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We present a short proof of the excluded grid theorem of Robertson and
Seymour, the fact that a graph has no large grid minor if and only if it has small
tree-width. We further propose a very simple obstruction to small tree-width
inspired by that proof, showing that a graph has small tree-width if and only if it
contains no large highly connected set of vertices. � 1999 Academic Press

1. INTRODUCTION

The following theorem of Robertson and Seymour [5] plays a
fundamental role in their theory of graph minors:

Theorem 1. Given any graph X, the graphs without an X minor have
bounded tree-width if and only if X is planar.

Since planar grids can have arbitrarily large tree-width (see below), the
``only if '' direction here is immediate: if X is non-planar then no grid has
an X minor, and hence the graphs without an X minor have unbounded
tree-width. Conversely, we have to show that forbidding any planar minor
bounds the tree-width of a graph. And again, since every planar graph G
is the minor of some large enough grid (take a drawing of G with ``fat''
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vertices and superimpose a drawing of a sufficiently fine grid), it suffices to
show the following:

Theorem 2. For every integer r there is an integer k such that every
graph of tree-width at least k has an r_r grid minor.

Proofs of Theorem 2 have been given by Robertson and Seymour [5],
by Robertson, Seymour, and Thomas [7], and by Reed [3]. All these
proofs are long and technical. Our main purpose in this paper is to offer
a short and self-contained new proof of Theorem 2. This will be given in
Section 3, which can be read independently of the rest of the paper.

We remark that our proof of Theorem 2 may be combined with [4] and
[8] to give the shortest known proof of one of the main corollaries of the
Robertson�Seymour graph minor theorem (``Wagner's conjecture''), the
``generalized Kuratowski'' result that the graphs embeddable in any fixed
surface are characterized by finitely many forbidden minors. A proof of the
graph minor theorem itself is sketched in [1, Chapter 12]; among other
things, the sketch indicates the role that Theorem 1 plays in that proof.

Our second aim in this paper is to draw attention to another obstruction
to small tree-width, implied by (but different from) large grid minors: large
``highly connected'' sets of vertices. In Section 2 we give a very simple proof
that a graph has small tree-width if and only if it contains no such set of
vertices. A result with a similar flavour has been obtained by Reed as a
spin-off of the theory of ``brambles'' [3, combine Lemma 3.4 with
Theorem 2.11].

Our terminology follows [1]. (A general introduction to tree-decomposi-
tions and graph minors may also be found there, as well as in [9].) The
vertex sets into which a tree-decomposition decomposes a graph will be
called the parts of that decomposition. For the notion of tree-width, we just
recall that tree-decompositions of width <k may have parts containing up
to k vertices; thus, trees have tree-width 1. If C is a subgraph of a graph
G, we write N(C) for its set of neighbours in G&C, the set of vertices in
G&C adjacent to a vertex in C. A separation of G is an ordered pair (A, B)
of subgraphs of G such that A _ B=G and E(A) & E(B)=<; its order is
the number |A & B|. The n_n grid is the graph on [1, ..., n]2 with edge set
[(i, j)(i $, j $): |i&i $|+| j& j $|=1]. We call a set X�V(G) k-connected in G
if |X |�k and for all subsets Y, Z�X with |Y |=|Z|�k there are |Y |
disjoint Y&Z paths in G. (The sets Y and Z are not required to be disjoint.)
X is externally k-connected if, in addition, the required paths can be chosen
without an inner vertex or edge in G[X]. For example, the vertex set of
any k-connected subgraph of G is k-connected in G (though not necessarily
externally), but also any horizontal path of the k_k grid is k-connected in
the grid, even externally.

62 DIESTEL ET AL.



2. HIGHLY CONNECTED SETS

In this section we show that a graph has small tree-width if and only if
it has no large highly connected sets of vertices. The proof of the first part
of the following proposition uses no more than standard tree-decomposi-
tion techniques; we include it for the convenience of those readers new to
the subject.

Proposition 3. Let G be a graph and k>0 an integer.

(i) If G has tree-width <k then G contains no (k+1)-connected set
of size �3k.

(ii) Conversely, if G contains no externally (k+1)-connected set of
size �3k then G has tree-width <4k.

