ or II%, that is, of
the form

Fac AV'be BOorVaecdFbe B
respectively, where @ is internal and A4, B are standard.

2.4, Theorem [BIST]. Let ®(xy, ..., X,) be an ext-bounded formula with
standard parameters and only X, ..., X, free. There is an ext-bounded T3
Sormula ¥(x,, ..., x,) (also having only standard parameters) such that the
Sfollowing holds:

Vir,...Va, [D(xy, . - ., z,) & ¥z, - - ., z)].

To be more precise, we claim the following. Let ®(x) be a ‘‘parameter-
free” st-e-formula with the list x = xy, ..., x, of free variables. Let
Q3'z1, ..., Qiz; be the list of all external quantifiers contained in ®. Let
®'(x, Z, ..., Zy) denote the formula obtained by replacing each Q'z; by
Q!z; € Z;. There is an internal “parameter-free” formula ¢(x, a, b) such that

VStZ,. .. VstZ, Ist4 4B Vx [D'(x, Zy, . . ., Zy) <
< Pta = 4 Vb = B o(x, a, b)].

Proof. The proof is carried out by induction on the complexity (the number
of logical signs) of formulac. Assume that ® is composed by ], &, 3 and 3*
only. (It is evident that other logical functors can be expressed using the four
mentioned.)

The step & is evident.
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The step ~]. We need an ext-bounded X3 formula ®(x) that is equivalent to
a I8 formula V*a € 4 3"b € B @(x, a, b) taken as ®(x) (where ¢ is internal,
A and B are standard). We denote by W(x) the formula
IfeF Va4 ¢(x a,f(a), where F=4B={f: 4~ B

Clearly F is standard by 2.1. The required equivalence ®(x) « ¥(x) is
guaranteed by Theorem 2.3.

The step 3* is evident since one can collapse two quantifiers of the form
3® into one 3* using the pair function.

Finally the step 3. We search for an ext-bounded X formula W(x) that is
equivalent to the following formula ®(x):

Jy e = 4 Vs = B ¢(x, y, a, b),
¢ is internal, 4 and B are standard. The following formula is as required:
¥(X)=qef Ila =4 VStB' = P Ay Vb &= B’ o¢(x, ¥, a, b),

where P = {B’ < B : B’ is finite} is standard together with B. To see the
equivalence ® — ‘¥, apply BI. ]

2.5. Theorem (external transfinite induction) [BIST]. Let ®(x) be a
st-e-formula and suppose that ®() holds for some standard ordinal o. Then
there is a least standard o such that ®(a) holds.

Proof. Let a standard ap € Ord be such that ®(ag) holds. (Ord is the class of
all ordinals, standard together with nonstandard.) By standardization there is
a standard set 4 £ Ord such that

Vst < ap [a & 4 « D(a)l.

Then A is non-empty, since a9 € A. We take the least member o of 4; a is
standard by 2.1—therefore ®(a) holds. [

2.6. Corollary [BIST]. Let @(n) be a st-e-formula such that
9(0) & Vin & Nlg(n) - ¢(n + 1)).

Then ¢(n) holds for all standard integers n.

Proof. Apply 2.5 to the formula 3k < n " jo(k). O

2.7, Theorem [BIST]. Repl; «— Che; — Coll;.

Proof. Firstly we recall the definitions.
Repl: (st X) Vz = X sty D(z, y) - FF Voz = X D(z, §(x));
Chey: (st X) Vstz = X Ity D(x, y) » T Vz = X D(z, T(@));
Coll,: VX Y Voiz = X [Ty O, y) > Py Y O, yl.

Evidently Che; — Repl;. Further, Che; easily follows from Coll;, using
fheorem 2.3.
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The claim Repl; — Coll; is slightly more complicated. By ZFC replacement
we can build up the von Neumann hierarchy of classes V,, o € Ord. We
recall that

Vo=, Vauu =P (Vo) = (X: X TV}, V, = UaarVa

for all limit ordinals A, see Jech [13]. Each set x is a member of some V, by
the replacement. We denote by a(x) the least « € Ord such that x € V,. It
follows from Theorem 2.1 that st x — st a(x).

Now we consider a standard X and a st-e-formula ®(x, y) and try to derive
Coll; from Repl;. For any x, we denote by v, the least ordinal among the
ordinals a(y), where y is standard and ®(x, y) holds, if such standard sets y
exist; otherwise let v, = 0. (The definition is correct by Theorem 2.5.) The
equality Y = v, can be expressed by a certain st-e-formula. Using Repl;, we
obtain a standard function f such that vy, = f(x) for all standard x € X. The
set

Y = UxEX,f(x)eOrdvf(x)
is standard (Theorem 2.1 is applied again), hence Coll; really holds. [

2.8. Theorem [BIST). If X is standard finite, then all x € X and all Y < X
are standard.

Proof. The number n of elements of X is a standard integer by Theorem 2.1.
Now apply Corollary 2.6 to the formula

VX [X has < nmembers —Vze= X (stz) & VY = X (st Y)l.
This ends the proof. (J

Now we turn to several consequences of idealization. All of them will be
presented in two forms: the first form is based on BIST only, while the
second form needs the full idealization I (this is displayed by the “full I” in
brackets), hence it is proved in IST.

2.9, Theorem [BIST). Let X be a standard set. Then there is a finite set H
such that °X < H.
(full Y) there is a finite set H such that S < H.

We recall that S is the class of all standard sets, while °X is the (external)
collection of all standard x € X, thus °X = X N S.

Proof. We apply the equivalence
V/sttin X’ X Jing Vo= X’ (IE = H) s Jiing Vsig = X (.’L‘ = H)

(BI for the formula “x € H & H is finite”). The left-hand side evidently holds
(let H = X’). So the right-hand side holds as well.
The full I case goes similarly. [J
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The following theorem extends idealization to a wider class of formulae;
sometimes this is useful as a technical tool.

2.10. Theorem [BIST]. BI holds for all ext-bounded TIY formulae ®.
(full 1) I kolds for all I formulae ®.

Proof (the full I variant). All we need to prove is
Vstingd Jr Va = A Vs'z @(z, a, 2) «— Jz Vsta V52 ¢z, a, 2)

for an internal @. The implication « follows from Theorem 2.8. Let us
prove the opposite direction. Changing the positions of ¢ and z and applying
1 to the block 3x V*z, we convert the left-hand side to the form

vstiing VstinZ Jz Va = A Vz = 7 olz, a, 2),

and then to V"W 3Ix Vw e W {(x, w), where y(x, w) is the internal formula
3a Az [w = (a, 2) & o(x, a, 2)].

Hence Ix V*'w {(x, w) holds by I. We turn back again to ¢ and obtain
the right-hand side. (]

We finish this section with two theorems related more closely to the
hypotheses we are studying.

2.11. Theorem (the uniqueness theorem) [BIST]. Let ®(x) be an ext-bounded
I3 formula with standard parameters. If there is unique x such that ®(x) holds,
then this unique x is standard.

(full I) The same is true for all Z% formulae, not necessarily ext-bounded.

Proof. Let ®(x) be the formula 3*%a € 4 V*'6 € B ¢(x, a, b), where o is
internal, 4 and B are standard. For some standard a € 4 the only set x
satisfying Vb € B ¢(x, a, b) is the x fixed above. Hence

Ve [Vstb = B o(§, a, b) ~ § = zl,

that is, V€ 3®b € B [¢(¢, a, b) » £ = x]. Using BI, we obtain a standard
finite set B = B such that

Vi IVbe B ¢, a, b) > E = z.

We note that all elements of the set B’ are standard by Theorem 2.8. Thus x
is the unique set satisfying the internal formula Vb € B’ ¢(x, a, #) which has
only standard parameters. So x is standard (Theorem 2.1 is applied).

The full I case proceeds similarly. [

2.12. Theorem [BIST]. Chc, holds for all ext-bounded T% core formulae. Chcs
holds for all ext-bounded TI{ core formulae.

(full I) Chcy holds for all £§ core formulae with bounded external
quantifier 3. Ches holds for all I3 core formulae.
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Proof. We begin with
Che;: V2 Jy @(z, y) — 37 Vs'z Dz, §(z)),

where ®(x, y) is a IT§' formula V*b € B @(x, y, b), B is standard, ¢ is
internal. The left-hand side converts to Y*x 3y V*'6 € B @(x, y, b), hence

vstfian Vxe X’ E|y Vstb € B (P(x. Y, b)

by Theorem 2.8. Now the key point. If X’ is a standard finite set, then it
follows from 2.6 by induction on the number of elements of X’ that

Vx e X' Ay Y(x, y) = 37 Vx € X' Y(x, §(x))
for all st-e-formulae §. Thus
VR 35 Vx e X' Vb € B o(x, §(x), b))

Finally we apply Theorem 2.10 to the ext-bounded formula [...] and obtain
the right-hand side of Chcs.
Now we consider

Che;: Vi'z = X Jy O(z, y) - 37 Vsiz & X Oz, §(z)),

where @ is 3%a € 4 ¢(x, y, @), 4 is a standard set, @ is an ext-bounded I}
formula. Changing the places of y and a on the left-hand side and using 2.3,
we obtain a standard function @ : X — 4 such that V*x € X Iy o(x, y, @(x))
holds.

Finally we apply the Ches just derived to the formula ¢ and find a
function § such that V*x € X o(x, #(x), d(x)). The right-hand side of Chey
holds, since @(x) is standard provided x and & are standard.

The “full I"” case does not differ essentially. (J

§3. External quantifiers limitation theorem

This section is devoted to a theorem which says that one can bound
external quantifiers of an ext-prenex formula by standard sets. So ext-
prenex formulae are transformable into ext-bounded and then into % by
Theorem 2.4. This extends the results of Theorems 2.11, 2.12 to more general
cases than those theorems directly provide. As the first application we prove
Theorems 6 and 10 at the end of this section. Two additional applications
will appear in §§4 and 5.

