
TWOBOX SOFTWARE: DESCRIPTION AND USER’S GUIDE

Table of contents
1. General..1

2. Functionals of the system quality ...2

3. Input data ..4

4. Command line options ..4

5. Input file..6

6. Output data..7

7. Software distribution package ..13

8. Installation and checking ..13

9. How to use TwoBox effectively ...14

10. References...15

1. General
The program TwoBox v3.17 has been developed for finding an aggregate (a system, or signal)

of similar sites in the set of given sequences composed of the fixed alphabet. One site (or none) is
chosen from each sequence, and those sites should be as similar as possible to each other. The
program primarily tries to find such site in every sequence, but it also may reject few sequences if
such system is better in terms of the functional used (see Section 2).

The sought-for site can consist of a single box (ie., contiguous segment of the sequence), or of
two boxes separated by some number of characters (a linker). The length of a linker is fixed or
varies within the given interval. Each box length may be specified independently of other.

The program also allows user to search for a signal in presence of known information about
conserved position(s) within a box. Such data may be submitted in the form of a motif for a box (or
boxes). Detailed information about the program arguments and input data see in Sections Error!
Reference source not found.–Error! Reference source not found..

TwoBox is the elaboration of our previous heuristic algorithm [1-3] for finding one-box signal
by global optimization of predefined functional of the signal quality. The result is a quasi-optimal
solution with the greatest value of the functional over all local maxima reached during the search,
which is limited by internal criteria or/and duration or/and number of the algorithm steps. Output
data of the program is described in Section 6.

The algorithm was extended to the two-box case in a straightforward manner. Recall that the
original algorithm widely uses the basic operation of trying all possible sites of the candidate box
along the whole sequence. The operation examines 1m l− + sites, where m is the sequence length,
and l is the box length. If the sought-for site consists of two boxes with the lengths ,l l′ ′′ separated
by a linker of exactly d characters, the similar search is equivalent to finding a box with the length
l l l′ ′′= + in a sequence of m d− characters, which involves () 1m d l− − + variants. This search can
be treated as a single-box case for the sequence produced from original one by an implicit mapping.
If the linker length varies in the interval []min max,d d , the overall number of variants to examine will
be

TwoBox v.3.17 – Description & User's Guide 2

[]
max

min

() 1 (1)
d

d d
m d l m l D d D

=

− − + = − + ⋅ − ⋅∑ ,

where ()min max
1
2

d d d= + is the average length of the linker, and max min 1D d d= − + is the

uncertainty of the length. Disregarding the latter term, the presence of the linker length uncertainty
D is computationally equivalent to the extension of a sequence by a factor of D as compared to the
fixed length linker. Such extension of the sequence would be the result of implicit mapping
embedded into the algorithm.

As mentioned in [1, 3], the computational complexity of the single-box algorithm is estimated
as squared number of the sequences and cubed average length of the sequence. Therefore, two-box
extension of the algorithm will have the same complexity if the linker length is known exactly, and
the complexity grows as 3D if uncertainty D of the length exists.

Due to high computational complexity of the algorithm (that rapidly grows as the uncertainty of
the linker length increase), the program TwoBox from the very beginning was intended for parallel
cluster with intra-processor communications via MPI v.1.1 or later [4, 5]. Any number of
processors will do; the program can bring into play all CPU available, and calculation time will
decrease approximately s-1 times, where s is the number of CPUs [2]. At least two logical
processors are required, so the program is capable of working on typical dual-core PC.

The program is provided as an executable for x86 platform. It is intended for a cluster
consisting of several PCs with Windows, interconnected by TCP/IP LAN. The MPI environment is
established with use of the free software MPICH2 v.1.2 (by Argonne National Laboratory). This
product (or later version of it) have to be installed in all computers of the cluster.

TwoBox uses a command line interface; it has to be run from a command processor of the
operating system. The programming language is С, the compiler is Microsoft Visual Studio 2005
Service Pack 1, name of the executable – twobox.exe. Target CPU is Intel 32-bit. The operating
systems tested were Microsoft Windows XP Service Pack 3 and Microsoft Windows Server 2003
Service Pack 2. Using TwoBox on other processors and/or operating systems is certainly possible,
but may require to re-compile the program or to carry out additional testing.

Software developer: Dr. Lev Rubanov, leading scientist, IITP RAS (Kharkevich Institute).
Contact e-mail: rubanov@iitp.ru

2. Functionals of the system quality

The algorithm uses two quality functionals; both are based on Hamming distance: we use the
total number of equal corresponding letters of two candidate sites as a likeness measure. Let n
source sequences are given, each one consisting of not greater than m letters. The algorithm aims to
choose a site in each sequence (maybe except few sequences) such that the entire system of sites
maximizes the overall quality. The site may be either a box w of the length l (single-box case) or
two boxes w', w" with the respective lengths l', l" separated by a linker of the length []min max,d d d∈
(two-box case). The method of quality computation is as follows.

In single-box case, the quality of the site wk chosen in the kth sequence, relative to the whole
system, is calculated as

 ()
1

(,)
n

k i k
i
i k

q l H w w
=
≠

= −∑ , (1)

where H(wi, wk) is Hamming distance between the boxes wi, wk (the number of equal letters at
corresponding positions in these boxes.