Proof. (i) Choose a tree-decomposition (T, (Vt)t # T) of G of width
<k, without loss of generality so that none of the parts Vt is contained in
another. Then for every edge e=rs of T, the set Vr & Vs has <k vertices
and separates the sets Ur :=�t # Tr

Vt and Us :=�t # Ts
Vt in G ; here, Tr and

Ts denote the components of T&e containing r and s, respectively. Any
separation (A, B) of G with vertex sets [V(A), V(B)]=[Ur , Us] (and
hence V(A & B)=Vr & Vs) is said to correspond to e.

Suppose X is a (k+1)-connected set of size �3k in G. Orient every edge
e of T towards the component T $ of T&e for which |X & _ t # T $ Vt | is
greater, breaking ties arbitrarily. Choose a vertex t # T so that all the edges
e1 , ..., en of T at t point towards t. For every i=1, ..., n pick a separation
(Ai , Bi) corresponding to ei , with Vt � Bi . Then |V(Ai) & X | < k :
otherwise, both Ai and Bi would have k vertices in X, and we could extend
V(Ai & Bi) & X to k-subsets Y�V(Ai) & X and Z�V(Bi) & X that cannot
be linked by k disjoint paths in G (since |Ai & Bi |<k).

Now let i�n be minimal such that |V(A1 _ } } } _ Ai) & X |>k, and put
A :=A1 _ } } } _ Ai and B :=B1 & } } } & Bi . By the minimality of i and
since |V(Ai) & X |<k, we have |V(A) & X |<2k, so |V(B) & X |>|X |&2k�k.
As before, we may extend V(A & B) & X to (k+1)-sets Y�V(A) & X and
Z�V(B) & X. As Vt separates these sets in G and |Vt |�k, this contradicts
our assumption that X is (k+1)-connected in G.

(ii) We prove the following more general assertion:

If h�k and G contains no externally k-connected set of size h,
then G has tree-width<h+k&1.

Let U�V(G) be maximal such that G[U] has a tree-decomposition D of
width <h+k&1 such that every component C of G&U has at most h
neighbours in U and these lie in one part of D (depending on C).
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We claim that U=V(G). Suppose not. Let C be a component of G&U
and write X :=N(C). By assumption, |X |�h. In fact |X |=h, since
otherwise for any v # V(C) we could add X _ [v] to D as a new part, con-
tradicting the maximality of U. Hence by assumption, X is not externally
k-connected in G; let Y, Z�X be sets to witness this.

By Menger's theorem, Y and Z are separated in H :=G[V(C) _ Y _ Z]
&E(G[Y _ Z]) by a set S of fewer than |Y |=|Z|�k vertices. Let
XY :=(X"Z) _ S and XZ :=(X"Y) _ S. Clearly, |X _ S|�h+k&1 and
|XY |, |XZ |<|X |=h. Moreover, any component C$�C of G&(U _ S) has
all its neighbours in X _ S, and hence either in XY or in XZ : otherwise
H&S would contain a Y&Z path through C$.

Extending U to U _ S and adding X _ S to D as a new part, we obtain
a contradiction to the maximality of U. (Note that S & C{<, since
|S|<|Y |=|Z| and Y, Z�N(C).) K

It is perhaps interesting to note that Proposition 3(i) is best possible (or
nearly so) in various ways, and remains so even if we weaken its assertion
by inserting ``externally'' before ``(k+1)-connected.'' For example, a com-
plete bipartite graph with vertex sets X and Y of sizes k&1 and n�k&1,
respectively, has tree-width <k (with parts X _ [ y], y # Y) and clearly Y
is an externally (k&1)-connected set whose size is not bounded as a func-
tion of k. Only slightly less trivially, consider the complete bipartite graph
G with vertex sets X and Y of sizes k�5 and 3k, respectively. Partition Y
into three sets Y1 , Y2 , Y3 of size k, and delete a perfect matching from each
of the three bipartite subgraphs G[X _ Yi]. The resulting graph again has
tree-width <k (with parts X and (X"[x]) _ [ y] for all y # Y, where x is
the unique non-neighbour of y), and an easy application of Hall's theorem
shows that Y is externally k-connected in it.

