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Abstract: We consider the problem of the existence of well-orderings of the reals, definable at a
certain level of the projective hierarchy. This research is motivated by the modern development of
descriptive set theory. Given n ≥ 3, a finite support product of forcing notions similar to Jensen’s
minimal-∆1

3 -real forcing is applied to define a model of set theory in which there exists a good ∆1
n

well-ordering of the reals, but there are no ∆1
n−1 well-orderings of the reals (not necessarily good).

We conclude that the existence of a good well-ordering of the reals at a certain level n ≥ 3 of the projec-
tive hierarchy is strictly weaker than the existence of a such well-ordering at the previous level n− 1.
This is our first main result. We also demonstrate that this independence theorem can be obtained on
the basis of the consistency of ZFC− (that is, a version of ZFC without the Power Set axiom) plus
‘there exists the power set of ω ’, which is a much weaker assumption than the consistency of ZFC
usually assumed in such independence results obtained by the forcing method. This is our second
main result. Further reduction to the consistency of second-order Peano arithmetic PA2 is discussed.
These are new results in such a generality (with n ≥ 3 arbitrary), and valuable improvements upon
earlier results. We expect that these results will lead to further advances in descriptive set theory of
projective classes.

Keywords: forcing; projective well-orderings; projective classes; Jensen’s forcing

MSC: 03E15; 03E35

1. Introduction

This paper is written as a continuation of our earlier paper [1] under the same title,
which thereby has to be viewed as Part I of this paper.

Problems related to the well-orderability of the real line R emerged in the early years
of set theory. The axiom of choice AC implies that every set can be well-ordered, yet AC
does not yield a concrete construction of any particular well-ordering of R. The famous
discussion between Baire, Borel, Hadamard, and Lebesgue in [2] presents related issues
widely discussed by mathematicians early in the 20th century.

Then, studies in descriptive set theory demonstrate that no well-ordering of R belongs
(as a set of pairs) to the first-level projective classes Σ1

1 , Π1
1 , see e.g., Sierpinski [3]. This was

a consequence of Luzin’s theorem [4] saying that sets in Σ1
1 ∪Π1

1 are Lebesgue measurable.
(We refer to Moschovakis’ monograph [5] in matters of both modern and early notation
systems and early history of descriptive set theory. Yet, we may recall that Σ1

1 consists of
all continuous images of Borel sets in Polish spaces, Π1

n consists of all complements of Σ1
n

sets, Σ1
n+1 consists of continuous images of Π1

n sets, and ∆1
n = Σ1

n ∩Π1
n , for all n ≥ 1).

For the sake of brevity, we let WO(Γ) be the hypothesis saying:

“There is a well-ordering of the real numbers which belongs to Γ as a set of pairs.”
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Here, Γ is a given class of subsets of Polish spaces. Typical examples include pro-
jective classes Σ1

n, Π1
n, ∆1

n defined as above, and their effective subclasses resp. Σ1
n, Π1

n, ∆1
n ,

defined the same way but beginning with effective Borel sets, i.e., those that admit a Borel
construction from an effectively (that is, computably) defined sequence of rational cubes.

Here, we can limit ourselves to classes ∆1
n and ∆1

n . Indeed,

WO(Σ1
n) ⇐⇒ WO(Π1

n) ⇐⇒ WO(∆1
n) and WO(Σ1

n) ⇐⇒ WO(Π1
n) ⇐⇒ WO(∆1

n) ,

because if a well-ordering 4 of the reals is say Σ1
n then it is Π1

n as well since x 4 y is
equivalent to x = y ∨ y 64 x . Therefore, the result above can be summarized as ¬WO(∆1

1) .
At the next projective level, Gödel [6] proved that WO(∆1

2) is consistent with the ax-
ioms of the Zermelo–Fraenkel set theory ZFC. This was established by a concrete definition
of a ∆1

2 well-ordering 6L of the reals in the constructible universe L . Then, Addison [7]
distinguished a crucial property of 6L now known as goodness. Namely, a ∆1

n -good well-
ordering is defined to be any ∆1

n well-ordering 4 such that the class ∆1
n is closed under

4-bounded quantification. In other words, it is required that if P(y, x) is a binary ∆1
n

relation on the reals, then the following relations

Q(z, x) := ∃ y 4 x P(z, y) and R(z, x) := ∀ y 4 x P(z, y)

belong to ∆1
n as well. The result by Gödel–Addison then claims that, in L , 6L is a ∆1

2 -
good well-ordering of the reals. It follows that the existence of such a well-ordering is a
consequence of the axiom of constructibility V = L , and hence it is consistent with ZFC.
The ∆1

2 -goodness of 6L is behind many key results on sets of the second projective level,
see for instance ([5], Section 5A).

As for the opposite direction, studies in the early years of modern set theory (see,
e.g., Levy [8] and Solovay [9]) demonstrated that the non-existence statement, saying that
there is no well-ordering of R definable by any set-theoretic formula with ordinal and real
parameters (this includes Σ1

∞ =
⋃

n Σ1
n as a small part), is consistent as well.