To begin with we define

PHX) = P(P(P(...PX)...) (ntimes P); P(X) = {: Y < X).

If 8 = card X (the cardinality of X), then let exp™(8) = card 2%(X); so
exp’(®) = 0 and exp'(0) = 2°

We recall that bounded sets are those that are members of standard sets.
We define the order of a bounded set x to be the least (standard) cardinal %
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such that x is a member of some standard set X of cardinality x. For
example, all integers (standard and nonstandard) are bounded of order N,.

3.1. Theorem [BIST]. Let @(xy, ..., Xon, 21, ..., Zn) be an internal formula with
only x1, ..., Xms Z1, ..., Zn free and with bounded parameters, and let Qy, ..., Q,
be a string of quantifiers ¥, 3. Let & be max of orders of nonstandard
parameters of @, 6 = max {0/, card X'}, and . = exp"0.

Then for every standard X there are standard sets Z,, ..., Z,, each of
cardinality <\, such that for all k, 0 < k < n, and all standard z; € Z,;,
1 < i < k, and all (not necessarily standard) x,, ..., x,, € X the following
holds:

st st
Qk"'lzk""l ¢ ann(p(zl9 ooy 2y Zyaqy v v vy Zpy Tyy oo oe ey xm) hd
st st
<> Qri12k0s E Zyar - - - Quzn E Zo@(21, - -+, 2y Zks1r -+ +5 20y T1y -+ o2 Tm)e

Proof. Let us write x instead of x, ..., x,,; X € X" We may suppose that ¢
contains no nonstandard parameters, for if not, we replace each nonstandard
parameter (hence bounded of order 0) by a free variable ranging over a set of
cardinality <6, add these new variables to the list x, and add corresponding
sets of cardinality <0 to X. Thus assume that @ contains only standard
parameters.

Now we define for arbitrary z,, ..., z,

Y[zlv A | zﬂ] - {X E Xm: q)(zlv A | zn’ X)})
and then for all k, 1 € k < n, and for all z;, ..., z, define
Yiz, -zl = (Ylzy, - - o) 25, Zpnll 200 € V)

The definition is correct: each Y|z, ..., zx] is a “legal” set (in the universe V),
since Y[zy, ..., z) € 2" 75&x™).
Finally we put Y[ ] = {Y([z1]: z1 e V} fork = 0; Y[] & 2"(X™).

Assertion 1. There are standard sets Z,, ..., Z,, each of cardinality <A\, such
that the following holds:

B)forallk,0 < k <nmallz;e Z;,1 < i <k,
Vg Aok & Zy Y3y, - - 26, Zxn) = Yz, - . o, 2y, 254d)-

The construction of Z; proceeds by induction on k. To define Z; we
notice that card Y[] < A, since Y[] € #"(X™). Foraset Ye Y[ ] we
denote by ay the least ordinal « such that ¥ = Y([z;] for some z;, € V,. By
ZEC replacement there is a function f: ¥{ ] — Ord such that ay = f(Y) for
all Y e Y[]. Hence by ZFC axiom of choice there is a function { : Y[] - V
such that {(Y) € Vyyyand ¥ = Y[{(Y)] for all Y e ¥Y[]. Now let
Zy,={{¥): YeY[]}
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To construct Z,.; (provided that the sets Z;, ..., Z; each of cardinality
<A are already defined) we consider the set

W={<Zl,. o oy 2y, Y[Zl,.- .y 2% Zk+1]>: ZIEZI&' . .&Zkezk&zk.u = A" }.

Clearly W = Z;x ... x Zix 2" ¥(X™), therefore W has cardinality <A. As
above there is a function { : W — V such that

Yiz, .. 2, C(2yy -y 2y V=Y
whenever z; € Z;, 1 < i € k,and Y e Y[zy, ..., zx]. We define
Zk+l = {C(zlv - - .y 2Zp, Y): <Zl, o .0y B, Y> = W}-

Finally we note that the condition (5) is expressible by an internal formula
with standard parameters because ¢ is a formula of such a kind. So, by
transfer, the sets Z; may be chosen to be standard. This completes the proof
of the claim. [

What is more, transfer again allows us to rewrite the condition (5) as
follows:

(5*Y for all k, 0 < k < n, and all standard z; € Z;, 1 < i < k,

Vstziiy 3“7-1:4.1 = Zk+l (Y[zh . eer 2y, Zk+1] =Yz, ..., 2, zkal).

Now we turn directly to the proof of Theorem 3.1. The sets Z; are already
constructed, so only the equivalence of Theorem 3.1 remains to be proved.
Let us denote its left-hand side and right-hand side by Z(z;, ..., zx, X) and
Ri(z1, .- Zk, X) 1espectively, and consider an auxiliary formula

QY E Yy QY1 EV - . BV EY . xEY).
We denote this formula by Wi(Y%, Xx).

Assertion 2. Ri(z4, ..., 2k, X) & Li(z1, oy 2k, X) = Yi(Y[z1, -.., 2], X) for all
X € X™ and all standard z; € Z;, 1 < i < k.

Proof. We proceed by reverse induction on k.
The case k = n (the base of induction). In the absence of quantifiers all is
clear:

ﬁn(zly o e ey zn7 X) «> $n (Zl, ¢ . ey Zn, X)H(P(Zlv LR R zlh x) >

oxeEYiz, oo 2]l oY, Yz, ..., 20, X).

The step from k+1 to k; 1 < k < n. Suppose that QF,; is 3*, and put
Yk = Y[Zl, seny Zk].

We prove that ¥y — W;. Letstandard z; . ; besuchthat Ly ((zy, ..., Zx, Zk+ 1, X)
holds. Then Wi+ 1(Yk+1, x) holds too for Yz = Y[z1, ..., 2k, Zk+1] (by the
induction hypothesis). We note that Y;,; € Y, and Y., is standard because
Z1, ..y Zks 2k+1 are standard. Therefore Wi(¥Y%, X) is true.



26 V.G. Kanovei

We prove that Wy — #;. Let standard Yi,, € ¥; be such that
Wi +1(Ye+1, X) holds. It follows from the definition of Y by transfer that
there is a standard set z;.; such that Yz+1 = Y[z1, ..., 2k, Zx+1). What is
more, one may choose such a standard z;.; as a member of Z,,; this is
guaranteed by (5*). Thus ®+1(z1, ..., 2k, Zxk+1, X) by the induction
hypothesis. Therefore #i(z), ..., zx, X) holds too because zx+1 € Zg+1.

The assertion & — ¥y is evident.

The case QF,; is V* does not differ from the one we have just considered.

This ends the proof of Theorem 3.1. (J

3.2. Corollary [BIST]. Let X be a standard set. Suppose that ®(x, y) is an
ext-prenex formula with bounded parameters and fewer than n external
quantifiers. Let ©' be max of orders of all the nonstandard parameters of

®, 0 = max {0, card X'}, and A = exp"®. Then there is a standard set Y of
cardinality <A such that

Ve X [ty Oz, y) > Ty =Y Oz, y).
Proof. Assume that @ takes the form

st
Q;tzz Q;tzs L ann ‘P(% %2y 23y .« « - %p, .’l:),

@ is internal, and every quantifier Q' is 3* or V*. It will be convenient to
rename the variable y by z;. We define Qf' as 3*'. Applying Theorem 3.12
for k = 0 (to bound all quantifiers) and then for ¥ = 1 (to re-bound all
quantifiers except Q;) we obtain the required set ¥ = Z;. [J

3.3. Proof of Theorem 6. Part (a) asserts that Uniq, Repl; 2345, Chep,
BReply, BChey, Coll; and Collx(st @) are true in IST for ext-prenex core
formulae with standard parameters.

Colly(st @) follows immediately from Corollary 3.2. Further Coll; follows
from Coll,(st ®) provided only standard parameters are allowed. Hence Chc,
and Repl; hold as well by Theorem 2.7. Of course, Chec, follows from Che,
and the same is true for Repl. Finally Repl; 4 follow from Repls and BReply
from BChcy. So the only things to prove are Uniq, Repls and BChc,.

To prove Uniq, let ®@(x) be an ext-prenex formula with standard parameters
and suppose that there is a unique x such that ®(x) holds. Applying
Theorem 9 (which will be proved later in §6), we conclude that x is bounded.
Hence x is a member of a standard set X. We may assume that @ is a %
formula (otherwise use 3.1 and 2.4). The result follows from Theorem 2.11.

We verify Repls for ext-prenex @ with standard parameters:

Repl;: Vstz Jly O(z, y) — 7 V'z O(z, §(x)).

It follows from the Uniq just proved that the unique y such that ®(x, y) holds
is standard whenever x is standard. Hence V®*x 3!*y ®(x, y) follows from the
left-hand side of Repls. We denote by ¥ the (internal) formula obtained from
® by deleting the “st” superscript from all quantifiers. Then ®(x,y) — ¥(x, »)
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for all standard x, y by transfer and ext-prenexity of ®. One can derive
successively from the left-hand side of Repls the next three assertions:

(6) Vstz Ity ¥(z, y); V'z Iy Yz, y); Vz Iy ¥z, y)-

There is a set H such that § & H (see 2.9). Then a function § exists such

that §(x) is defined and ¥(x, #(x)) holds for all x € H. Comparing the first

and the second assertions, we see that §(x) is standard for all standard x.