The above example shows that the value of k in the premise and the
value of (k+1) in the conclusion of Proposition 3(i) are best possible. The
value of 3k in the conclusion is also essentially best possible. This is exem-
plified by the following graph G of tree-width <k that contains an exter-
nally (k+1)-connected (even |X |-connected) set X of size 3(k&1). First we
define a partially ordered set, as follows. Starting with a linearly ordered
(k&1)-set R, we put three linearly ordered (k&1)-sets S1 , S2 , S3 above R,
letting elements from different Si be incomparable. To make this into a
graph, we add all possible edges on R and join every vertex from one of
the S i to all the vertices in the (k&1)-chain directly below it. (Note that
this graph has a tree-decomposition into its k-cliques.) Finally, we add new
independent (k&1)-sets X1 , X2 , X3 , joining Xi completely to Si for each
i=1, 2, 3. It is now easily checked that any two (disjoint) sets Y, Z�
X1 _ X2 _ X3 of equal size can be linked in G by |Y |= |Z| disjoint paths:
vertices y, z in the same Xi can be linked via the corresponding Si using
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its highest vertices, and any remaining pairs y, z can be joined via the lower
vertices of the Si and R.

Proposition 3(ii) is also best possible: the complete graph on 4k vertices
shows that we cannot strengthen the conclusion, while the complete graph
on 4k+1 vertices shows that we cannot weaken the premise in either way.
Similarly, Kh+k&1 and Kh+k (for h�2k+2) show that the more general
assertion we prove is best possible.

3. GRID MINORS

We now present our proof of Theorem 2. Very roughly, we shall assume
that a given graph G has large tree-width, find a large highly connected set
X in G as in Proposition 3(ii), and use its connecting paths P to form a
grid. Of course, this will be possible only if those paths intersect sufficiently.
If they do not, we shall try instead to partition X into many sets that can
be linked pairwise by mutually disjoint paths, so that contracting these sets
will give us a subdivision of a large complete graph. Since we may only
contract connected sets when forming a minor, our first task will thus be
to strengthen Proposition 3(ii) so as to give X a partition into many sets
that can be made connected in a part of G not used by the paths P.

In order to make this section self-contained, we prove all the lemmas
that we need from first principles. This goes in particular for our first
lemma, the strengthening of Proposition 3(ii) indicated above.

Let us call a separation (A, B) a premesh if all the edges of A & B lie in
A and A contains a tree T with the following properties:

v T has maximum degree �3;

v every vertex of A & B lies in T and has degree �2 in T ;

v T has a leaf in A & B (that is, a vertex of degree �1).

A premesh (A, B) will be called a k-mesh if V(A & B) is externally
k-connected in B, and the graph G=A _ B is said to have this premesh or
k-mesh.

Lemma 4. Let G be a graph and let h�k�1 be integers. If G has no
k-mesh of order h then G has tree-width <h+k&1.

Proof. We may assume that G is connected. Let U�V(G) be maximal
such that G[U] has a tree-decomposition D of width <h+k&1, with the
additional property that, for every component C of G&U, the neighbours
of C in U lie in one part of D and (G&C, C� ) is a premesh of order �h,
where C� :=G[V(C) _ N(C)]&E(G[N(C)]). Clearly, U{<.
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We claim that U=V(G). Suppose not. Let C be a component of G&U,
put X :=N(C), and let T be a tree associated with the premesh (G&C, C� ).

By assumption, |X |�h; let us show that equality holds here. If not, let
u # X be a leaf of T and v a neighbour of u in C. Put U$ :=U _ [v] and
X$ :=X _ [v], let T $ be the tree obtained from T by joining v to u, and let
D$ be the tree-decomposition of G[U$] obtained from D by adding X$ as
a new part. Clearly D$ still has width <h+k&1. Consider a component
C$ of G&U$. If C$ & C=< then C$ is also a component of G&U, so
N(C$) lies inside a part of D (and hence of D$), and (G&C$, C� $) is a
premesh of order �h by assumption. If C$ & C{<, then C$�C and
N(C$)�X$. Moreover, v # N(C$): otherwise N(C$)�X would separate C$
from v, contradicting the fact that C$ and v lie in the same component C
of G&X. Since v is a leaf of T $, it is straightforward to check that
(G&C$, C� $) is again a premesh of order �h, contrary to the maximality of U.

Thus |X |=h, so by assumption our premesh (G&C, C� ) cannot be a
k-mesh. Hence by Menger's theorem, there are sets Y, Z�X of equal size �k
that are separated in H :=C� [V(C) _ Y _ Z] by a set S of k$<|Y |=|Z|
vertices, one from each of a family (Ps | s # S) of disjoint Y&Z paths in H.
Put X$ :=X _ S and U$ :=U _ S, and let D$ be the tree-decomposition of
G[U$] obtained from D by adding X$ as a new part. Clearly, |X$|�
|X |+|S|�h+k&1. We show that U$ contradicts the maximality of U.