In two-box case, the quality of the site, i.e. pair of boxes ,k kw w′ ′′ , relative to the whole system of
such pairs, is calculated by the formula

http://www.mcs.anl.gov/mpi/mpich2
mailto:rubanov@iitp.ru

TwoBox v.3.17 – Description & User's Guide 3

 ()
1

(,) (,) () ()
n

k i k i k i k
i
i k

q l l H w w H w w P d P d
=
≠

′ ′′ ′ ′ ′′ ′′= + − − − −∑ , (2)

where function P(d) determines the penalty for a deviation of the linker length from the expected
value between dmin and dmax. The specific function is the algorithm parameter, in particular, it can be
null function.

Eqs. (1, 2) are applied in absence of a priori information about specific positions in the box or
boxes. If we know letters that must (or should) be at certain positions of the box, the algorithm
allows to specify this information in the form of sought-for motif. The motif is a string of the same
length as the box; each character is either a letter from the sequence alphabet (upper and lower case
letters are processed differently) or a dummy character (dot/asterisk/question mark) which means no
information about this letter. One or two motifs may be used for two-box sites.

In single-box motif case, the site quality Eq. (1) transforms into the formula

1 1

(,) ()
n l

k i k kj kj
i j
i k

q l H w w
= =
≠

⎛ ⎞
= − + δ −Δ⎜ ⎟

⎝ ⎠
∑ ∑ , (3)

where kjδ = δ if jth letter of the site chosen from kth sequence is equal to jth letter of the motif
(irrespectively of its case), otherwise, 0kjδ = ; kjΔ = Δ if jth letter of the site chosen from kth
sequence is not equal to jth letter of the motif (specified in uppercase), otherwise, 0kjΔ = . In other
words, the site quality is added a prize δ for each motif-matching letter and is subtracted a penalty Δ
for each letter mismatching the uppercase motif letter. Constants δ and Δ are the algorithm
parameters.

In two-box motif case, the site quality Eq. (2) transforms into the formula

1 1 1
(,) (,) () () () ()

n l l

k i k i k i k kj kj kj kj
i j j
i k

q l l H w w H w w P d P d
′ ′′

= = =
≠

⎛ ⎞
′ ′′ ′ ′ ′′ ′′= + − − − − + δ − Δ + δ −Δ⎜ ⎟

⎝ ⎠
∑ ∑ ∑ , (4)

where the first sum in parentheses is calculated over kw′ box, the second sum – over kw′′ box, and
notations ,kj kjδ Δ are the same as in Eq. (3). One of the sums vanishes if a motif is given only for
one box. Finally, if the result of calculation by Eq. (2)–(4) is a negative amount, the algorithm
deems null quality of the site.

Once the quality of all sites has been calculated by Eq. (1)–(4), the primary functional of the
whole system quality is defined by equation

 1
1

1 max
1

n

k
k

Q q
P =

= →
− ∑ , (5)

where P is the total number of nonempty sites chosen from all sequences (capacity of the system).

The secondary functional of the whole system quality is defined as

 2
1

1 max
(1)

n

k
k

Q q
P P =

= →
− ∑ . (6)

The functional Q1 characterizes the average quality of the system sites, and the functional Q2
describes the average likeness of the sites. In the extreme case of equal sites, the peaks of both
functionals coincides. In other cases, the algorithm primarily uses Q1 for optimization, taking Q2
into account if Q1 gives equal values.

As optional alternative for a motif, the algorithm provides functional Q1 in modified form
aimed at searching more conserved sites. The following functional is used in single-box case:

 1
1 1

1
1

n l

k j
k j

Q q c
P = =

= +
− ∑ ∑ . (7)

TwoBox v.3.17 – Description & User's Guide 4

In two-box case we use the formula

 1
1 1 1

1
1

n l l

k j j
k j j

Q q c c
P

′ ′′

= = =

= + +
− ∑ ∑ ∑ . (8)

Values cj in Eqs. (7, 8) are produced by the function с(r) that decreases monotonically as the
system becomes less conserved at jth position of the sites. In other words, each position with equal
letter in all sites is awarded the maximum prize, and this prize decreases if different letter occurs in
one or more sequence. Specific function с(r) is the algorithm parameter. Current version of the
TwoBox uses a stepwise function with three values: for totally conserved position, for conserved
position with given small number of exceptions allowed, and null value otherwise. We accentuate
that the quality functional in the form Eq. (7, 8) may be applied only if sites are searched without
use of motifs.

3. Input data

The program TwoBox gets input data through the command line arguments. The command line
has the following format (optional arguments are bracketed):

TWOBOX [options] infile [outfile]

• options allow a user to change default mode or parameter of the algorithm; each option
must start from hyphen (-) or slash (/) character; several options must be separated by blanks;

• infile must be a name of the input data file (with optional absolute or relative path)
which contains one or several sets of source sequences in FASTA format. If no path is given, the
program will seek for the file in current directory;

• optional argument outfile specifies a name of the file for the program results. If the
argument is omitted, the program will use the input data file name with additional extension “.out”.
Like infile, this argument may include a path; otherwise, the current directory is used.

In accordance with Windows rules, the command line arguments are case insensitive. If the
file/path name contains blanks, the corresponding argument should be enclosed in double quotes.

Formats of the input data are described in Sections 4, Error! Reference source not found..
Brief help on program arguments and options can be obtained by the command TWOBOX -h or
TWOBOX -? (TWOBOX /h and TWOBOX /? produce the same result).

4. Command line options
The program TwoBox accepts the following options (disregarding a letter case):

-a If specified, the output file will be opened in append mode (may be helpful for scripting);
otherwise, the existing file will be overwritten.