Hence we may go back again to ® and obtain the right-hand side of Repls.
Finally we consider

BChe,: st X, V) Vz = X JyEY Dz, y)—

— 37 Vsiz = X [D(z, §) & @) Y],
where @ is an ext-prenex formula with standard parameters. Note that the
variables x and y have standard domains X and Y. Thus one can convert @

to X% form by applying 3.1 and 2.4. Then we use 2.12.
(b) We are going to prove

€Che,: (st X) Vsz = X Jy O(z, ) »> 37 Vsiz = X D(z, 7 (2),

where ®(x, y) is 3*%a V*b ¢(x, y, a, b), @ is an internal formula with standard
parameters. Changing the places of the variables y and a on the left-hand
side and using idealization, we convert the left-hand side of Chey to the form

Vstz = X I [VstnB Jy Vb = B oz, y, a, b).

Note that the expression in square brackets is ext-prenex. Thus by
Corollary 3.2 there is a standard set 4 such that

Viz = X Ista = 4 [VsHinB Jy Vb= B ¢ (z, y, a, b))

holds. Thus V*x € X 3y 3*a € 4 V*b o(x, y, a, b). Here the variable a
ranges over a standard set. An appeal to Theorem 2.12 (I) completes the
proof.

Part (c) of Theorem 6 has already been proved in §2. [

§4. Consistency

This section contains proofs of Theorems 1A, 1B. All we need is the
following “‘inner model” theorem:

4.1, Theorem [IST). Let % be a standard infinite cardinal such that V, is a
model of ZFC. Then V, is a model of IST plus Sep;+Reply 345+ Chey 345+
+ BRepl, + BChe, + Unig.

If moreover x is strongly inaccessible, then Reply, Chey, Coll; and Colly(st ¢)
also hold in V.

Proof. We define V = V,. A V-bounded formula means any st-e-formula
that contains external quantifiers only of type 3% € ¥, V*v € V. Certainly
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any V-bounded formula is ext-bounded. Note that any claim about the truth
within ¥ can be expressed by a V-bounded formula.
We first prove transfer in V, that is,

s VO — Tz eV O@),

where @ is an internal formula with standard parameters (only parameters
from V are essential here, however the result remains true for arbitrary
standard parameters). Applying the IST transfer to the formula ®(x) & x € V,
we obtain the required implication. Similar reasonings provide the verification
of I and S.

So far as the additional hypotheses are concerned, it suffices to prove only
Uniq, Chcs, Che; and Colly(st @) within V. (The rest of the hypotheses follow
from them, partially by Theorem 2.7.) The key point is that each formula
relativized to V is in fact ext-bounded (with the set V), hence ¥. Thus one
may apply the results of §2.

1. Uniq. Let ®(x) be a ¥V-bounded st-e-formula with standard parameters.
Assume that 3!x € ¥V ®(x). The unique x given by the formula ®(x) is
standard by Theorems 2.4 (applied to the formula ®(x) & x € V') and 2.11.

2, We prove the following:
Che,: Vitz =V Iy VO, y>A7 =V Ve =V D(z, 7(2),

where @ is a V-bounded st-e-formula. Again by Theorems 2.4 and 2.12 there
is a function 7 such that

(7 Vizes VIj@ eV &O@ jE).

However it is not still clear that § € V. To overcome this difficulty, let H be
a finite set containing all standard members of V (see 2.9 for the existence of
such a set H). We define

D=HNV(ldomj; E={xD: FaV)y f=F§|E.

Evidently f is a function with finite domain £ < ¥V and range also <V.
Hence f € V by the finiteness. Finally the property (7) holds for f provided it
is true for 4.

3. Now, assuming the strong inaccessibility of », we prove that
Che; Viiz= X Py = VO, y) > I =V Vslz = X Oz, 7 (),

where X € V is standard and @ is a st-e-formula. Using Theorem 2.3, we get
a function § : X = ¥V such that V*x € X ®(x, j(x)) holds. The assumed
inaccessibility of x confirms that 7 € V.

4. Again assume the inaccessibility of x and prove Colly(st ®) for a
V-bounded st-e-formula ®(x, y) with standard parameters. Let X € V be
standard. By Theorem 2.4 there is a ¥ formula ¥(x, y) which is equivalent
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to the formula ®(x, y) & y € V. Then, using Corollary 3.2, we obtain a
standard set ¥ < V such that card ¥ < exp>(6), where 0 = card X (clearly
0 < %), and

VeeX [Py VO, p)>IFtyesY (| VO, yl

Note that exp>(8) < x by the inaccessibility, hence Y € V.
This completes the proof of Theorem 4.1. [J

4.2. The proof of Theorem 1B. Theorem 1A follows immediately from 4.1
because ZFC and IST remain equiconsistent when we add the existence of a
strongly inaccessible cardinal to both of them.

We consider Theorem 1B. Of course, the existence of a cardinal » such
that V, is a ZFC model is outside IST. However, one may enlarge IST by a
special constant x and by the additional axiom ‘“x is a standard cardinal”
and the list of axioms of type “A4 holds in V,” for all the ZFC axioms A.

We denote the enlargment by IST,. Of course, IST,, is not the same as
adding to IST the single axiom which says that V, is a model of ZFC.
In fact one can easily show that IST, is a conservative (hence equiconsistent)
extension of IST.

Moreover, IST, is strong enough to prove that all the IST axioms as well
as all the hypotheses of the list Sep;, Reply 345, Ches 345, BReply, BChe,, Uniq
of Theorem 4.1 hold in V,. This reasoning is completely analogous to the one
presented below and we leave it to the reader.

§5. Bounded set theory

This section is devoted to Theorems 11, 12, 13, which concern bounded set
theory BST. We recall that BST contains all the ZFC axioms together with
transfer T, standardization S, bounded idealization

BIL: (st Ay, int @) VstndA C 4,3z Va = 4 D(z, o)« 3z Va= A4, D(z, a)

(Ao is standard, @ is an internal formula), and the bounded sets axiom
B: Vx 3°X (x € X). We recall that bounded sets are those that belong to a
standard set.

Let B denote the class of all bounded sets and bd denote the formula of
boundedness, that is,

z& B+ bda«— X (z = X).

Clearly, S < B, so a standard set is bounded (for if x is standard, then

X = {x} is standard too by 2.1). Hence S5 < B < V. Both inclusions are
strict in IST. Indeed, firstly, any nonstandard integer belongs to B but not
to S; secondly, a set H such that § € H (see 2.9) is not bounded.
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Sometimes it is useful to know that a bounded set is the same as a subset
of a standard set. Indeed,

zeEX—zC UX and zCY <z P (),

where the sets U X, #(Y) are standard provided X, Y are standard.

To compare the possibilities of IST and BST as a basis for treating
nonstandard mathematics in different fields, we note that the fact that BST
contains a smaller piece of idealization does not have any influence on most of
the applications. Indeed, any research branch of mathematics has its own
‘“universe”, that is, a certain standard set large enough to contain all the sets
that might be considered within the branch. All the applications of
idealization within the chosen branch are just of the kind BI rather than full I;
the set A4 serves as the “universe” mentioned above. Therefore BST is not
really weaker than IST as a tool for nonstandard arguments. Nevertheless
BST is much more complete than IST as regards the hypotheses we study, as
Theorem 12 shows.

To close this short metamathematical digression, we notice that the
bounded sets axiom is sometimes involved as a definition of internality in a
study of nonstandard superstructures, see Lindstrem [21].

5.1. Proof of Theorem 11. Let ¢ be any st-e-formula. By ¢® we denote the
formula obtained by replacing every internal (see 1.1) quantifier 3 or V in @
by 3% or V" (“there is a bounded ...”, “for all bounded ...”). Clearly the
truth in B of a st-e-formula ¢ with bounded parameters is equivalent to the
truth of ¢®® in V. It suffices to show the following: if 4 is an axiom of
BIST, then 4% is provable in IST. The first of the BST axioms we consider
is transfer. We prove that

Jrdz @Li(z) — Jstz OPd(z)
for an internal formula ® with standard parameters. Here one cannot
immediately refer to the IST transfer because ®° is not an internal formula.

Nevertheless the following lemma allows us to delete the superscript bd from
® and therefore completes the proof of transfer.

52. Lemma [IST]. ¥ — W™ for all internal formulae ¥ having bounded
parameters.
Proof. The proof is by induction on the number of logical signs in ¥. As
usual, only the step 3 needs special consideration. We prove that

3z Y(z) - Iz W(z)

for all internal ¥ with bounded parameters. The ‘“ordered n-tuple” ZFC
function reduces the case of many parameters to the case of a single parameter.
Thus let { contain the single parameter p,. We fix a standard set P such that
po € P. The preceding formula takes the form

3z V(z, po) — 3%z V(z, po),
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where Y(z, p) is an internal “parameter-free” formula with only z and p as
free variables. By ZFC collection there is a set Z such that

Vp & P32V p)— 3z & Z ¥z, p)l.

We note that one may choose a standard Z with this property by transfer
(in IST). Setting p = po we obtain the required resuit. [J

Hence transfer in B has been checked. It follows that all the ZFC axioms
hold in B (being true in G). Standardization in B follows immediately from
standardization in V. Clearly the bounded sets axiom B is valid in B. Only
BI remains to be proved:

BI: Vstind < 4, Y9z Va = A Oz, a) « ¥z Voie = 4, D(z, a),

where Ay is standard, and ® is a internal formula with bounded parameters.
The superscript bd can be deleted from ® by Lemma 5.2.

Changing parameters to free variables as above, one can prove the
existence of a standard set X such that

VAC 4, [z Vas A Dz, a) > Fr = X Vae 4 Dz, a)l.

Moreover, one may demand that if the right-hand side of BI holds, then X
contains an element x such that V*a € 4o ®(x, a).
We use the following example of I for the formula a e 49— ®(x,a)& x € X:

ysting C 4, Jr =X Va4 Oz, o)~ Iz = X Vsla = 4, D(z, a).