Since Y _ Z�N(C) and |S|< |Y |= |Z| we have S & C{<, so U$ is
larger than U. Let C$ be a component of G&U$. If C$ & C=<, we argue
as earlier. So C$�C and N(C$)�X$. As before, at least one neighbour v
of C$ lies in S & C. By definition of S, C$ cannot have neighbours in both
Y"S and Z"S; we assume it has none in Y"S. Let T $ be the union of T
and all the Y&S subpaths of paths Ps with s # N(C$) & C; since these
subpaths start in Y"S and have no inner vertices in X$, they cannot
meet C$. Therefore (G&C$, C� $) is a premesh with tree T $ and leaf v; the
degree conditions on T $ are easily checked. Its order is |N(C$)|�|X |&
|Y |+|S|=h&|Y |+k$<h, a contradiction to the maximality of U. K

Lemma 5. Let k�2 be an integer. Let T be a tree of maximum degree
�3 and X�V(T ). Then T has a set E of edges such that every component
of T&E has between k and 2k&2 vertices in X, except that one such compo-
nent may have fewer vertices in X.

Proof. Induction on |X |. If |X |�2k&2 we put E=<. So assume that
|X |�2k&1. Let e be an edge of T such that some component T $ of T&e
has at least k vertices in X and T $ is as small as possible. As 2(T )�3, the
end of e in T $ has degree at most two in T $, so the minimality of T $ implies
that |X & V(T $)|�2k&2. We finish by applying the induction hypothesis
to T&T $. K
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Lemma 6. Let G be a bipartite graph with bipartition (A, B), |A|=a,
|B|=b, and let c�a and d�b be positive integers. Assume that G has at
most (a&c)(b&d)�d edges. Then there exist C�A and D�B such that
|C|=c and |D|=d and C _ D is independent in G.

Proof. As &G&�(a&c)(b&d )�d, fewer than b&d vertices in B have
more than (a&c)�d neighbours in A. Choose D�B so that |D|=d and
each vertex in D has at most (a&c)�d neighbours in A. Then D sends a
total of at most a&c edges to A, so A has a subset C of c vertices without
a neighbour in D. K

Given a tree T, call an r-tuple (x1 , ..., xr) of distinct vertices of T good
if, for every j=1, ..., r&1, the xj&xj+1 path in T contains none of the
other vertices in this r-tuple.

Lemma 7. Every tree of order �r(r&1) has a good r-tuple of vertices.

Proof. If x is any vertex of a tree T, then T is the union of its subpaths
x } } } y, where y ranges over its leaves. Hence unless one of these paths has
at least r vertices, T has at least |T |�(r&1) leaves. Since any path of r
vertices and any set of r leaves defines a good r-tuple in T, this proves the
assertion. K

Our next lemma shows how to obtain a grid from two large systems of
paths that intersect in a particularly orderly way.

Lemma 8. Let d, r�2 be integers such that d�r2r+2. Let G be a graph
containing a set H of r2&1 disjoint paths and a set V=[V1 , ..., Vd] of d
disjoint paths. Assume that every path in V meets every path in H, and that
each path H # H consists of d consecutive (vertex disjoint) segments such
that Vi meets H only in its ith segment, for every i=1, ..., d. Then G has an
r_r grid minor.

Proof. For each i=1, ..., d, consider the graph with vertex set H in
which two paths are adjacent whenever Vi contains a subpath between
them that meets no other path in H. Since Vi meets every path in H, this
is a connected graph; let Ti be a spanning tree in it. Since |H|�r(r&1),
Lemma 7 implies that each of these d�r2(r2)r trees Ti has a good r-tuple
of vertices. Since there are no more than (r2)r distinct r-tuples on H, some
r2 of the trees Ti have a common good r-tuple (H 1, ..., H r). Let
I=[i1 , ..., ir2] be the index set of these trees (with ij<ik for j<k) and put
H$ :=[H1, ..., H r].