-acid If specified, the source sequences use the alphabet of amino acids (default is the nucleotide
alphabet. See Section Error! Reference source not found. for detail.

-ba<number> Value cj of the function c(r) for totally conserved position (see Section 2); default
value is 3.

-bc<number> Value cj of the function c(r) for conserved position with exceptions (see Section 2);
default value is 1.

-bx<number> Number of maximum allowed exceptions to consider a position of the site as
conserved (see Section 2); default value is 1.

-c<number> This option controls data output to stdout from root branch of the program:
 -c0 = less information, -с1 = standard, -с2 = more data. Helpful for monitoring.

TwoBox v.3.17 – Description & User's Guide 5

-d<number> This option controls diagnostic data output from a secondary branch of the program
to the corresponding result file. Once the program terminates, these file are either removed,
or appended to the root branch result file, or remain in place, depending on -z option (see
below). No diagnostics is included by default, and found best solution(s) will be the only
output of the program. This parameter can be helpful for the program analysis and debug.

-f If specified, the program writes the entire sequence of found solutions into a file in CSV
format to import them in the spreadsheet application (eg. Excel).

-g<number> This option controls the aggregation of signal quality values within a Q-list [2]:
 -g1 (or -gs) – all values are summed (default mode),
 -g2 (or -gm) – the best quality is chosen.

-h Show help on command line arguments of the program.

-i<number> Maximum number of the algorithm iterations to perform within a Q-list until better
value of the system quality functional is reached. The number is used in criterion 1 of the
algorithm termination. The value of 5 is used as default, but one should increase it to e.g.
(0.5…2)·n for n>16.

-j<mode> This option determines how to consider the site novelty in the algorithm termination:
 -j0 (or -ji) – do not take the novelty factor into account for the
 -j1 (or -ja) – consider the site novelty in the criterion 1 check,
 -j2 (or -jr) – reset a counter if a new site is found (a threshold for that counter is set by

option -i).

-l<number> The length l of single box (or l' of first box in two-box mode) of the sought-for sites
(default 18).

-ll<number> The length l" of second box of the sought-for sites in two-box mode (default 0, and
the program operates in single-box node).

-m’string' The motif of single (or first) box of the sought-for sites (none by default). The string
may consist of letters from the sequence alphabet (case sensitive) and dummy characters –
dot, asterisk, question mark (see the motif character interpretation in Section 2). The string
length must be equal to the value of -l option.

-mm’string' The motif of second box of the sought-for sites (none by default). The string is similar
to that of -m option, but its length must be equal to the value of -ll option.

-mb<number> Value of prize δ in formulas Eqs. (3, 4); default is 1.

-mp<number> Value of penalty Δ in formulas Eqs. (3, 4); default is 5.

-n<number> Maximum length of the sequence name to print in results. By default, no truncation
is applied.

-p<number> Minimum number of the sequence couples to use as tree edges at assembly phase of
the algorithm. This parameter is used in the criterion 2 of the algorithm termination. If used
in the current version, this parameter should be specified as -p0 which means using of all
n(n–1)/2 couples.

-q<number> This option determines the maximum allowed number of permutations in Q-list, in
order to make the criterion 1 more stringent. Default value -q0 is interpreted as absence of
such limitation.

-r<number> The number of best signals output in the result file (3 by default). Due to this option,
the user can choose the most biologically sound solution from found by the algorithm.

TwoBox v.3.17 – Description & User's Guide 6

-smin<number> Minimum allowed length mind of the linker between the boxes in two-box case
(default is 16).

-smax<number> Maximum allowed length maxd of the linker between the boxes in two-box case
(default is 22).

-spen"string" This option allows user to specify the linker length penalty function P(d) (see
Section 2 for detail). The double quoted string contains values of the function separated by
commas. First value corresponds to the length mind d= , last value – to maxd d= . The string
must contain max min 1D d d= − + values; string "8,0,0,2,4,6,8" is used by default.

-t<number> The minimum permitted likeness of two sites, i.e., the number of corresponding
positions that mismatch. By default, in the single-box mode the algorithm uses the value l/2,
and the value (l'+l")/2 is used in the two-box mode.

-u<number> The limit number of the algorithm iterations to perform (i.e., the number of
permutations to check from totality of !n). Default limit is 10000.

-v<number> The number of Q-list items generated at the time, to increase the algorithm stability
(by default, the bunch consists of 3 permutations).

-w<number> Maximum duration of the algorithm work (the number of minutes). The default
value -w0 means no time limit.

-x<number> This option sets how the algorithm will calculate the likeness of candidate sites:

 -x0: calculating “on the fly” whenever needed. This mode of operation would be helpful
in insufficient memory conditions, because it is still more effective than use of likeness
matrix partly stored in the page file;

 -x1: the algorithm starts with the computation of triangle pairwise likeness matrix for all
candidate sites. Then it uses the matrix during whole operation. This default mode makes
the algorithm 3–4 times faster, but the matrix occupies approximately m2·n2 bytes (where n
is the mapped sequence length, see Section 1). For instance, the algorithm needs at least
1 gigabyte memory per processor, in order to process 30 sequences with the mapped length
of 1000.

-y<number> This option specifies the minimum allowed multiplicity of sequence couples
coverage. Such parameter of criterion 2 determines the length of P-list [2]. By default,

2log n will be used as the value (if n is not a power of two, the closest greater power-of-two
number is used).