Clearly its left-hand side is equivalent to the left-hand side of BI above, just
as the right-hand side is equivalent to the right-hand side of BI by the choice
of X. O

5.3. Proof of Theorem 13. We turn to the theorem which shows that BST
reduces all external formulae to a I% form. Note that IST provides the
reduction only for those formulae that are either ext-prenex (see §3) or
ext-bounded (see §2).

Thus let ®(x;, x3,..., X,) be a “parameter-free” st-e-formula with only
X1, X2, ..., Xn as free variables. We claim that there is a “parameter-free” pr 3
formula W(x;, x5, ..., X,) such that

Va, Va, . . . Vz, [®(z3, 2o, . . -, 2p) < V(ty, 2, - - ., 25)]

(provable in BST).

The proof is carried out by induction on the number of logical signs in ®.
As above (see the proof of Theorem 2.4), it suffices to go through steps
"] and 3. Let x denote x;, x5, ..., X,

The step ~|]. We search for a £% formula ¥(x) that is equivalent to the
formula

Vst 35tb @(x, a, b), where ¢ is internal,

3t
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taken as ®(x). Whenever X is standard, there is (by Theorem 3.1) a pair of
standard sets 4, B such that
8) Vx = X" Ox)« Vsta = 4 Ib = B o(x, a, b).

What is more, the proof of Theorem 3.1 gives an internal formula (X, 4, B)
such that the following two assertions hold:

a) V"X 3"4 3"B y(X, 4, B), and

b) VX V*4 V"B (X, 4, B) = (8) is true].
(To be more exact, y, expresses the sentence (5*) from §3.)

Applying the axiom B we have

® (x) « FtX 3%4 IB [x = X" & (X, 4, B) &

& Vstg = A Itb = B o(x, a, b)].
Changing the second line to 3*b € 4B V*a € 4 ¢(X, a, ¥(a)) (Theorem 2.3 is
used) and making some evident transformations, one can obtain the required

formula ¥.
The step 3. We need a ¥ formula that is equivalent to

O(X) =der Ju Ita Vstb o(x, u, a, b),
o is internal. The following equivalence is true by the bounded sets axiom B:
D) I kheX"&Jue X Ptaes X Vs o(x, u, a, b)l.
Hence we conclude as above that for some internal formula (X, B)
D (x) — FtX IPB [x = X" & (X, B) &
&FPta = X Jue X Vb= B o(x, u, a, b)l.

Finally we use idealization BI to the block of quantifiers 3u ¥V*'4 and obtain
the required formula ¥ by some simple transformations.
This completes the proof of Theorem 13. []

5.4. Proof of Theorem 12. It suffices to prove (in BST) only the following
hypotheses: Uniq, Coll, Che; and Che,.

Uniq. We consider a st-e-formula ®(x) with standard parameters with only x
free and suppose that 3!x ®(x). One may assume that @ is a %' formula by
Theorem 13. We now use Theorem 2.11.

Coll. Let @(x, y) be a st-e-formula with arbitrary (bounded) parameters and
only x, y free. Prove that for every X there is a standard set Y such that

Ve X 3y Oz, y) >y Y D(z, y)l.

One may assume that X is standard by the bounded sets axiom B.
We note that the formula

Y(x, z) =g st & Jy = z D(z, y)



Undecidable hypothesis in Edward Nelson's internal set theory 33

is equivalent to some I% formula by Theorem 13. Hence by 3.2 there is a
standard Z such that

Vae X (32 ¥(z, 2) >z = Z ¥z, 2)].

Theset Y = \UZ = {y:3ze Z (y € z)} is as required. The standardness of
Y follows from transfer.

To prove Che, for some standard X and a st-e-formula ®(x, y), apply Coll
to the formula st y & ®(x, y), obtaining a standard set ¥ such that

Ve X 3ty Oz, y) > Pty = Y Dz, y)l.

Finally we apply Theorem 2.3.
At last we prove the following:

Che,: Vstz = X Jy Dz, y) — 37 Votz = X Oz, §(x)),

where X is standard. One may assume that @ is I% as above, therefore

®(x, y) is 3*a ¥*b o(x, y, a, b), where ¢ is internal. By collection there is a
standard set Y such that the left-hand side of Che, is equivalent to

V*x e X 3y € Y ®(x, y). Theorem 3.1 gives a pair of standard sets 4, B
satisfying

Dz, y)y«>Ita= A4 Vb= B o(z, y, a, b)
whenever x € X, y € Y. Theorem 2.12 ends the proof. [J

§6. The hierarchy theorem

This short section contains the proof of Theorem 10. We shall prove two
forms of the theorem. The first form deals with standard parameters, while
the second allows arbitrary parameters. Unfortunately the author has not
succeeded in proving the common extension of these two variants.

We recall that ®(X) is the formula 3*a V*b ({(g, b) € X) in the
formulation of our Theorem 10.

6.1. Theorem. Let Y(X, py, ..., pn) be a II§ formula without parameters and
with only X, py, ..., pn free. Then

(a) {IST] Vstp, ... Vstp, 71 VX [D(X) « ¥(X, p1, - .., Pa)l;
(b) IST + Repl;] Vp, ... Vpp 1 VX [D(X) — ¥(X,p1s - - -, pa)l.
It is worth presenting a consequence of (b) and Theorem 1A. Given a
“parameter-freee” I3 formula W(X, pi, ..., p,), one cannot prove in IST that
ap] P apn VX [‘D(X) ‘_’W(X’ D1y e - o pn)]'

(Indeed the negation of this is consistent with IST being a consequence of the
consistent hypothesis Repl; in IST.) Hence (b) claims that ® is not provably
equivalent in IST to any II% formula with arbitrary parameters, while (a)
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claims that ® is provably non-equivalent to any IT% formula with standard
parameters. Of course, the second is stronger than the first. It would be
better to prove (b) in IST without Repl;.

One can replace Repl; in (b) by a slightly more natural hypothesis Seps,
since Repl; is equivalent to Seps; in IST.

Proof. We may assume that the list p;, .., p, contains in fact only one
variable p; thus let W(X, p) be V*'u 3*v y(X, u, v, p), where V is internal.
We fix a set p and suppose that ®(X) — W(X, p) holds for all X, that is,

VX [3sta Vstb ((a, b) € X) > Vstu Istw (X, u, v, p)l.
This is transformable to
Vetg Vsty VX 3otb It [(a, b) = X - (X, u, v, p)l.
Further, applying idealization, we have

Vstg Vsty Jstiing Jstiny VX Vb= B ((a, b) = X) —
—-JveV X, u, v, p)l

Taking a = u and using the fact that for every standard B there is a standard
ordinal « such that B = V,, we get a slightly weaker assertion

(9) Vétu Fta = Ord ItV VX (Vb eV, ((u, b = X) —
- Ive V PX, u, v, p)l.

Now it is necessary to separate the cases (a) and (b).

6.2. Standard case.
We assume that p is standard. Let ¢(u, a, V') denote the formula

VX [VbeE Vo Ky, DEX)—>TFJve VX, u, v, p).
The preceding formula takes the form
Vsty Jsta JsHnY @(u, a, V).
Let a(u) be the least ordinal « satisfying 35V ¢(u, &, V), if such an a

exists, or else a(u) = 0. When u is a standard set the ordinal a(u) and the set
B(u) = Vg are standard by Theorem 2.1. We prove the following claim:

(10) Vsiy VX [VbEB(u) ((uv b>EX)"*HStU "-p(Xv u, v, P)]

Indeed, let u be standard and let X be such that (u, b) € Xy for all
b € B(u). We set o« = o(u). By transfer and the definition of a(u) there is a
standard finite set V satisfying o(u, o, V'), that is,

VX IVbeE B w) (Ku, e X)»>Ive V (X, u, v, p)l.

Taking X = X, we obtain 3o € ¥V Y(Xy, u, v, p) and then 3* Y(Xo, 4, v, p)
by 2.8 (all elements of a standard finite set are standard). This ends the proof
of the claim (10). O
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Let H be a set containing all standard sets (see 2.9). We define X by

X ={u, b): usH&be< B (u)}.

Clearly (4, B(u)) € X for all u. Hence | ®(X), because B(u) is standard
whenever u is standard.

However, if u is standard, then Vb € B(u) ({u, b) € X) by the definition of
X, hence 3% Y(X, u, v, p) by the claim (10). Thus W(X, p) is true. Hence a
set X satisfying W(X, p) & ~ | ®(X) has been constructed. This ends the
standard case.

6.3. Nonstandard case.

The reasoning of 6.2 fails at the point where we assert that o(x) is standard

provided u is standard (this is in general wrong for a nonstandard p). We

overcome this obstacle with the help of the additional assumption Repls.
Firstly we consider again the statement (9). Applying idealization, we

obtain

VS"u 3“0{. VX [Vb = V(z (<u, b> = X) - HStv 'llJ(X, u, v, p)l'

Let @(u, a) denote the formula on the right of 3*; thus the last assertion
takes the form V*u 3*a ¢(u, o).

We now consider the new formula ¢’(y, o) which says that a is the least
standard ordinal satisfying ¢(u, o) (one may choose the least standard o
correctly by Theorem 2.5). Hence

O'(u, @) =ger @(u, ) & Vsty <1 o(u, 7).
Clearly V*'u 3*a ¢'(y, @) and ¢'(u, &) — @(u, «) for all standard u, o. Hence
by Repl; there is a function F such that for all standard u the value F(u) is
defined, is an ordinal, and ¢(u, F(u)) holds.
The set B(u) = VYpgy, is also standard provided u is standard. We come to
the claim 10 of 6.2 and complete the proof in the same way. [J

Problem 14. Prove (b) in IST without any additional assumption.