Here is an informal description of how we construct our r_r grid. Its
``horizontal'' paths will be the paths H1, ..., H r. Its ``vertical'' paths will be
pieced together edge by edge, as follows. The r&1 edges of the first vertical
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path will come from the first r&1 trees Ti , trees with their index i among
the first r elements of I. More precisely, its ``edge'' between H j and H j+1

will be the sequence of subpaths of Vij (together with some connecting
horizontal bits taken from paths in H"H$) induced by the edges of an
H j&H j+1 path in Tij that has no inner vertices in H$. (This is why we
need (H1, ..., H r) to be a good r-tuple in every tree Ti .) Similarly, the j th
edge of the second vertical path will come from an H j&H j+1 path in Tir+j ,
and so on. To merge these individual edges into r vertical paths, we then
contract in each H j the initial segment that meets the first r paths V i with
i # I, then contract the segment that meets the following r paths Vi with
i # I, and so on.

Formally, we proceed as follows. For all j, k # [1, ..., r], consider the
minimal subpath H j

k of H j that contains the ith segment of H j for all i with
i(k&1) r<i�ikr (put i0 :=0). Let H� j be obtained from H j by first deleting
any vertices following its ir2 th segment and then contracting every subpath
H j

k to one vertex v j
k . Thus, H� j=v j

1 ...v j
r .

Given j # [1, ..., r&1] and k # [1, ..., r], we have to define a path V j
k that

will form the subdivided ``vertical edge'' v j
kv j+1

k . This path will consist of
segments of the path Vi together with some otherwise unused segments of
paths from H"H$, for i :=i(k&1) r+ j ; recall that, by definition of H� j and
H� j+1, this Vi does indeed meet H j and H j+1 precisely in vertices that were
contracted into v j

k and v j+1
k , respectively. To define V j

k , consider an
H j&H j+1 path P=H1 } } } Ht in Ti that has no inner vertices in H$. Every
edge Hs Hs+1 of P corresponds to an Hs&Hs+1 subpath of Vi that has no
inner vertex on any path in H. Together with (parts of) the ith segments
of H2 , ..., Ht&1 , these subpaths of Vi form an H j&H j+1 path P$ that has
no inner vertices on any of the paths H1, ..., H r and meets no path from H

outside its ith segment. Replacing the ends of P$ on H j and H j+1 with v j
k

and v j+1
k , respectively, we obtain our desired path V j

k forming the j th (sub-
divided) edge of the kth ``vertical'' path of our grid. Since the paths P$ are
disjoint for different i and different pairs ( j, k) do give rise to different i, the
paths V j

k are disjoint except for possible common ends v j
k . Moreover, they

have no inner vertices on any of the paths H1, ..., H r, because none of these
H j is an inner vertex of any of the paths P�Ti used in the construction
of V j

k . K

We are now ready to prove the following quantitative version of
Theorem 2.

Theorem 9. Let r, m>0 be integers, and let G be a graph of tree-width
at least r4m2(r+2). Then G contains either Km or the r_r grid as a minor.

Proof. Since Kr2 contains the r_r grid as a subgraph, we may assume
that 2�m�r2. Put c :=r4(r+2) and k :=c2 ( m

2 ). Then 2m+2�c, so G has
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tree-width at least cm2
�(2m+2) k: more than enough for Lemma 4 to

ensure that G contains a k-mesh (A, B) of order (2m+1)(k&1). Let T�A
be a tree associated with the premesh (A, B); thus, X :=V(A & B)�V(T ).
By Lemma 5, T has ( |X |&(k&1))�(2k&2)=m disjoint subtrees each con-
taining at least k vertices of X; let A1 , ..., Am be the vertex sets of these
trees. By definition of a k-mesh, B contains for all 1�i< j�m a set Pij of
k disjoint Ai&Aj paths that have no inner vertices in A. These sets Pij will
shrink a little and be otherwise modified later in the proof, but they will
always consist of ``many'' disjoint Ai&Aj paths.

One option in our proof will be to find single paths Pij # Pij that are dis-
joint for different pairs ij and thus link up the sets Ai to form a Km minor
of G. If this fails, we shall instead exhibit two specific sets Pij and Ppq such
that many paths of Pij meet many paths of Ppq , forming an r_r grid
between them by Lemma 8.

Let us impose a linear ordering on the index pairs ij by fixing an
arbitrary bijection _: [ij | 1�i< j�m] � [0, 1, ..., ( m

2 )&1]. For l=0, 1, ...
in turn, we shall consider the pair pq with _( pq)=l and choose an Ap&Aq

path Ppq that is disjoint from all previously selected such paths, i.e., from
the paths Pst with _(st)<l. At the same time, we shall replace all the
``later'' sets Pij ��or what has become of them��by smaller sets containing
only paths that are disjoint from Ppq . Thus for each pair ij, we shall define
a sequence Pij=P0

ij , P1
ij , ... of smaller and smaller sets of paths, which even-

tually collapses to Pl
ij=[Pij] when l has risen to l=_(ij).