-z<number> This option allows user to choose a disposition of the result files of secondary
branches on completion of the algorithm:

 -z0 (or -zr) – remove those output files;
 -z1 (or -za) – append those files to the main result file, then remove the files themselves;
 -z2 (or -zs) – result files of secondary branches remain in place.

5. Input file

The name of input data file must be specified by argument infile in the command line. This
file contains a set of source sequences in FASTA format (with some exceptions). Each sequence is
represented by exactly two lines (internal line breaks are prohibited, but the line length is not
limited):

- first line starts with character ‘>’ followed by the sequence name;
- second line is the sequence itself, i.e., a case insensitive string of the fixed alphabet. Default is

TwoBox v.3.17 – Description & User's Guide 7

the nucleotide alphabet {A, C, T, G, U}, where letters T and U are deemed equal1. In order to use
the amino acid alphabet {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}, the user have
to specify –acid option in the command line. The sequence may include gap characters (hyphen,
underscore or equals sign), but blanks and tabs are not allowed.

The program TwoBox supports processing of multiple data sets in single run, provided that
other options have the same values. One set of sequences should be separated from another set by at
least one blank line. No comments are allowed in the file.

The program checks that input data file conforms to the above format, and outputs a message in
case of any error.

6. Output data

6.1 Return code
Main function of the program returns a value which can be a sum of signals listed in Table 1.

Such return code may be helpful in automated processing with use of scripts.

Table 1. TwoBox return codes

Code Symbol Description
0 OK Normal completion of the program
1 ERARG Error in command line arguments
2 ERDATA Error in the input data file
4 ERIO Input/output error
8 EODATA End of the input data file
16 ERMEM Not enough memory or input data error
32 HELP Help was requested
64 EDEBUG (Reserved)
128 ERINT Internal error of the algorithm
256 ERMPI MPI error

6.2 Result file
The program outputs the table of found signals to this file. Each signal is represented by the

sought-for site position in each sequence. The number of signals to include in the table is
determined by -r option in the command line (3 by default). The signals are given in descending
order of value of the quality functional Eq. (5) or Eqs. (7, 8); if the values are equal, in descending
order of average likeness functional Eq. (6) value. The file is in usual text format (see Fig. 1).

Each table starts with a heading line which describes that solution in general. For example, first
line in Fig. 1 contains the following information:
• Best quality result – the solution is better with regard to the quality functional Eq. (5, 7, 8).

The wording will be “Best avg proximity result” if the sulution is better with regard to the
likeness functional Eq. (6);

• #1 – number of the solution in descending order of signal quality;
• [18/22] – serial number of the algorithm iteration, where this solution was found, and overall

number of iterations performed (iterations are numbered starting from 0);
• 7 – capacity of the system (see Section 2);
• 59.33 – value of the functional Eq. (5), (7) or (8);
• 8.47 – value of the functional Eq. (6).

1 Extensions of the nucleotide alphabet are not supported by current version of the program.

TwoBox v.3.17 – Description & User's Guide 8

Best quality result #1 [18/22] (power: 7, quality: 59.33, avg proximity: 8.47)
 1:XX|PH0858[0142] aaaaaatagaaa (52, 8.66)
 2:XX|PH0859[0006] aaaaagtattaa (53, 8.83)
 3:XX|PH1075[0058] aaaatctaccat (42, 7.00)
 4:XX|PH1086[0176] aaaatatataaa (55, 9.16)
 5:XX|PH1087[0062] aaaaattattaa (53, 8.83)
 6:XX|PH1091[0005] aaaagatattcc (46, 7.66)
 7:XX|PH1093[0167] aaaagatataaa (55, 9.16)

Best quality result #2 [19/22] (power: 7, quality: 59.00, avg proximity: 8.42)
 1:XX|PH0858[0142] aaaaaatagaaa (52, 8.66)
 2:XX|PH0859[0006] aaaaagtattaa (52, 8.66)
 3:XX|PH1075[0056] ataaaatctacc (41, 6.83)
 4:XX|PH1086[0176] aaaatatataaa (54, 9.00)
 5:XX|PH1087[0062] aaaaattattaa (52, 8.66)
 6:XX|PH1091[0005] aaaagatattcc (48, 8.00)
 7:XX|PH1093[0167] aaaagatataaa (55, 9.16)

Best quality result #3 [9/22] (power: 7, quality: 58.66, avg proximity: 8.38)
 1:XX|PH0858[0142] aaaaaatagaaa (51, 8.50)
 2:XX|PH0859[0006] aaaaagtattaa (53, 8.83)
 3:XX|PH1075[0144] taaagtttctaa (40, 6.66)
 4:XX|PH1086[0176] aaaatatataaa (53, 8.83)
 5:XX|PH1087[0062] aaaaattattaa (54, 9.00)
 6:XX|PH1091[0005] aaaagatattcc (46, 7.66)
 7:XX|PH1093[0167] aaaagatataaa (55, 9.16)

Fig. 1. Example of the result file in single-box mode.

Then one line per source sequence follow. Items of the line have the following meaning (we use

the second line in Fig. 1 as an example):
• 1 – serial number of the source sequence in whole set;
• XX|PH0858 – name of the sequence;
• [0142] – position (starting from 1) where 5'-edge of sought-for site was found in the sequence;
• aaaaaatagaaa – a box representing the sought-for site;
• 52 – quality of the site according Eq. (1) or (2);
• 8.66 – average likeness of the site relative to other sites of the system according Eq. (4).