Let us compare the theorem just proved with some classical hierarchy
theorems. Certainly the given proof is very far from the usual “universal set”
reasoning. Rather it slightly resembles a topological proof of the existence of
the set [y, but not Gs. The author was not able to carry out the ‘“‘universal
set” construction. However, there is an evident candidate for the =% formula
solving the hierarchy problem:

Problem 15. Prove that the Z%-formula
Ista; Vsla, Istay Vste, . . . I (V)ta, [Kay, ay, a;, ay, . . ., ay) € X]

is not equivalent in IST to any IT3-formula.
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§7. Truth definability

It is the purpose of this section to prove Theorem 5 concerning the truth
definition for internal formulae with standard parameters. As a consequence
we shall prove Theorem 2, which highlights the special status of Repl;, Che,
Coll;, Colly(st ®) among other hypotheses.

7.1. Coding the language.

To prove Theorem 5 we use the well known technical tool of coding the
formulae of e-language by finite sequences of a special kind and then
constructing the satisfaction function.

Firstly we assume for simplicity that e-formulae may contain only the
following logical signs: ~ |, &, 3, €, =, and of course brackets ( , ), the
variables v and v;, i € N, and finally parameters, that is, arbitrary sets
replacing free variables. Note that the signs v, V, -, « which we did not
mention are easily expressible by |, &, 3.

We denote by "®’ the sequence obtained by replacing in ®

each sign —], &, 3, €, =, (,) by integers 0, 1, 2, 3, 4, 5, 6;
each variable v, by 8 +k and v by 7;
each parameter p (p € V) by (0, p) (the ordered pair).
Thus 7@ is a finite sequence of special type. "®' is sometimes called the
translation of ®. We put
Form={"®" : ® is a (well-formed) e-formula with arbitrary parameters};

Formy = {*®' € Form: all parameters of ® are members of X}.

We say that a formula V is subordinate to o if { is a subformula of ¢ in
which some (maybe none or all) free variables have been replaced by arbitrary
parameters. For example, o itself is subordinate to ¢; ¢(p) for all p and
¢(v) (v is free) are subordinate to Jv @(v). We define

Form[p] = {"¥" : ¥ is subordinate to ¢};
Formx{®] = Formy (" Form[o].

For example, "p(p)’ € Formy[3v ¢(v)] whenever p € X.
Further we distinguish the translations of closed formulae:

CForm = {"¢' € Form: ¢ is a closed formula},

and CFormy, CForm[p], CFormy{¢] in the same manner.

Note that a translation "¢’ is standard (as a finite sequence) if and only if
- has only standard parameters and the number of logical signs of ¢ is
standard too.
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Now the key definition. We denote by Sat(T) the conjunction of the
following five st-e-formulae:

1) T < CForm;

2)Vstp Vg [(p=geETop=qg&(pesge T <pc gl
3) Vstig» Vot iy &y eT — (9T &Y e N

4) Vit = T Vst = CForm [@] ("W & T "W & T);
S)Vitlp ) [ o) =T« Fp (o (p) & N

Any set T satisfying Sat(7") is adapted to the definition of truth within the
universe S of all standard sets.

7.2. Lemma [IST). Either of the two conditions
AT [Sat(T) & "' Tl; VT [Sat (T) - "' & T1

is necessary and sufficient for any closed e-formula ¢ with standard parameters
to be true in S (or, what is the same, in V).

To be more precise, we claim that

Vstz,. . . Vo2, (@ (z, .« .y 22) < 3T [Sat (T) & "@(ay, . . ., zn)' = T] <
— VT [Sat (T) > "p(zy, « « ., z2)' & T}

is provable in IST whenever o(vy, ..., U,) is a “parameter-free” e-formula with
only vy, ..., v, as free variables. Thus either of the formulae

3T [Sat(T) & "¢'< T); VT [Sat (T) — "¢ & T

can be taken as t("¢') for Theorem 5. Hence the only thing to prove is the
lemma.

Proof. The proof is based on two auxiliary claims from which the lemma
clearly follows.

Assertion 1. For every closed e-formula ¢ with standard parameters there is a
set T satisfying Sat(T') and containing at least one (in fact exactly one) of the
translations "¢, "¢ .

Proof. We replace all the parameters occurring in ¢ by free variables. Let
@(vq, ..., b,) be the formula we obtain, and let

Qi - - o Vg 1< EISm, 1, E N
be the list of all its subformulae (including ¢ itself). We take a set H
containing all standard sets and define '
T = {"Qi(xys -« o Za @) ZT1s - - v Ty EH & @iz, -« o z0@)} U
U{edzn .- zn@) 2 - - ot EH & 1 @i(z1, « oy Zay) )
The set T = U <i<mT; is as required. [J

Assertion 2. Let ¢ be a closed e-formula with standard parameters. If "¢" € T
and Sat(T) holds, then o is true in S (as well as in V).
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Proof. We proceed by induction on the number of signs in "¢". The base of
induction (that is, the case @ is either x € y or x = y) is justified by part 2)
of Sat, while induction steps are based on parts 3), 4), 5). The only non-
trivial case is the step 1. So let us assume that "~ 1¢" € T and try to prove
that ¢ is false.

Firstly we note that "¢" ¢ T by 4).

Case 1: ¢ is either x € y or x = y; x, y are standard. Then x ¢ y
(respectively x # y) by 2) and the induction hypothesis (we recall that
‘0" ¢ T). Hence o is false.

Case 2: @ is ¥ & . At least one of ", "' is not a member of T by 3).
Let Y ¢ T, say. Then "T1{" € T by 4). So 7] V¥ is true by the induction
hypothesis. Hence V is false.

Case 3: @ is "\W. Then 4) implies that "y € T because "¢’ = "1y ¢ T.
So V is true, therefore ¢ is false.

Case 4: o is I Y(v). It suffices to prove that Y(x) is false whenever x is
standard. We note that "y(x)' € T by 5) (because "¢ ¢ T). Hence
TTI(x)' € T by 4). Thus T} {(x) by the induction hypothesis. [J

This completes the proof of the lemma and Theorem 5. [J

7.3. Proof of Theorem 2. It sufficies to prove that Cons ZFC is implied by
Coll (st @) (that is, Coll; with only standard parameters allowed in the core
formula) in IST.

Given a “parameter-free” e-formula @(vy, ..., ), it is a theorem of ZFC
that there is an ordinal x such that V, is an elementary submodel of the
universe V with respect to the formula ¢, that is,

vPl = v% e vP’m = Vu[q)(p]v R Pm) «> (P“(plv LY} pm)]’

where @* is the relativization of ¢ to V,. One more fact to note here is that
we may choose a standard x of such a kind by using transfer.

We fix a reasonable enumeration (¢ : k € N) of all closed e-formulae and
define a st-e-formula ®(k, x) which says that k is a standard integer and x
is the least (standard) ordinal such that V, is an elementary submodel of V
for all @;, 1 < i < k. The precise definition of ®(k, %) is as follows:

keN& %= O0rd & stk & st x & 3T [Sat (I') & T contains the translation
% is the least ordinal such that V, is an elementary submodel of V for all o;,
1 i<k

Lemma 7.2 shows that the precise definition of ® corresponds to the
informal one given above. Hence the following holds:

Vstn = N Jlstx = Ord O(k, «).

Applying Coll (st @), we get a standard f: N — Ord such that ®(k, f(k))
holds for all standard k € N, We put A = supgcn f(k) and show that V, is a
model of ZFC.
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One may prove this in S by transfer. Thus, coming back to V, it is
sufficient to prove that each standard (in the sense that "A4" is standard)
axiom 4 of ZFC holds in V,.

Let a standard k be such that 4 and all subformulae of 4 are contained in
the list ¢;, 1 < i < k. Then for all standard n > k the set Yy, is an
elementary submodel of V with respect to 4 and each subformula of 4. It
follows that V, is also an elementary submodel of V as regards 4. Hence 4
is true in V,. This completes the proof of Theorem 2. [J

§8. Full collection

Unlike the hypotheses of separation, replacement and choice, collection is
valid in IST for all core formulae; this assertion is exactly the same as
Theorem 4. This section contains the proof together with the proof of two
corollaries. The first is our Theorem 9 and the second is the corollary
mentioned in section 1.13 of the Introduction.

8.1. Beginning of the proof.
Thus we try to prove Coll for a st-e-formula

O(x, ) =ger Qu2,Q325. . . Quay Oz, Y, T2y T35 - - -1 Tn),

where ¢ is a quantifier-free formula and each Q; is a quantifier of four
possible kinds: 3, V*, 3 or V. Arbitrary parameters are allowed in ®. Let
us fix a set X. It suffices to find a set ¥ such that

Ve X [y @z, y) >~ Jy = Y D(z, y)l.

It will be more convenient to rename the variables x, y by xq, x; respectively.
Also let Q; be 3 (this corresponds to the formula 3y ®(x, y)).

The following way of reasoning partially resembles the proof of
Theorem 3.1, though mixing of two kinds of quantifiers (internal 3, V and
external 3%, V*) gives some additional difficulties.

Let us fix a cardinal 6. The role of 0 will become clear later.

The key definition. For all k < n we define the set Ci, and then for each
sequence Xo, ..., Xx define F(xg, ..., xx) € Cx. The definition is arranged so
that F will be internal at all levels k. The construction depends on the chosen
6, though the notation does not reflect the dependence in a clear form.

The definition goes by reverse induction on k = n, n—1, ..., 1, 0.

The base of induction: k = n. We define C, = {0, 1} and

_ [ 1if oz, -, 2n) holds,
F(:vo, ceey $n) = {0 if (p(g;o, cony .1:,,) fails.

