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0. Introduction

The main goal of this article is to generalize the important concept of Radon-Nikodym ideal introduced by Ilijas Farah
and prove that for uncountable abelian Polish groups there always exists an analytic non-Radon-Nikodym ideal; in case of
a o-compact group the ideal is even F.

Let G, H be abelian Polish groups, and % be an ideal over a countable set A. We consider H* as a product group. For
s,t € HA put

Ase={aeA: s(@) #t@}.

Suppose that % is an ideal over A. A map f:G — H” is a 2°-approximate homomorphism iff Afo+f(), fxty) € Z for all
X,y € G. Thus it is required that the set of all a € A such that f;(x) + fa(¥) # fa(x + y) belongs to Z. Here f;:G — H is
the ath co-ordinate map of the map f:G — H”.

And % is a Radon-Nikodym ideal (for this pair of groups) iff for any measurable 2-approximate homomorphism
f:G — HYN there is a continuous exact homomorphism g:G — HN which 2 -approximates f in the sense that
Afw),gr € Z for all x e G. Here the measurability condition can be understood as Baire measurability, or, if G is equipped
with a o -additive Borel measure, as measurability with respect to that measure.

The idea of this (somewhat loose) concept is quite clear: the Radon-Nikodym ideals are those which allow us to approxi-
mate non-exact homomorphisms by true ones. This type of problems appears in different domains of mathematics. Closer to
the context of this note, Velickovi¢ [7] proved that any Baire-measurable FIN-approximate Boolean-algebra automorphism f
of Z(N) (so that the symmetric differences between f(x)U f(y) and f(xUy) and between f(N~\ x) and N~ f(x) are finite
for all x, y € N) is FIN-approximable by a true automorphism g induced by a bijection between two cofinite subsets of N.
Kanovei and Reeken proved in [3] that any Baire-measurable Q-approximate homomorphism f:R — R is Q-approximable
by a homomorphism of the form f(x) = cx, ¢ being a real constant. (Q is the additive group of rational numbers.) See also
some results in [1,4,5].

* Corresponding author.

E-mail address: kanovei@rambler.ru (V. Kanovei).
1 Partially supported by RFFI grants 06-01-00608 and 07-01-00445.
2 Partially supported by RFFI grant 07-01-00445.

0166-8641/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.topol.2008.11.008


http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
mailto:kanovei@rambler.ru
http://dx.doi.org/10.1016/j.topol.2008.11.008

912 V. Kanovei, V. Lyubetsky / Topology and its Applications 156 (2009) 911-914

The term “Radon-Nikodym ideal” was introduced by Farah [1,2] in the context of Baire-measurable Boolean algebra
homomorphisms of £2(N). Many known Borel ideals were demonstrated to be Radon-Nikodym, see [1,2,4,5]. Suitable coun-
terexamples, again in the context of Boolean algebra homomorphisms, were defined by Farah on the base of so-called
pathological submeasures. A different and, perhaps, more transparent counterexample, related to homomorphisms T — TN
(where T =R/N), is defined in [5] as a modification of an ideal introduced in [6]. The next theorem generalizes this result.

Theorem 1. Suppose that H is an uncountable abelian Polish group. Then there is an analytic ideal % over N that is not a
Radon-Nikodym ideal for maps H — HY in the sense that there is a Borel and % -approximate homomorphism f :H — HN not
% -approximable by a continuous homomorphism g : H — HN. If moreover H is o -compact then % can be chosen to be F.

Note that the theorem will not become stronger if we require g to be only Baire-measurable, or just measurable with
respect to a certain Borel measure on H—because by the Pettis theorem any such a measurable group homomorphism must
be continuous.

The remainder of the note contains the proof of Theorem 1. It would be interesting to prove the theorem for non-
abelian Polish groups. (The assumption that H is abelian is used in the proof of Lemma 7.) And it will be interesting to find
non-Radon-Nikodym ideals for homomorphisms G — HY in the case when the Polish groups G and H are not necessarily
equal.

1. Countable subgroup

Let us fix a group H as in the theorem, that is, an uncountable abelian Polish group. By O we denote the neutral element,
by & the group operation, by d a compatible complete separable distance (and we do not assume it to be invariant). The
first step is to choose a certain countable subgroup D C H of “rational elements”.

It is quite clear that there exists a countable dense subgroup D C H satisfying the following requirement of elementary
equivalence type.

