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On a Simple Lower Bound for the Matrix Rank

A.V. Seliverstov

Institute for Information Transmission Problems of Russian Academy of Sciences
(Kharkevich Institute), Russia

e-mail: slvstv@iitp.ru

Abstract

Over a field of characteristic not equal to two, we proved a lower bound for the rank
of a square matrix, where every entry outside the leading diagonal is equal to either
zero or one, but every diagonal entry is neither zero nor one. This lower bound equals
half of the order of the matrix. It is tight.

Keywords: matrix rank, affine subspace, computational complexity

The rank of an n X n matrix over a field can be calculated using a polynomial number
of processors and performing only O(logg n) algebraic operations per processor [1, 2]. On
the other hand, the computational complexity of both matrix rank [3] and the characteristic
polynomial [4, 5] is equivalent in complexity to matrix multiplication. In practice, calcu-
lating the matrix rank requires a lot of time or a large number of processors. Simple lower
bounds are important for planning calculations because a sufficiently large rank ensures the
applicability of some algorithms for solving pseudo-Boolean programming problems [6, 7].
The distribution of the matrix rank over a finite field is used in cryptography [8].

Let us denote by K an arbitrary field of characteristic not equal to two. Let us consider
an n X n matrix over the field K, where every entry outside the leading diagonal belongs to
the set {0, 1}, but every diagonal entry is neither 0 nor 1. How small can its rank be?

This problem has a simple geometric interpretation. We consider an affine space over a
field K with a fixed system of Cartesian coordinates. A point is identified with a column,
where entries are coordinates of the point in this coordinate system. A column of zeros
and ones corresponds to a (0, 1)-point, i.e., to a vertex of the unit cube. In matrices under
consideration, each column corresponds to a point in a straight line passing through two
adjacent (0, 1)-points, but this point does not coincide with any of (0, 1)-points. Moreover,
different columns of the matrix correspond to non-parallel straight lines.

The rank of a matrix A is related to the dimensionality of the affine hull L of all points
corresponding to columns of the matrix. If L passes through the origin, then rank(A4) =
dim(L), else rank(A) = dim(L) + 1.

Theorem 1. Given an nxn matrix A over the field K, where every entry outside the leading
diagonal belongs to the set {0,1}, but every diagonal entry is neither 0 nor 1. The rank of
the matriz A is at least n/2.

Proof. The theorem is obvious when the matrix A has at most two columns because
rank(A) > 1.

Let the theorem be proved for some n > 3 and for all m x m matrices with m < n. Let
us consider an n X n matrix A.

A column of the matrix A corresponds to a point in a straight line passing through
two adjacent (0, 1)-points, but this point itself is different from any (0, 1)-point. Changes of
coordinates xy — 1—xy, (for different indices k) commute with each other and map each (0, 1)-
point to some (0, 1)-point. Such coordinate transformations preserve the dimensionality of
the affine hull of given points, as well as the number of (0, 1)-points belonging to this affine
hull. Therefore, if no (0, 1)-point belongs to this affine hull, then such transformations do
not affect the rank of the matrix.
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By applying these transformations to the matrix A, one can obtain a matrix M of the
same type so that in the last column of the matrix M all entries vanish except for the entry
belonging to the leading diagonal. Removing both last column and last row from the matrix
M, we get the (n — 1) x (n — 1) matrix B of lower rank. By the inductive hypothesis,
rank(B) > (n — 1)/2. Thus, rank(M) > n/2.

Let us denote by L the affine hull of all points corresponding to columns of M. Two
cases are possible. If the origin belongs to L, then rank(M) = dim(L). Therefore, the rank
rank(A) > dim(L) = rank(M) > n/2.

Else if the origin does not belong to L, then rank(A) > rank(M) — 1 = rank(B). By
applying some transformations to the matrix B, one can obtain a matrix N of the same type
so that in the last column of the matrix N all entries vanish except for the entry belonging
to the leading diagonal. Moreover, rank(B) > rank(/N). Removing both last column and
last row from the matrix N, we get the (n — 2) x (n — 2) matrix C' of lower rank. By the
inductive hypothesis, rank(C) > (n — 2)/2 = (n/2) — 1. Thus, rank(N) > n/2. Therefore,
rank(A) > rank(B) > rank(N) > n/2. O

The lower bound is tight. Let [-] denote rounding up.

Theorem 2. For every odd n, there is an n x n matriz A over the field K such that every
entry outside the leading diagonal belongs to the set {0,1}, every diagonal entry is neither 0
nor 1, no (0, 1)-point belongs to the affine hull of all points corresponding to columns of the
matriz A, and the equality rank(A) = [n/2] holds.

Proof. Let us consider the n x n matrix

/2 0 1 0 1
0 -1 1 0 0
0
1

0
o 0 0 -1
0

O O O O O
OO OO =

A= 0 0 1 -1
O 0 0 0 0 - -1 1
O 0 0 0 0 - 1 -1

Let us denote by B an (n — 1) x (n — 1) matrix obtained by removing both first column
and first row from the matrix A. Obviously, rank(A) = rank(B) + 1. The matrix B is
block-diagonal with 2 x 2 blocks. All blocks are degenerate. Thus, rank(B) = (n — 1)/2.
Next, rank(A) =rank(B)+ 1= (n+1)/2 = [n/2].

Every column of the matrix A is a solution to the inhomogeneous system of equations

20y —xg — - — Ty — - — Tpg = 1
Tokp + Topr1 = 0, 1§k§(n—1)/2

This system defines the affine hull, which does not pass through any (0, 1)-point. O
Example 1. For the 3 x 3 matrix
/2 0 1
0 -1 1 ,
0 1 -1

the rank equals two. Three columns correspond to three points belonging to a straight line L.
The straight line L is given by the system of two equations 1 — 2z, + 25 = 0 and x5 + 23 = 0.
But the straight line L does not pass through any of the (0, 1)-points.
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Example 2. For 2 x 2 matrices under consideration, the rank equals one for matrices

()

where o ¢ {0,1}. Two points corresponding to columns of this matrix belong to a straight
line that passes through the origin, i.e., through a (0, 1)-point. This straight line is given by
the equation x5 = awy. Therefore, if no (0, 1)-point belongs to the affine hull of all points
corresponding to columns of the matrix A, then rank(A) = 2.

Theorem 3. Given an even n and an n X n matriz A over the field K, where every entry
outside the leading diagonal belongs to the set {0,1}, but every diagonal entry is neither 0
nor 1. If no (0,1)-point belongs to the affine hull of all points corresponding to columns of
the matriz A, then the rank of the matriz A is at least (n/2) + 1.
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