The inductive step. We suppose that k¥ < n and the set Cr.; together with
the values F(xq, ..., X, Xg+1) € Cx+1 for all xo, ..., Xx, Xx+1 2are already
defined (and the map F is internal).
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The external case: Qg+, is either 3* or V*'. We put

Cr = P(Vo X Cyp) = Pz, ¢): x = Vg & ¢ & Crpu)),
and

F(zg, .+, o) = {{Ziy1, € Ty & Yo & ¢ = F(o, . . -5 Ty, Tpya)}
for all xq, ..., xx. Hence
F(xgy -« <0 Ty Tyy) = € > {Zpyny €0 & FlZoy - -+ -, Zy)
whenever x;.1 € Vo. One may rewrite the last equivalence in the form
F(zo, -« «) Zg, Tepa) = F(2o, -+ o, 1) (Zhya)s

again provided that x,,; € Vs.

The internal case: Qg+, is either 3 or V. For example, for k = 0, Q; is 3 by
the definition of Q;. We put Cx = #(Ci+1) and

F(xo, e ey l’k) = {F(.’L‘o, ey Ty 'rk+1): Y —= V}

for all xo, ..., xx. If F is an internal map at level k+1 and each

F(xq, ..., Xk, Xr+1) is a member of Cr., then each value F(xy, ..., xi) is also
an internal set (a member of Cy) by the ZFC separation, although the domain
of the variable x;.; is not restricted by any set. Also for the same reason F
remains internal at level k.

8.2. Lemma. Let x, ..., x; and xq, ..., Xy be such that
F(zgy « - -, 2) = Flag, . « -, x)-
If Qc4y is an external quantifier, then
F(I()’ oo ovy Ty, xk-i-l) = F('I(')v e ey xl:n xk+1)

Sfor all xp1 € Vo. If Qry1 is internal, then for all xi,, there exists xj+ such
that

F(Zoy « « -s Tk, Thy1) = Flxo, « -« Tty Thy1)-
Proof. The internal case is clear. Further, if Qi is external, then by
definition
Flzo, . . -y g, Tppr) = Flxos -+ oy ) (@pp1) = F2o, « - 5 ax)(@ppn) =
= F(zgy . . .1 Ty Tieq1)- ad
Before one more lemma is formulated, let us look at the notion of bounded

and unbounded ordinals. We recall that a set x is bounded if and only if x is
a member of a standard set X. When restricted to the class of ordinals, the
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notion of boundedness can be reformulated in certain more convenient forms,
for example:

8 & Ord is unbounded < Vsta &= Ord (@ < 8) «— Vstz (z & V)
(the simple proof is left to the reader).

8.3 Lemma. Suppose that the ordinal © which we have fixed above is
unbounded. Let k < n and let x;, x/, i < k, be such that

F(zy, ..., x¢) = Flxg, . . ., zv).
Then
Qui1Zxi1- - - Quzn @(zgs - - oy iy Txa1s - - -y Ty) <>
’ L4 4 4 7 4
— QpuZrer - - - Quan ©(@g, - - -y Ths Thits -+ « +» Tn)e

Proof. We argue by induction on kX = n, n—1, ..., 1, 0. The case k¥ = n is
evident by the definition of F (the string of quantifiers is empty). Now the
induction step. We prove the lemma for some k < n provided it is true for
k+1. One may consider only the case when Q.+ is either 3 or 3* (the case
of universal quantifiers does not differ essentially).

Thus let x,+; be such that the following holds:

Qk+z73k+2- . -ann oz, - - -, Tk, Tkt1s Thtar + + +9 Tn)-

Also we assume that if Qg+ is 3%, then x,4; is standard (hence x;., belongs
to Vg by the fact that 8 is unbounded). The preceding lemma gives a set xj .,
such that

F(x()v R 2 2] xk+]) = F(SC(;, RS | Z'I;a xl,{+1)y

and in addition if Q. is 3*, then x{+; = xk+; and xi., is standard. Thus
by the induction hypothesis the following is true:

Qk+2xl’t+2 .o Qn'T';I (p(x('), LS | -T"h 'TT,C+]7 x;\'+27 LR | 1‘7’1)'
This completes the proof of the right-hand side of the required equivalence. ]

We now turn back to the proof of Theorem 4. We recall that x; is y and
X is x. Therefore Lemma 8.3 for £ = 1 takes the form:

84. Corollary. Let O be unbounded. If F(x, y) = F(x', y'), then the
Sfollowing holds: ®(x, y) — ®(x’, y'). O

Assume that 0 is in fact unbounded (the existence of unbounded ordinals
follows from 2.9). By ZFC collection we get a set Y such that

(11) VeeC, Vz= X [y (c=Flz, y))—>FyeY (c = F(z, y)]

holds (the equality ¢ = F(x, y) is internal). We recall that F(x, y) € C; for
all x, y. Hence one may rewrite (11) as follows:

Vee X Vydy =Y [F(z, y) = Flz, y)l.
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Then
Vee X Vy 3y’ €Y [W(z, y) — Dz, y')]
by 8.4. This ends the proof of the theorem. [J

8.5. Comments.
In fact we have proved something stronger than the assertion of Theorem 8.1.
Namely, given a st-e-formula ®(x, y), there is an internal formula ®*(8, X, A)
such that

a) V0 € Ord VX A e Ord ©*(0, X, A);

b) if 6 is unbounded, A € Ord and ®*(0, X, A) holds, then

Vze X [Fy Oz, y) - Jy = V), O(z, y)l.

In addition ®* has the same list of parameters as @ has.

The formula we have in mind is as follows:

“0 € Ord & A € Ord & A is the least ordinal such that the assertion (11)
holds for Y = V,, that is,

VeeC, Ve X [y (¢ = Flz, y))—> Ay = Vale = Flz, y)l,
where Cy and F are constructed from the given 6.”

This more exact form of collection serves as a key tool in the proof of
uniqueness for the class of bounded sets.

8.6. Theorem [IST) (= Theorem 9). Let ®(x) be a st-e-formula with bounded
parameters. Suppose that there is a unique x satisfying ®(x). Then this unique
x is bounded.

Proof. One may assume that @ contains a single parameter po € P, where P
is a standard set. Thus x is the unique set satisfying ®(x, po).

We denote by Aq the least ordinal A such that x € V,. All we need to
prove is that Ao is bounded, that is, Ay < y for a standard ordinal y. We are
going to use the formula ®* given by 8.5. Thus ®* is such that

a) V0 € Ord I\ € Ord ®*(0, P, A). We denote by A(6) the unique A
satisfying ®*(0, P, A). Then A(0) is standard whenever 6 is standard (by
transfer; ®* has no parameters by the choice of ®(x, p);

b) if 0 is unbounded and ®*(9, P, 1), then x € V, (for po € P).

Then A(8) > Ao by the choice of Ag, provided that 0 is unbounded. Hence
VO € Ord [V*y (y < 6) = A(8) > XA¢]. This is equivalent to VO 3%y [y > 6
or M0) > A¢]. Now we apply idealization. There is a standard finite
I' = Ord such that

Ve FIy=T Ily>0 or A6O) = Al

Finally we denote by yo the largest ordinal in I'; o is standard by
Theorem 2.1 and VO [y, = 6 or A(6) = X¢] holds. Therefore A(yo+1) = Ao.
However, yo+ 1 is standard, hence A(yo+ 1) is standard as well. []
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8.7. The undefinability of truth.

Now we turn to the proof of the corollary mentioned in 1.13. Assume the
contrary, that 1(x) is a st-e-formula such that for each internal formula
®(xy, ..., x,) the following is provable in IST:

Vi, ...V, [ @z, . - -, 3p) <= 1 ((D(zy, - - ., 2]

The formula © expresses the truth of all internal formulae. To derive a
contradiction, we denote by T(x, y) the formula

x is the translation "o(v)" of some internal ©(v) with only v free (parameters
are allowed) & t("o(»)").

Let T*(8, X, A) be the formula that corresponds to T by the comments 8.5.
We consider the formula ®(8, y), which says (informally) that y is not
contained in V; whenever A satisfies T*(0 +®, Vg4, A). (We recall that © is
the least infinte ordinal.) Then V6 € Ord 3y ®(0, y) is true by the choice of
T*. We shall show that the formula ® leads to a contradiction.

To see this we fix an unbounded ordinal 8, put X = Vg4, and let A be
the unique ordinal satisfying T*(0+ ®, Vg+e, A). We define Y by ¥ = V,.
Then

VeeX 3y Iz, y)>Iye Y Tz, yl.
Now we take x = "®(0, v)". Clearly x € X = Vg, hence

dy T(x,y) >y =Y T(x, y).
Claim 1. The left-hand side is true.

Indeed, let y be such that ®(6, y) holds. Then t("®(0, y)') holds as well by
the choice of the formula ©. (J

Claim 2. The right-hand side is false.

Indeed, let y € Y satisfy T(x, y). Then t("®(0, »)") holds by the definition
of T. Hence ®(B, y) is true by the choice of t. But ®(9, y) says that
y € Y = V, whenever T*(6+ ®, Vg4, A) holds. [J

The contradiction we have reached completes the proof of Corollary 1.13.
Note that in fact the following is proved: for each st-e-formula 1(x) there is
an internal formula ®(8, y) such that

36 Jy 71 [D(6, y) — 1 (D6, y))]
is a theorem of IST. [J
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§9. Independence

This section contains the proof of Theorems 3, 7, 8. We shall construct a
model of IST in whch the hypothesis Repl, fails at X = N and at some
“parameter-free” formula ®. All other hypotheses mentioned in Theorem 3
fail as well as Repl; in such a model. To build up the required model we use
a special ground model of ZFC and a special way of arranging its
nonstandard extensions, neither of which is the same as in Nelson [28].

9.1. The ground model.

We assume (in ZFC) the existence of a cardinal 8 such that Ve is a model of
ZFC. Of course, this assumption is outside ZFC. But it is taken for the sake
of convenience only. One might get rid of it in the same way as in §4, that is,
by considering an appropriate extension of ZFC.