(%) Suppose thatn>1, cq,...,cy € D, € is a positive rational, U; = {x € H: d(x, ¢;) < &}, and P(xq,...,X,) is a finite system
of linear equations with integer coefficients, unknowns x1, ..., x5, and constants in D, of the form:

bix1®---®byxy=r, where bjeZ and r € D.

Suppose also that this system P has a solution (x1,...,x;) in H such that x; € U; for all i. Then P has a solution in D
as well. (That is, all x; belong to D N Uj.)

Let us fix such a subgroup D.
2. The index set

Let rational ball mean any subset of H of the form {x € H: d(c,x) < €}, where c € D (the center), and ¢ is a positive
rational number.

Definition 2. Let A, the index set, consist of all objects a of the following kind. Each a € A consists of:
- an open non-empty set U? G Hi,
- a partition U =U{U---U Uy of U onto a finite number n =n® of pairwise disjoint non-empty rational balls U{ C H,
and
- a set of points r{ € U{ N D such that, for all i, j=1,2,...,n:
(1) either r{ & r‘} is rf for some k, and (U} ® U?) nu“*c Uy,
(2) or Ui ®UHNU=9.

Under the conditions of Definition 2, if 0 € U{ then s; = 0: for take j =i.
Lemma 3. A is an infinite (countable) set.

Proof. For any & > 0 there is a € A such that U? a set of diameter < ¢: just take n” =1, r{ =0, and let U = U be the
£-nbhd of 0 in H. O

The next lemma will be used below.

Lemma4.If y1. ..., yn € H are pairwise distinct then there exists a € A such thatn® =nand y; e U} foralli=1,...,n.
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Proof. As the operation is continuous, we can pick pairwise disjoint rational balls B1, ..., B, such that y; € B; for all i and
the following holds: if 1 <i, j <n then either there exists k such that (B; @ Bj) N B C By, where B=B1U---U By, or just
(Bi ® Bj) N B =4. Put U = B;.

To obtain a system of points r{ required, let P(x1,...,X,) be the system of all equations of the form x; + x; = x; with
unknowns x;, X;, Xi, where 1 <1, j,k <n and in reality y; + y;j = yi. It follows from the choice of D that this system has
a solution (rq,...,ry;) such that r; e U N D for all i. In other words we have: r; +r;j =1, whenever y; 4+ y; = yi. Let r{ =r;.

This ends the definition of a € A as required. (An extra care to guarantee that U% = UKI-@ U{ is a proper subset of H is
left to the reader.) O

3. The ideal

Let % be the set of all sets X C A such that there is a finite set u C H satisfying the following: for any a € X we have
ugue.

The idea of this ideal goes back to Solecki [6], where a certain ideal over the set §2 of all clopen sets U C 2N of measure %
(also a countable set) is considered. In our case the index set A is somewhat more complicated.

Lemma 5. % is an ideal containing all finite sets X C A, but A ¢ %&.

Proof. If a € A then the singleton {a} belongs to Z. Indeed by definition U? is a non-empty subset of H. Therefore there
is a point x € H \. U% Then u = {x} witnesses A € Z. To see that & is closed under finite unions, suppose that finite sets
u, v C H witness that respectively X, Y belong to 2. Then w =u U v obviously witnesses that Z=XUY € 2. Finally by
Lemma 4 for any finite u = {x1,...,x;} C H there is an element a € A such that u C U This implies that A itself does not
belong to . O

Proposition 6. & is an analytic ideal. If H is o -compact then % is F.

Proof. We claim that X € 2 iff there are a natural n and a partition X = (J; <<, Xk such that for any k the set Xy < A
satisfies Uank U? # H. Indeed suppose that X € 2 and this is witnessed by a finite set u = {x1,...,x,} € H, that is,
u ¢ U? for all a € X. It follows that X = Ulékén Xk, where X = {a € X: x; ¢ U%}. Clearly x; ¢ Uank U“. To prove the
converse suppose that X = U1<k<n Xy € A and Uank UY% #£H for all k. Let us pick arbitrary points x; € H Uank U for
all k. Then u = {xq, ..., x;} witnesses X € %, as required.

It easily follows that % is analytic.