If such line contains only number and name of the sequence, it means that no site was chosen
from the sequence in this solution (i.e., the system capacity P < n).

Example of the result file in two-box mode is given in Fig. 2. The only difference from above
format is that two positions are shown in brackets (5'-edges of two boxes), and the site is presented
as those boxes separated by the linker length.

The described information will always appear in the result file. Depending on chosen diagnostic
mode (see option -d in Section 4), the file may also contain various messages, intermediate
solutions, likeness matrix, etc. Some of those messages are described in the next section.

6.3 Output to console
The program TwoBox displays messages on the console during its operation. Specific contents

depends on -с parameter specifed in command line. An example of default console log is shown in
Fig. 3. Most of possible messages are described below.

Number of parallel tasks: 1+kk

This message informs that the program works in parallel on kk+1 processors (the root branch and
kk secondary branches).

TwoBox v.3.17 – Description & User's Guide 9

Best quality result #1 [1/54] (power: 12, quality: 189.63, avg proximity: 15.80)
 1:Citrus sinensis psbI [0007;0031] ttgatg-18-tataaa (164, 14.90)
 2:Aethionema cordifolium psbI [0007;0030] ttggta-17-tttggt (143, 13.00)
 3:Aethionema grandiflorum psbI [0007;0030] ttggta-17-tttggt (143, 13.00)
 4:Arabidopsis thaliana psbI [0007;0031] ttggta-18-tataaa (184, 16.72)
 5:Arabis hirsuta psbI [0007;0031] ttggta-18-tataaa (184, 16.72)
 6:Barbarea verna psbI [0007;0031] ttggta-18-tataaa (184, 16.72)
 7:Capsella bursa-pastoris psbI [0007;0031] ttggta-18-tataaa (184, 16.72)
 8:Crucihimalaya wallichii psbI [0006;0030] tttgta-18-tataaa (164, 14.90)
 9:Draba nemorosa psbI [0007;0031] ttggta-18-tataaa (184, 16.72)
 10:Lepidium virginicum psbI [0007;0031] ttggta-18-tataaa (184, 16.72)
 11:Lobularia maritima psbI [0007;0031] ttggta-18-tataaa (184, 16.72)
 12:Nasturtium officinale psbI [0007;0031] ttggta-18-tataaa (184, 16.72)

Best quality result #2 [34/54] (power: 12, quality: 188.00, avg proximity: 15.66)
 1:Citrus sinensis psbI [0007;0031] ttgatg-18-tataaa (165, 15.00)
 2:Aethionema cordifolium psbI [0007;0030] ttggta-17-tttggt (142, 12.90)
 3:Aethionema grandiflorum psbI [0007;0030] ttggta-17-tttggt (142, 12.90)
 4:Arabidopsis thaliana psbI [0007;0031] ttggta-18-tataaa (183, 16.63)
 5:Arabis hirsuta psbI [0007;0031] ttggta-18-tataaa (183, 16.63)
 6:Barbarea verna psbI [0007;0031] ttggta-18-tataaa (183, 16.63)
 7:Capsella bursa-pastoris psbI [0007;0031] ttggta-18-tataaa (183, 16.63)
 8:Crucihimalaya wallichii psbI [0007;0030] ttgtat-17-tataaa (155, 14.09)
 9:Draba nemorosa psbI [0007;0031] ttggta-18-tataaa (183, 16.63)
 10:Lepidium virginicum psbI [0007;0031] ttggta-18-tataaa (183, 16.63)
 11:Lobularia maritima psbI [0007;0031] ttggta-18-tataaa (183, 16.63)
 12:Nasturtium officinale psbI [0007;0031] ttggta-18-tataaa (183, 16.63)

Fig. 2. Example of the result file in two-box mode.

Job accepted (n=xx m<=yy l=zz)

This confirmation appears after the next portion of data was read from the input file. Here, xx is a
number of source sequences; yy is the maximum length of a sequence; zz is the length of sough-for
sites (a sum of two box lengths in two-box case).

ttt s) Signal from [Tkk] for Pii(nn) (pow=xx q=yy avprx=zz new=mm)
This message appears after each iteration of the algorithm that was executed for a permutation from
the P-list. Here, ttt is elapsed time in seconds (hereinafter, “elapsed” means time since start of
current data portion processing); kk is the number of secondary branch which found this signal; ii is
sequential number of the permutation in the P-list; nn is the iteration number (starting from 0); xx is
capacity of the signal; yy is quality of the signal; zz is average likeness of sites; mm is the number
of sites found in the first time.

ttt s) Signal from [Tkk] for Qii,jj(nn) (pow=xx q=yy avprx=zz new=mm)
This message appears after each iteration of the algorithm that was executed for a permutation from
a Q-list. Here, ttt is elapsed time in seconds; kk is the number of secondary branch which found this
signal; ii is the number of that Q-list; jj is sequential number of the permutation in that Q-list; nn is
the iteration number; xx is capacity of the signal; yy is quality of the signal; zz is average likeness
of sites; mm is the number of sites found in the first time.

Terminated due to P-list end
The algorithm terminated because P-list has finished and all Q-lists have been processed.

Terminated due to iteration limit
The algorithm terminated because maximum number of iterations were done.

Terminated due to time limit
The algorithm terminated because specified time has been exhausted.