Thus, let 6 be an infinite cardinal satisfying the claim that V¢ is a model of
ZFC. Morecover we suppose that 0 is the least cardinal of such a kind.

Finally we assume that the well-known set theoretic axiom of constructibility
V = L holds. The essential consequence of V = L here is that a certain
relation < well orders the whole universe V in such a way that the following
two properties hold:

1) given a cardinal 8, <; well orders Vg with order type 6;

2) given a cardinal 8, < restricted to Vg is e-definable in V,.

We fix a “natural” enumeration @x(vy, ..., Om), k € N, of all “parameter-
free” e-formulae with a clear indication of the list of its free variables. It is
not hard to prove in ZFC that for each integer n there is a cardinal x < 6
such that V, is an elementary submodel of Vg with respect to all sentences of

type
(Pk(ph e e ey pm(k))q k < n, p &= V.

Let %, denote the least cardinal x of such a kind. Clearly, %, € %,+; for all

n, % = sup{x, : n € N} is a cardinal, and V,, is an elementary submodel of Vg
with respect to all e-formulac with parameters from V,, that is, V, is a model
of ZFC. Thus in fact x = 0, hence 6 = sup,cn ¥

The set M = V, will be taken as a ground model of ZFC for the
construction of the IST model we need. The way of extending M is
connected with the use of definable functions as elements of an ultrapower.
Let us recall some notions concerning definability.

Firstly let the letter ¥ denote the set Vg (as well as M). We use two
different marks for a single set because of the two different roles that V¢ plays
in our reasoning, that is, the ground mode! and the “universe of definability”.

Note that », € V for all n. Indeed it suffices to prove that %, < 6. We
suppose to the contrary that x, = 0 for all n > ng, ng € N. Then considering
that V is a model of ZFC and taking n = ng+ 1, we find a cardinal x € V
(hence % < 6) such that V, is an elementary submodel of V with respect to
all o, £k < n. Hence %, < % < 0, a contradiction.
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We recall that Def(¥V') usually denotes the set of all sets X < V definable
in V. More exactly, X € Def(V) if and only if

={z& V:¢"(z)} = {z = V: ¢(z) is true in V}

for some e-formula @ with parameters from V having a single free variable z.
The superscript ¥ in ¢” means the relativization of ¢ to V, that is, each
quantifier 3z or Vz in ¢ takes the form 3z € Vor Vz € V.

Lemma. The sequence (%, : n € N) does not belong to Def(V).

Proof. Assume to the contrary that there is an e-formula ¢(n, %) (parameters
from V are allowed) satisfying

VieNVx e V lx =%, < ¢¥(n, x)l.

Let n be such that 1) each parameter occurring in ¢ is a member of V,, and
2) V,_is an elementary submodel of V' with respect to the formulae 3x (v, %)
(v free) and (v, %) (v, % free). Then Ix o(n, %) holds in V (to see this take
% = X,), therefore it holds in V, too. Hence there is x € V,_satisfying

¢@(n, ®) in V¥, as well as in V. This is possible only in the case x = x,.

Thus %, € V,,, a contradiction. [J

In fact the sequence of the cardinals %, will serve as a basis for destroying
Repl, in the IST model we shall construct. The main idea is to build up a
nonstandard extension of M using only those functions from the index set into
M that are in Def(¥V). One may hope that the sequence (x, : n € N} will not
penetrate into an extension of such a kind. On the other hand, Theorem 5
ensures that the map n — x, will be definable in the extension by some
(external) formula.

Now we turn to details.

9.2. Index set and the ultrafilter.
We define

I = tin (M) = {i < M: i is finite}.

I will be the index set. Clearly I € Def(V). The following theorem gives the
ultrafilter we need.

Theorem. There is an ultrafilter U over I possessing the following two
Droperties .

(A){iel:aei} e Uwhenever ae M;

B){peM:{i: (i p)e P} e U} isin Def(V) whenever P < Ix M,
P e Def(V).

Proof. Firstly we let Uy be the collection of all sets of type {ie I: a € i},
where a € M. It is evident that U, has the finite intersection property (f.i.p.),
which says that the intersection of any finite subcollection of sets from Uy is
not empty.
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Secondly we fix an enumeration (i, p), k = 1, of all e-formulae with only
two free variables having no parameters. We recall that V is well-ordered by
the order relation < so that the order type of V' is 6. Let p, (o < 6) be the
ath element of V with respect to <;. The sequence (p, : & < 8) belongs to
Def(V) because < restricted to ¥ belongs to Def(V). We define

Ay (@) = {ies I: yx (i, pa) is true in V} and Cy (@) = 1\ Ay (@)-

Claim. There is a sequence (p(k, @) : £ > 1 & o < 0) such that
1) each p(k, a) is either 0 or 1;
2) given k > 1, the subsequence {p(k, o) : & < 6) is in Def(V);
3 given m = 1 and vy < 0, the set

Uny = {Ae@):k < m&k=m->oa <yl &pk o) =1} U
U{{C@):k<m&l[k=m->a<7y]&pk o) = 0}
satisfies the f.i.p.

Proof of the claim. The key idea is that whenever U’ is a f.i.p. collection and
X < I, at least one of the sets X, I\ X can be added to U’ without destroying
the f.i.p.; moreover one can organize the way of choosing between Ax(a) and
Ci(o) at each state (k, o) within Def(V). The routine construction of p(k, o)
by induction on k and on « when k is fixed is left to the reader. []

Finally we define Uy, = \Umen Umo- Then Uy has the fi.p., hence one
can enlarge U, to an ultrafilter U over I. The set U is as required. []

9.3. The quantifier “there exist U-many”,

One can use this logical tool to simplify considerably the technical framework
of applying the properties (A) and (B) of the ultrafilter U given by the
preceding theorem. We define the new quantifier Q = Qyu by

Qio@)ifand only if {i e I : @(i) is true in M} e U.

One can easily check the following properties of Q by using the properties (A)
and (B) of U and the usual properties of any ultrafilter:

Q) if a € M, then Qi (a € i);

(Q2)if P < IxM, Pe Def(V), then {p e M : Qi ({(i, p) € P)} € Def(V);
(Q3) if Vi [p(i) - W(i)], then Qi (i) — Qi Y(i);

(Q4) Qi o()) & Qi V(i) «~ Qi [o(i) & V()

(Q5) Qi " o(i) « ] Qi o)

(Q6) ¢ «— Qi ¢ whenever i is not free in o;

(Q7) Vi o(i) — Qi o(i) — 3 ¢().
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9.4. The extension.
Letr = 1. We define

I" = IxIx .. xI(r factors I);
M’ = {feDef(V): fis a function, f:I" - M};

in addition we put I° = {0} and M® = {{0, z): z e M}. We also define
*M = \U,>oM". If fe *M, then let r(f) denote the unique r satisfying
fe M.

Further, if fe *M, g > r = r(f), i = (i1, ..., i, ..., ig) € I, then we
define f[i] = f(i1, ..., i,). Note that f[i] = f(i) whenever r = ¢. In
addition we put f[i] = z for f = (0, z) € M°.

Letf, g € *M and r = max{r(f), r(g)}. We define

fe* g if and only if Qi,Qi,—, ... Qi (flil = glil);
=* g if and only if Qi,Qi,,...Qi, (f[i] = g lil);

of course, i denotes the sequence iy, ..., i,.
Let *s = (0, 5) for all s € M; clearly *s € M°.
Finally we give the definition of standardness in *M by:

*st f if and only if there is s € M such that f *= *;5.

Thus up to the *= the level M is just the standard part of *M.

The truth of all st-e-formulae in *M is defined in the sense of replacing the
logical symbols =, €, st by the relations * =, *e, *st respectively.

Now the last definitions. Let ® be a formula with parameters from *M.
We define r(®) = max{r(f): fis occurring in ®}. If in addition r > r(®)
and i € I', then let ®[i] denote the result of replacing each f occurring in @
by f[i]. Clearly ®{i] is a formula with parameters from M.

9.5. Theorem (the Lof theorem). Let ® be an e-sentence with parameters from
*M and suppose that r =2 r(®). Then

D istruein M*<Qi,....Qi, (®liy, ..., i,] istruein M).

Proof. The proof goes by induction on the logical complexity of ®. The case
of elementary formulae f = g, f € g immediately follows from the definition.
Now the induction step.

As usual, it suffices to consider only the steps ~ |, &, 3. The first two of
them do not require any discussion (apply the properties (Q4, Q35, Q6) of the
quantifier Q).

The step 3. We prove the theorem for a formula Ix ®(x) assuming the
result holds for ®( /) whenever f € *M. Let r = r(®).

The direction —. Suppose that Ix ®(x) holds in *M. Then ®(f) holds in
*M for some f € *M. We define p by p = max{r, r(f)}. To convert the
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following reasoning into more convenient form, let i and j denote sequences of
type
iy, o b (€I and iy, ..., iy, ..., I, (€ IP)
respectively. Let Qi and Qj denote the sequences of quantifiers of the forms
Qi,...Qi and Qi,...Qi, ... Qi.
Then Qj ®(f)[j] holds by the induction hypothesis. Note that
O(f)j] = Ix O(x)[j] for all j. Hence Qj3Ix ®(x)[j] by (Q3). But
Ix ®(x)[j] coincides (graphically) with 3x ®(x)[i] because r(Ix ®(x)) = r < p.
Hence, deleting the superfluous quantifiers by (Q6), we obtain Qidx ®(x)[i].

The direction «. We suppose that Qidx ®(x)[i] holds. The following set
P belongs to Def(V) by (Q2):

P={{z)el"xM: ®{0, z))[i]is true in M}.