More formally, let l*�( m
2 ) be maximal such that, for all 0�l<l* and

all 1�i< j�m, there exist sets Pl
ij satisfying the following five conditions:

(i) Pl
ij is a non-empty set of disjoint Ai&Aj paths in B that meet

A only in their endpoints.

As soon as a set Pl
ij is defined, we shall write H l

ij :=� Pl
ij for the union

of its paths.

(ii) If _(ij)<l then Pl
ij has exactly one element Pij , and Pij does not

meet any path belonging to a set Pl
st with ij{st.

(iii) If _(ij)=l, then |Pl
ij |=k�c2l.

(iv) If _(ij)>l, then |Pl
ij |=k�c2l+1.

(v) If l=_( pq)<_(ij), then for every e # E(H l
ij)"E(H l

pq) there are
no k�c2l+1 disjoint paths from A i to Aj in the graph (H l

pq _ H l
ij)&e.

Note that, since _(ij)<( m
2 ) by definition of _, conditions (iii) and (iv)

imply that |Pl
ij |�c2 whenever _(ij)�l.

Clearly if l*=( m
2 ), then by (i) and (ii) we have a (subdivided) Km minor

with branch sets A1 , ..., Am in G. Suppose then that l*<( m
2 ). Let us show

that l*>0. Let pq :=_&1 (0) and put P0
pq :=Ppq . To define P0

ij for _(ij)>0
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put Hij :=� Pij , and let F�E(H ij)"E(H 0
pq) be maximal such that

(H 0
pq _ Hij)&F still contains k�c disjoint paths from A i to Aj ; then let P0

ij

be such a set of paths. As any vertex of A on these paths lies in Ai _ Aj (by
definition of H 0

pq and Hij), we may assume that they have no inner vertices
in A. Thus our choice of P0

ij satisfies (i)�(v).
Having shown that l*>0, let us now consider l :=l*&1. Thus, condi-

tions (i)�(v) are satisfied for l but cannot be satisfied for l+1. Let
pq :=_&1 (l). If Pl

pq contains a path P that avoids a set Qij of some |Pl
ij |�c

of the paths in Pl
ij for all ij with _(ij)>l, then we can define Pl+1

ij for all
ij as before (with a contradiction). Indeed, let st :=_&1 (l+1) and put
Pl+1

st :=Qst . For _(ij)>l+1 write H ij :=� Qij , let F�E(Hij)"E(H l+1
st ) be

maximal such that (H l+1
st _ Hij)&F still contains at least |Pl

ij |�c
2 disjoint

paths from Ai to Aj , and let Pl+1
ij be such a set of paths. Setting

Pl+1
pq :=[P] and Pl+1

ij :=Pl
ij=[Pl

ij] for _(ij)<l then gives us a family of
sets Pl+1

ij that contradicts the maximality of l*.
Thus for every path P # Pl

pq there exists a pair ij with _(ij)>l such that
P avoids fewer than |Pl

ij |�c of the paths in Pl
ij . For some W |Pl

pq |�( m
2 )X of

these P that pair ij will be the same; let P denote the set of those P, and
keep ij fixed from now on. Note that |P|�|Pl

pq |�( m
2 )=c |Pl

ij |�(
m
2 ) by (iii)

and (iv).
Let us use Lemma 6 to find sets V�P�Pl

pq and H�Pl
ij such that

|V|� 1
2 |P| \�

c
m2 |Pl

ij |+
|H|=r2

and every path in V meets every path in H. We have to check that the
bipartite graph with vertex sets P and Pl

ij in which P # P is adjacent to
Q # Pl

ij whenever P & Q=< does not have too many edges. Since every
P # P has fewer than |Pl

ij |�c neighbours (by definition of P), this graph has
indeed at most

|P| |Pl
ij |�c�|P| |Pl

ij |�6r2

�w |P|�2x |Pl
ij |�2r2

�w |P|�2x ( |Pl
ij |�r

2&1)