TwoBox v.3.17 – Description & User's Guide 10

(C) 2009, Laboratory of Mathematical Methods and Models in Bioinformatics
Institute for Information Transmission Problems, Russian Academy of Sciences
Program for specific Two Box Search (multiple CPU, v.3.17) L.Rubanov, 2009

Number of parallel tasks: 1+4
Job accepted (n=7 m<=200 l=12)
6 s) Signal from [T3] for P2(2) (pow=7 q=55.66 avprx=7.95 new=7)
6 s) Signal from [T1] for P0(0) (pow=7 q=56.00 avprx=8.00 new=3)
6 s) Signal from [T2] for P1(1) (pow=7 q=57.00 avprx=8.14 new=2)
6 s) Signal from [T4] for P3(3) (pow=7 q=56.00 avprx=8.00 new=2)
12 s) Signal from [T1] for Q0,0(5) (pow=7 q=57.33 avprx=8.19 new=5)
12 s) Signal from [T2] for Q1,0(6) (pow=7 q=54.66 avprx=7.80 new=2)
12 s) Signal from [T3] for Q2,0(4) (pow=7 q=57.66 avprx=8.23 new=7)
12 s) Signal from [T4] for Q3,0(7) (pow=7 q=56.00 avprx=8.00 new=3)
18 s) Signal from [T2] for Q1,1(9) (pow=7 q=57.00 avprx=8.14 new=0)
18 s) Signal from [T1] for Q0,1(8) (pow=7 q=57.00 avprx=8.14 new=2)
18 s) Signal from [T4] for Q3,1(11) (pow=7 q=55.66 avprx=7.95 new=1)
18 s) Signal from [T3] for Q2,1(10) (pow=7 q=56.00 avprx=8.00 new=6)
24 s) Signal from [T2] for Q1,2(12) (pow=7 q=54.00 avprx=7.71 new=1)
24 s) Signal from [T1] for Q0,2(13) (pow=7 q=55.33 avprx=7.90 new=1)
24 s) Signal from [T4] for Q3,2(14) (pow=7 q=56.00 avprx=8.00 new=0)
25 s) Signal from [T3] for Q2,2(15) (pow=7 q=58.66 avprx=8.38 new=2)
30 s) Signal from [T2] for P4(16) (pow=7 q=59.00 avprx=8.42 new=7)
31 s) Signal from [T4] for P5(18) (pow=7 q=54.66 avprx=7.80 new=1)
31 s) Signal from [T1] for Q0,3(17) (pow=7 q=57.33 avprx=8.19 new=0)
32 s) Signal from [T3] for Q2,3(19) (pow=7 q=58.66 avprx=8.38 new=0)
36 s) Signal from [T4] for Q5,0(21) (pow=7 q=56.33 avprx=8.04 new=0)
37 s) Signal from [T2] for Q4,0(20) (pow=7 q=59.33 avprx=8.47 new=1)
37 s) Signal from [T1] for Q0,4(22) (pow=7 q=53.66 avprx=7.66 new=7)
38 s) Signal from [T3] for Q2,4(23) (pow=7 q=54.66 avprx=7.80 new=5)
43 s) Signal from [T4] for P6(24) (pow=7 q=59.00 avprx=8.42 new=1)
43 s) Signal from [T2] for Q4,1(25) (pow=7 q=57.00 avprx=8.14 new=2)
44 s) Signal from [T1] for Q0,5(26) (pow=7 q=57.33 avprx=8.19 new=0)
44 s) Signal from [T3] for Q2,5(27) (pow=7 q=59.33 avprx=8.47 new=1)
47 s) Signal from [T4] for Q6,0(28) (pow=7 q=59.33 avprx=8.47 new=2)
47 s) Signal from [T2] for Q4,2(29) (pow=7 q=55.66 avprx=7.95 new=2)
Terminated due to P-list end
Best quality result #1 [20/30] (power: 7, quality: 59.33, avg proximity: 8.47)
Best quality result #2 [16/30] (power: 7, quality: 59.00, avg proximity: 8.42)
Best quality result #3 [24/30] (power: 7, quality: 59.00, avg proximity: 8.42)
RC: OK (time: 47 sec)

Global RC: OK (time: 47 sec)

Thank you for using the program.

Fig. 3. Example of the program output to console.

Terminated due to unknown reason
The algorithm terminated because of some reason which may be explained by the program return
code or other messages.

Best quality result #kk [mm/nn] (power: xx, quality: yy, avg proximity: zz)
General characteristics of finally chosen best solution: kk is a number of the solution in descending
order of signal quality; mm is serial number of the algorithm iteration, where this solution was
found; nn is overall number of iterations performed; xx is capacity of the system; yy is the signal
quality; zz is average likeness of the signal sites.

Best avg proximity result #kk [mm/nn] (power: xx, quality: yy, avg proximity: zz)
Similar to the previous message; only a reason of choice differs.

TwoBox v.3.17 – Description & User's Guide 11

RC: xx (time: yy sec)
This message summarizes results of processing for current data set. Here, xx is a symbol of return
code (see Table 1); yy is the elapsed time in seconds.

Global RC: xx (time: yy sec)
Similar to the previous message, but appears after all input data portions have been processed. Here,
yy is overall working time since program start.

P-list consists of xx permutations
This message informs that the P-list consisting of хх permutations was built based on criterion 2.