(Note that (0, z) = *z € *M and *z[i] = z for all i) For each i e I" let f(i)
be the <;-least z € M such that (i, z) € P. (If such a set z exists: otherwise
define f(i) = 0.) Then f € Def(V) by the definability of <;, hence f e *M.
Further, we note that

Vi= I (32 O) [i] — ©() (i),

therefore Qidx ®(x)[i] = Qi ®(f)[i]. We recall that the left-hand side of the
last implication has been assumed to be true. Hence the right-hand side is
also true. Then ®( f) holds in *M by the induction hypothesis. [J

Corollary. Let ¢ be an e-sentence with parameters from M. Suppose that *@
is obtained from ¢ by replacing each p € M by *p. Then © holds in M if and
only if *@ holds in *M.

Proof. Clearly *o[i] coincides with ¢. []
9.6. Theorem. (*M, *=, *e, *st) is a model of IST.

Proof. The preceding corollary says that transfer holds in *}. Hence all the
ZFC axioms also hold in *M, being true in M. Standardization is ensured by
y &€ xeM — ye M. Thus all that remains to be proved is idealization.

Let @(x, a) be an e-formula with parameters from *M. We take r = r(o)
and prove the following:

Vetting 3z Va = 4 o(x, a) — Tz Vsta ¢(z, a)

in *M. (The implication « does not need special consideration because it
follows from standardization, see 2.8.) One may rewrite the left-hand side of I
by the Lo§ theorem in the form

VingA M Qi, ... Qi 3z Vas= 4 (=, a)liy, ..., i
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We recall that 7 consists of all finite subsets of M, and thus replace the
variable 4 by i, implying that i € . We further define A : I''' 5 Mby
A(y, ..., i, i) = i. Then A € *M. Now the left-hand side of I takes the
form

ViQi,..Qi Az Ve 4 ¢, a) iy, ..., i, il

Changing Vi to Qi we obtain Ix Va € 4 ¢(x, a) in *M, again by the Eo§
theorem. Hence to derive the right-hand side of I it suffices to prove that
*ae Ain *M for all a € M. This is equivalent to

QiQi,... Qi ac=sAliy, ..., i, i),

by the Los theorem, and further to Qi Qi, ... Qi; (a € i) by the definition of A.
We apply (Q1) and complete the proof. [J

9.7. The violation of the hypotheses in *M.
Coming back to the definition of %, in 9.1, we see that for each integer n
there is a certain e-formula ®,(x) by which %, has been defined, that is,

Vu [ = %, & ®,(x)] is true in V.

Let 1(...) be the truth formula of Theorem 5. We denote by ®(n, %) the
formula 1("®,(%)") & st x & ne N & st n.

Lemma. The following case of Repl, fails in the model *M :
Vstn =N3x D(n, »)— 3f Ve =N D(n, f(n).

Proof. We verify the truth of the left-hand side in *A/. We fix an integer n
and prove 3*x ®(*n, x) in *M. To obtain the existence of x, we take x = x,,.
Then ®,(x) holds in M, hence ®,(*x) holds in *M by transfer. Therefore
®(*n, *x) holds in *M by the definition of ®. To justify the uniqueness we
suppose that ®(*n, %') is true in *M. Then %’ is standard in *M, hence one
may assume that ¥’ = *x for some x € M. Turning the preceding argument
into the reverse direction, we reach x¥ = ¥%,.

We verify the falsity of the right-hand side. Suppose on the contrary that
f e *M satisfies Vx [®(*n, ®) « % = f(*n)] in *M for all integers n. Let
r = r(f). The Lo§ theorem shows that

=%, <> Qi,...Qi (*x=1f(*n)) li,, ..., il

However f € Def(V), the map s — *s also belongs to Def(V), and the action
of Q does not lead out of Def(}V). Hence the map n — %, is in Def(V) too.
This contradicts Lemma 9.1. The proof is completed. []

Now we are assured that Seps, Repl;, Che;, i = 1, 2, 3, 4, 5, Coll;,
Colly(st @) fail in the model *M. We prove that BReply; and BChc, also fail.

Let H be a finite set such that § = H (see 2.9). Let v denote the number
of elements of H (thus v is a nonstandard integer), and let X = {1, 2, ..., v}.
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Finally let # be a 1 —1 map K onto H. We claim that BRepl, is false in *M
for X = Y = N and that the formula

Y(n, k) =gt k= K & sth (k) & O(n, k (k)
holds (® is as above). In other words, the following fails in *M:
V' e N ke N ¥(n k) » 3k V% e N [k(n) e N & ¥(n, k(n))].

Indeed we suppose that the right-hand side is true in *M for some k. We
define f(n) = h(k(n)) for all n. Then ®(n, f(n)) is true in *M for all standard
n—a contradiction with the lemma.

This ends the proof of Theorem 3. [J

It is evident that nonstandard parameters play an essential role in our
arguments with regard to BReply (hence to BChey). In fact I do not know
whether BReply and BChce, are false in *M or in any other model of IST for
a core formula without nonstandard parameters.

9.8. The complexity of violating formulae.
Now we are able to prove Theorems 7 and 8. One can easily verify that the
formula Sat from §7 can be transformed to II% form (to be more precise, Sat
is equivalent in IST to some I1% formula). Hence the truth formula 1 is
transformable to 31 form as well as to VZ4 form (see the definiton of <
before the beginning of the proof of Lemma 7.2). Hence ® and ¥ from 9.7
are in fact (equivalent to some) formulae of type 1Y as well as of type VZ¥.
This ends the proof of part (a) of Theorem 7 and the claim of Theorem 8
which is related to BRepl,.

To prove part (b) of Theorem 7, we consider another formula:

on, T) =geene N &stn & Sat(T) & 3% ([®,(x)] € T)
of type I13. Thus we claim that the next sentence fails in *M:
V% e NIAT o(n, T) » IT V*n e N o(n, T(n).

To verify the truth of the left-hand side, we fix some n. A set T € *M
such that @(*n, T) is true in *M can be obtained by applying (in *A{) the
claim 2 from the proof of Lemma 7.2 to the formula ®,(*x,).

_ To verify the falsity of the right-hand side, we suppose ou the contrary that
T € *M satisfies ®(*n, T(*n)) for all n. Then
® =%, < Qi. ... Qi (O,(*%)' =T (*n)) liy, ..., il

is true in M for all n, x. Hence the map n — %, belongs to Def(V). This
again contradicts Lemma 9.1.
Thus the proof of Theorem 7(b) is also complete. [J

Finally, to prove Theorem 8 (BChcy), we set X = N, ¥ = 25(N) and use
the following core formula:

P (n, 1) =qet t = K & @(n, A1)
(For K and h look at 9.7, h”t = {h(k) : ke t}) O
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§10. Final comments. Externalization as a general way to new problems

The external forms of separation, replacement, choice, and collection, and
the uniqueness property, which we consider above, do not cover the list of all
interesting external analogues of classical ZFC theorems. In fact there are
many set-theoretic sentences of interest in the investigations related to our
work. As a topic of demonstration we choose the external cardinality.

We recall that sets X, Y are equipotent (or have the same cardinality}—
symbolically X ~ Y—if there is a 1—1 map f: X onto Y. Two meanings of
the notion of a map are possible:

a) as a set of ordered pairs such that ...

b) as a relation defined by some formula and such that ...

In the usual set theory ZFC they are the same, but not the same in IST
because external formulae do not always define sets. One may expect unusual
effects when external maps are allowed in the definition of equipotency.
Indeed the sets

X={1,2 ..,02, Y={4,2 ....n n+1}

have different cardinalities » and n+ 1 but they are equipotent in the external
sense in the case when 7 is infinitely large. To see this, let us define

flk) = k for standard k£ < n
k+1 for nonstandard k < n.

The (external) map fis 1—1 X onto Y.

Thus finite cardinals #» and n+1 are externally equipotent. The same is
true for pairs n? and (n+1)2> = n?+2n+1 and in general for n” and (n+k), n
infinitely large, k and r standard (n, k£, r € N). The author tried to prove that
n ~ 2n externally (it should be sufficient for each pair of infinitely large
integers to be externally equipotent) but did not succeed.®

No such “cardinality-mixing‘‘ external constructions are known for infinite
cardinals. One can make the following hypothesis:

NEC: for each pair of infinite sets X, Y if card X’ # card Y (in the usual
sense), then there is no external 1 —1 map of X onto Y. (The correct
formulation is left for the reader.)

Problem 16. Prove that NEC is consistent with IST.

The approach discussed above is directed from internal to external maps.
Now let us consider another approach, that is, from outer to external sets.
Let M be a model of IST. Outer with respect to M means any set and any
relation in the “real world” V, not necessarily a member of M or definable in
M, while external means definable inside M with a st-e-formula. Thus the

(M This question has been solved by Henson and Ross, see B. Zivaljevi¢, J. Symbolic Logic
55 (1990), 604—614. (Added to the translation.)



52 V.G. Kanovei

outer cardinality of a set X € M is the real cardinality of the set of all
M-members of X. It is known how to build up nonstandard models in which
all internal infinite sets have the same outer cardinality, see Ross [33], as well
as models of another kind, where (hyper)finite sets have different outer
cardinalities, see Miller [26]. (Though it is not quite clear whether one may
combine the constructions of Ross and Miller with Nelson’s adequate
ultralimits.)

The external variant of this outer property is contained in the following
hypothesis:

EC: for each pair of infinite sets X, Y there is an external 1 —1 map f: X
onto Y.

Here the exact formulation is necessary:

ViotX Yoty Jp ({<z, y)>: Pz, y, p)} isa 1—1 map of X onto Y)

for some st-e-formula @ with only x, y, p free. (Of course, the straightforward
expression of type VX VY 3@ is incorrect.)

Problem 17. Prove that EC is consistent with IST for some @.

Many similar problems, deeper and more interesting, may be obtained in
the same way.
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