=(|P|&W |P|�2X)( |Pl
ij |&r2)�r2

edges, as required. Hence, V and H exist as claimed.
Pick a path Q # H, and put

d :=w- c�mx=wr2r+4�mx�r2r+2.
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For n=1, 2, ..., d&1 let en be the first edge of Q (on its way from Ai to Aj)
such that the initial component Qn of Q&en meets at least nd |Pl

ij |
different paths from V, and such that en is not an edge of H l

pq . As any two
vertices of Q that lie on different paths from V are separated in Q by an
edge not in H l

pq , each of these Qn meets exactly nd |Pl
ij | paths from V. Put

Q0 :=< and Qd :=Q. Since |V|�d 2 |Pl
ij |, we have thus divided Q into d

consecutive disjoint segments Q$n :=Qn&Qn&1 (n=1, ..., d ) each meeting
at least d |Pl

ij | paths from V.
For each n=1, ..., d&1, Menger's theorem and conditions (iv) and (v)

imply that H l
pq _ H l

ij has a set Sn of |Pl
ij |&1 vertices such that

(H l
pq _ H l

ij)&en&Sn contains no path from A i to A j . Let S denote the
union of all these sets Sn . Then |S|<d |Pl

ij |, so each Q$n meets at least one
path Vn # V that avoids S.

Clearly, each Sn consists of a choice of exactly one vertex x from every
path P # Pl

ij"[Q]. Denote the initial component of P&x by Pn , put
P0 :=< and Pd :=P, and let P$n :=Pn&Pn&1 for n=1, ..., d. The separa-
tion properties of the sets Sn now imply that Vn & P�P$n for n=1, ..., d
(and hence in particular, that P$n { <, i.e., that Pn&1 / Pn). Indeed Vn

cannot meet Pn&1 , because Pn&1 _ Vn _ (Q&Qn&1) would then contain an
Ai&Aj path in (H l

pq _ H l
ij)&en&1&Sn&1 , and likewise (consider Sn) Vn

cannot meet P&Pn . Thus for all n=1, ..., d, the path Vn meets every path
P # H"[Q] precisely in its n th segment P$n . Applying Lemma 8 to the path
systems H"[Q] and [V1 , ..., Vd] now yields the desired grid minor. K

To conclude, let us remark that our upper bound of r4m2(r+2)�25r5 log r

for the tree-width of a graph without an r_r grid minor is most likely far
from best possible. Robertson, Seymour and Thomas [7] obtain an only
slightly better bound of about 29r5

, but they suspect that the correct order
might be as low as r2 log r.

4. HIGHLY CONNECTED SETS AND TANGLES

The proofs of Theorem 2 given in [7] and [3] rely heavily on a concept
central to the Robertson�Seymour theory of minors but not so far con-
sidered in this paper, the concept of a tangle introduced in [6]. Both these
proofs build on the fact that, if the tree-width of a graph is large, then the
graph contains a large tangle, and use the tangle for the construction of a
grid minor.

While it is easy to see that graphs with a large tangle must have large
tree-width��the proof is similar to our proof of Proposition 3(i), see [6] or
[3]��its converse, the direction needed for the proof of Theorem 2 in [7]
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and [3], is not immediate. However, this direction follows easily from our
Proposition 3(ii), and the purpose of this section is to show how.

Let k�1 be an integer. A tangle of order k in a graph G is a set T of
separations of G, each of order <k, that satisfies the following conditions
(cf. [6]):

(T1) if (A, B) is any separation of G of order <k, then either
(A, B) # T or (B, A) # T;

(T2) if (A1 , B1), (A2 , B2), (A3 , B3) # T, then A1 _ A2 _ A3 {G;

(T3) if (A, B) # T, then V(A){V(G).

As shown in [6, (5.2)], any graph with a tangle of order k has tree-width
at least k&1, and any graph of tree-width at least k&1 has a tangle of
order at least 2

3k. Reed [3] gives a simple proof that graphs of tree-width
�3(k&1) have a tangle of order k; his proof, however, builds on a non-tri-
vial duality theorem for tree-width due to Seymour and Thomas. Trading
just a little more quantitative exactness for simplicity of proof, we observe
the following corollary to Proposition 3:

Proposition 10. Any graph of tree-width at least 4k has a tangle of
order k.

Proof. If a graph G has tree-width �4k then, by Proposition 3(ii), G
contains a k-connected set X of size 3k. Let T be the set of all separations
(A, B) of order <k in G such that |V(A) & X|� |V(B) & X|. Then
|V(A) & X|<k for all (A, B) # T (since X is k-connected in G but
|A & B|<k), implying (T2) and (T3). Hence T is a tangle of order k. K
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