Generate xx permutation(s) for Qyy list
This message informs that the Q-list with number yy that consists of хх permutations was built
based on criterion 1.

ttt s) Send to task [Tkk] permutation Pii(nn): x1 x2 ... xn
This message appears when the algorithm transfers a permutation from P-list to the free secondary
branch for processing.

ttt s) Send to task [Tkk] permutation Qii,jj(nn): x1 x2 ... xn
Similar to the previous message, but the permutation is taken from Q-list. Here, ttt is elapsed time
in seconds; kk is a number of the secondary branch; ii is a number of the Q-list; jj is a number of the
permutation in the Q-list; nn is the current iteration number; x1 x2 ... xn is transferred permutation
of the sequence numbers.

Stop P-list processing; task [Tkk] free
Informs that entire P-list has been processed, and secondary branch with number kk became free.

Stop Qxx list (length nn); task [Tkk] free
Informs about closing the Q-list with number xx after processing of nn permutations, because
criterion 1 is met. As a result, the secondary branch with number kk becomes free.

Recurrent permutations rejected: xx
During the algorithm operation, xx permutations recur and were rejected.

The algorithm needs at least 2 tasks!
The program was run on single processor and cannot proceed.

Error xx in a secondary task
The error with code xx occurred in a secondary branch of the program (see Table 1 for error codes).

Error xx creating result
The error with code xx occurred during selection of the best result (see Table 1 for error codes).

Invalid argument "xxx"
Erroneous argument xxx was specified in the command line.

[Tkk]: Cannot open input data file "xxx"
This message informs about an error which occurred in the secondary branch with number kk, when
the program was opening the input data file named ххх (the file does not exist or already used by
other program or operating system).

[Tkk]: Cannot open output data file "xxx"
This message informs about an error which occurred in the secondary branch with number kk, when
the program was opening or creating output file named ххх for the program results.

Cannot open history file "xxx"
The program cannot open the history file with name ххх to write the chronological list of found
solutions.

TwoBox v.3.17 – Description & User's Guide 12

6.4 History file
Unlike the result file which contains only several best solutions (depending on -r option in the

command line), the history file contains entire list of found solutions in chronological order. This
file will be written if the program TwoBox is run with the command line option -f; it may be
helpful in analysis of the algorithm behavior. The file has CSV (comma-separated values) format to
facilitate import to a spreadsheet application, such as Excel. Each line contains the data for one
signal and uses Tab character as field delimiter; character fields are enclosed in double quotes. The
order and contents of the fields are shown in Table 2. The very first line of the file contains field
headings rather than values. These headings are given in the first column of the table.

Таблица 2.

Type,
“heading”

Description Notes

Numeric,
"#"

Sequential iteration number of the algorithm Such number is assigned at the
permutation generation, therefore,
the file may be unordered by this
field, due to different duration of
parallel branches of the program

Numeric,
"P"

Permutation number in the P-list or the number
of Q-list, depending on the next field

The numeration starts from 0

Numeric,
"Q"

Permutation number in the Q-list with number
from the previous field, or -1 to indicate that
the permutation belongs to the P-list

The numeration starts from 0

Numeric,
"Pwr"

Signal capacity (the number of source
sequences from where the sites were selected)

Numeric,
"New"

Number of the sites that appear in the first time
in this signal

Numeric,
"Qt"

The signal quality as per Eq. (5) or (7) or (8)

Numeric,
"QtAvg"

Average likeness of the signal sites as per
Eq. (6)

Numeric,
"W1"

Position of the box in first source sequence
(starting from 1). In two-box mode, this field
contains two comma separated numbers which
are the positions of two boxes

String,
"name of the
sequence"

Sought-for site (name of the sequence is shown
as the column heading). In two-box mode, the
two sites are shown in the format like in Fig. 2

Numeric,
"Qw1"

The site quality according to Eqs. (1)–(4)

Numeric,
"QwA1"

Average likeness of the site with regards to
other sites of this signal

This quadruple field repeats n times
(n is the number of sequences).
Index 1 in the headings change
correspondingly up to n.

Numeric,
"p1"

A number between 1 and n

...
Numeric,
"pn"

A number between 1 and n

These n fields represent a
permutation of source sequence
numbers that led to this signal

Thus, each line contains 5n+7 fields, where n is the number of sequences in the source data set.

TwoBox v.3.17 – Description & User's Guide 13

7. Software distribution package

The software distribution package is a compressed file twobox.zip which contains the files
listed in Table 3.

Table 3

File name Description
twoboxХХХ_YY.pdf This document in different languages (ХХХ is version number, YY is

country code)
twobox.exe Executable module for x86 Windows architecture with mpich2 v1.2

installed
twobox.exe.manifest System description of the executable module
vcredist_x86.exe C++ redistributable libraries by Microsoft. If a computer has not

Microsoft Visual Studio 2005 Service Pack 1 installed, you should run
once this executable in that PC

*.txt Examples of TwoBox input file with a set of sequences. The files named
*_MA.txt contain the same sequences in multiple alignment form for the
sake of clearness

test.bat An example of the script to run the program with test input data
*.out Typical output files resulted from the script execution

Additional files may also be available from the software download page:

mpich2_XXX_x86.zip To run the program TwoBox on the PC without MPICH2 product

installed, user can take advantage of this file contents (see Section 8 for
detail).

source.zip If available, this file contains source code of the program along with
configuration files needed to compile it in Microsoft Visual Studio
2005 Service Pack 1.