Now suppose that H = | J,cy He, where all sets H, are compact. Then the inequality Uank UY #£ H is equivalent to
I H ¢ Uank U%). And by the compactness, the non-inclusion H; ¢ Uaexk U? is equivalent to the following statement:
He € Ugex U? for every finite X’ C Xj. Fix an enumeration A = {an}nen. Put A [m={a;: j <m}. Using Kénig's lemma, we
conclude that X € & iff there exist natural ¢, n such that for any m there exists a partition X N (A [ m) = |, Xk, where
for every k we have Hy & |qcx, U“- And this is a Fy definition for 2. O

4. The main result

Here we prove Theorem 1. Define a Borel map f:H — HA as follows. Suppose that xe H and ae A, n® =n. If x € ug,
1<i<n, then put fy(x) =xor{. (& in the sense of the group H.) If x ¢ U® then put simply fq(x) = 0.

Finally define f(x) = {fa(X)}qea. Clearly f is a Borel map.

The maps f; do not look like homomorphisms H — H. Nevertheless their combination surprisingly turns out to be an
approximate homomorphism!

Lemma 7. f : H — HA is a Borel and % -approximate homomorphism.

Proof. Let x, y € H and z=x& y. Prove that the set
Cay = {a: fa®) @ fa(y) # fa(2)}

belongs to 2. We assert that this is witnessed by the set u = {x, y, z}, that is, if a € Cx, then at least one of the points x,
Y, z is not a point in U%. Or, equivalently, if a € A and x, y, z belong to U? then f,(x) ® fa(¥) = fa(2).

To prove this fact suppose that a € A and x, y, z € U°. By definition, U =U{U---U Uy, where n =n® and U} are disjoint
rational balls in H. We have x e U{, y € U‘J?, z e U}, where 1 <1, j,k <n. Then by definition

faw=xer!, fay=yer], fu@)=zor.

Therefore fq(x) ® fa(y) =x® y © (s; ®s;). (Here we clearly use the assumption that the group is abelian.) We assert that
) r‘} =rj—then obviously fs(x) ® fa(y) = fa(2) by the above, and we are done.
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Note that z=x® y € U%, hence (U} @ U?) N U® # @. We conclude that (2) of Definition 2 fails. Therefore (1) holds,
e r? =r}, for some k' and (U} @ U?) NU% C Up,. But the set (U} @ U?) N U® obviously contains z, and z € U. It follows
that k' =k, rj, =17, 11 @ r;? =r}, as required. O

Lemma 8. The approximate homomorphism f is not % -approximable by a continuous homomorphism g : H — HA.

Proof. Assume towards the contrary that g:H — HA is a continuous homomorphism which % -approximates f. Thus if
x € H then the set Ay = {a: fy(x) # g,(x)} belongs to %, where, as usual, g,(x) = g(x)(a). Note that all of these projection
maps gq:H — H are continuous group homomorphisms since such is g itself.

Thus if x € H then Ay € Z, and hence there is a finite set u, C D satisfying the following: if a € A and uy, € U? then
a¢ Ay, that is, fy(x) = gq(x). Put

Xy={xeH: VacA (ucU®= fa(x) = ga(x))}

for every finite u C D. These sets are Borel since so are maps f, g (and g even continuous). Moreover H = |J,cp finite Xu
since every x € H belongs to X,,. Thus at least one of the sets X, is not meager, therefore, is comeager on a certain rational
ball B C H. Fix u and B. By definition for comeager-many x € B and all a € A satisfying u C U% we have f;(x) = gq(x).

Arguing as in the proof of Lemma 4, we obtain an element a € A satisfying the following properties: u C U%, U N B # @,
but the set B \. U? is non-empty and moreover is not dense in B. Fix such a. Thus there exists a non-empty rational ball
B’ C B that does not intersect U%. By definition f,(x) = O for all x € B/, and hence g,(x) = O for comeager-many x € B’ by
the choice of B. We conclude that g,(x) = O for all x € B in general, because g is continuous.

Now, let n® =n. Then U® =U§ U--- U Uj. Recall that the intersection B N U® of two open sets is non-empty by the
choice of a. It follows that there exists an index i, 1 <i<n, and a non-empty rational ball B” € BN U{. Then by definition
fa(x) =x o for all x € B”, where r =r{. Therefore g,(x) =x&r for comeager-many x € B”, and then g,(x) =x & for all
x € B” since g is continuous.

To conclude, g4, a continuous group homomorphism, is constant O on a non-empty open set B’, and is bijective on
another non-empty open set B”. But this cannot be the case. O

Lemmas 7 and 8 complete the proof of Theorem 1.
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