8. Installation and checking

1. On each PC to be used with the program TwoBox, create a folder e.g. d:\twobox, and extract the
entire contents of distribution package into that folder.

2. If Microsoft Visual Studio 2005 Service Pack 1 was not installed on the PC earlier, run
vcredist_x86.exe from the created folder and follow instructions displayed on screen.

3. Install MPICH2 version 1.2 or later if it was not done earlier. The product can be downloaded
for free from the Argonne National Laboratory Web site at

http://www.mcs.anl.gov/research/projects/mpich2/downloads/index.php?s=downloads

Please take in mind that you need a version for Windows 32-bit (IA32) platform.

Note: If you would not install MPICH2 package for some reason, you may download its
libraries in abovementioned file mpich2_120_x86.zip and extract the file contents into the
program folder created at step 1. Then run a command smpd -install from that folder before
running TwoBox. However, we cannot guarantee successful operation and full functionality of
the program in such case.

4. Run Windows command processor (cmd.exe) and switch to the program folder:

d:
cd d:\twobox

http://www.mcs.anl.gov/research/projects/mpich2/downloads/index.php?s=downloads

TwoBox v.3.17 – Description & User's Guide 14

For better convenience, we suggest to create a shortcut for the command processor on desktop,
then substitute the working directory in that shortcut properties with d:\twobox. After that you
will not need to type the above commands each time you use the program.

5. To check the program operation, enter the command mpiexec -n 2 twobox –h . The help
information on program arguments will output to the command processor window. Depending
on Windows security and firewall settings, you can see some warnings or requests to confirm
running the program and allow it to access the network. We recommend to add TwoBox
program to the firewall exception list to avoid those warnings in future.

6. To verify the program operation using the script, enter the command test . The program will run
on this PC in four-way mode despite actual number of CPUs and cores (you should not worry
about this, because mpich2 libraries will make all necessary emulation). However, sample
output files from the distribution package will be overwritten so you should rename or copy
them somewhere prior to enter the command. Depending on CPU number and performance, the
entire script processing can take 30-40 minutes or more.

7. Once the script complete, compare new result files (*.out) with those from the distribution. Due
to different performance and various random factors, the files may not be identical, but the
results have to be similar.

8. To use the program for real experiments, you should specify the desired cluster configuration as
described in the MPICH2 documentation.

9. How to use TwoBox effectively
User should consider computational complexity of the task. Full exhaustion for n sequences of

the length m involves of the order of mn operations, therefore, it is NP-problem. Our quasi-optimal
algorithm is of polynomial complexity which is m3n2 for single-box sites and m3n2(dmax–dmin)3 for
two-box sites, where (dmin, dmax) is the interval of intra-box linker length variation allowed.

Therefore, we recommend to set the variation interval as narrow as possible, using the program
options -smin, -smax. Remember to modify penalty function (-spen option) if you change the
default interval.

Memory limitation is not so important if you have at least 1 GB RAM per CPU. In general, the
largest block the program allocates is a similarity matrix of m2n2(dmax–dmin)2 bytes. However, in
case of longer sequences you can experience a sharp growth of disk activity due to swapping. In
such situation, we recommend to use option -x0 for memory/speed tradeoff.

The following technical limits are set in the current program version:
• number of sequences in the input file: 2 256n≤ ≤ ;
• length of the sequence: m < 4096;
• length of the sought-for box(es): l < 32 (single-box), l' + l" < 32 (two-box).

These technical limits may be easily modified if necessary.

Each but one parallel branch of the program make the corresponding CPU 100% loaded. So we
suggest to specify the following number of branches to run on a PC, when planning the cluster
configuration:
• the number of cores plus 1 – for multiple core CPU (3 for dual-core, 5 for quad-core, etc.)
• 3 for single core CPU with Hyper-Threading enabled
• 2 for single core CPU without Hyper-Threading (or disabled)

Specifying greater number of branches is allowed, but normally not result in performance gain.

TwoBox v.3.17 – Description & User's Guide 15

10. References
1. Danilova L.V., Gorbunov K.U., Gelfand M.S., Lyubetsky V.A. Algorithm of regulatory signal

recognition in DNA sequences (2). Molecular Biology (Moscow), 2001, V. 35, No. 6, p. 841-
848.

2. S.N. Istomina, L.I. Rubanov. Parallel algorithm of regulatory signal search in bacterial
genomes. Information Processes, 2002, V. 2, No 1, p. 85-90 (in Russian)

 http://www.jip.ru/2002/Isto.pdf
3. L.V. Danilova, V.A. Lyubetsky, M.S. Gelfand. An algorithm for identification of regulatory

signals in unaligned DNA sequences, its testing and parallel implementation. In Silico
Biology, 2003, V. 3, No. 1,2, p. 33-47.

 http://www.bioinfo.de/isb/2003/03/0004/
4. MPI: A Message-Passing Interface Standard. Message Passing Interface Forum, Version 1.1:

June 1995. Knoxville, University of Tennessee, 1995.
5. MPI-2: Extensions to the Message-Passing Interface. Message Passing Interface Forum, July

18, 1997. Knoxville, University of Tennessee, 1997.

http://www.jip.ru/2002/Isto.pdf
http://www.bioinfo.de/isb/2003/03/0004/

	1. General
	2. Functionals of the system quality
	3. Input data
	4. Command line options
	5. Input file
	6. Output data
	7. Software distribution package
	8. Installation and checking
	9. How to use TwoBox effectively
	10. References