Modern research in connection with projective well-orderings touches on such issues
as connections with forcing axioms [10,11], connections with large cardinals [12,13], connec-
tions with cardinal characteristics of the continuum [14,15], connections with the structure
and properties of projective sets [16–19], and others. The following theorem contributes to
this research field. The theorem is the first principal result of this paper.

Theorem 1. Let n ≥ 3. Then, there exists a generic extension of L , in which :

(i) WO(∆1
n) is true, and moreover, there is a ω1-long ∆1

n -good well-ordering of the reals;

(ii) WO(∆1
n−1) is false, that is, there are no ∆1

n−1 well-orderings of the reals, of any kind, i.e.,
not necessarily good.

Therefore, it is consistent that “WO(∆1
n) holds, even by means of a ∆1

n -good well-ordering,
and in the same time the stronger statement WO(∆1

n−1) fails”.

As an immediate corollary of Theorem 1, we conclude that, for any n ≥ 3, the hypothesis
WO(∆1

n−1) is strictly stronger than WO(∆1
n) because there exists a model in which the

latter holds whereas the former fails. Thus, the strict ascending condition ∆1
n−1 $ ∆1

n of
the classes ∆1

n is adequately reflected in the property of the existence of a well-ordering of
the reals in a given class.

Theorem 1 significantly strengthens a theorem in our previous paper [1], where we
defined a generic extension of L in which there is a ∆1

n -good well-ordering but there do
not exist ∆1

n−1 -good well-orderings of the reals. Thus, Theorem 1 improves the result
in [1] by eliminating the goodness property in part (ii). This improvement required some
crucial modifications in the proof of the theorem in part (ii) in this paper. Indeed in [1]
we were able to use some well-known consequences of the ∆1

n−1 -goodness, in particular,
the basis theorem saying that all non-empty Σ1

n−1 sets of reals contain ∆1
n−1 elements.
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This consequence is not available in the context of claim (ii) of the theorem since the
∆1
n−1 -goodness is not assumed. To circumvent this difficulty, this paper introduces an

entirely new technique of working with the auxiliary forcing relation forc, developed in
Sections 23–30 of this paper.

The other direction of the paper belongs to the context of the second-order Peano
arithmetic PA2 and related set and class theories. Theory PA2 governs the interrelations
between the natural numbers and sets of natural numbers, and is widely assumed to lay
down working foundations for essential parts of modern mathematics including whatever
is (or can be) developed by means of the theory of projective sets, see e.g., Simpson [20].

In particular, claims (i) and (ii) of Theorem 1 can be adequately presented by certain
formulas of the language of PA2 based on suitable universal formulas for classes Σ1

n and
Σ1
n−1 . Therefore, for any given n ≥ 3, the statement (i) + (ii) of Theorem 1 is essentially a

formula, say Φn , of the language of PA2 , whose consistency is established by the theorem.
Thus, it becomes a natural problem to prove the consistency of Φn as in Theorem 1 on
the base of tools close to PA2 , rather than (much stronger) ZFC tools. The next theorem,
our second main result, solves this problem on the basis of ZFC− (minus stands for the
absence of the Power Set axiom), which is a theory equiconsistent with PA2 and thereby a
substantial approximation towards PA2 .

Theorem 2 (in ZFC−+ ‘P(ω) exists’). Let n ≥ 3. Then, the conjunction of (i) and (ii) of
Theorem 1 is consistent with PA2 .

Further reduction to pure PA2 will be the topic of our subsequent planned paper.

2. Outline of the Proof

Given n ≥ 3 as in Theorem 1, a generic extension of L , the constructible universe,
was defined in [1], in which there exist ∆1

n -good well-orderings of the reals, but no ∆1
n−1 -

good well-orderings. Here, to prove our main results, Theorems 1 and 2, we make use
of a modified model. This model involves a product forcing construction in L , earlier
applied in [18,21] for models with various effects related to the property of separation in the
projective hierarchy, and also in [17] for a model in which the full basis theorem holds in the
effective projective hierarchy (all non-empty Σ1

∞ sets of reals contain Σ1
∞ elements), in the

absence of a Σ1
∞ well-ordering of the reals, for generic models with counterexamples to the

countable axiom of choice ACω and dependent choices DC in [22], to name a few examples.
Following the earlier papers [1,17,18], we make use of a sequence of forcings P(ξ) ,

ξ < ω1 , defined in L such that the product forcing PP = ∏ξ P(ξ) adds a sequence of
generic reals to L , uniformly Π1

n−1-definable in two arguments. Each forcing notion P(ξ)
in this construction is a set of perfect trees T ⊆ 2<ω, similarly to the Jensen minimal
forcing defined in [23]. See more in ([24], 28A) on Jensen’s forcing. Infinite finite-support
products of Jensen’s forcing were first considered by Enayat [25], as demonstrated in [1],
following this modification of Jensen–Enayat construction results in the existence of ∆1

n-
good well-orderings in PP-generic extensions, thus witnessing (i) of Theorem 1.

Yet, a substantial modification of the Jensen–Enayat forcing construction is maintained
in this paper, in order to get rid of using countable models of ZFC− (i.e., ZFC without
the Power Set axiom). Different tools based on such models were used in earlier papers,
e.g., in [1,18], in particular, for evaluating the complexity of various sets, leke e.g., the
forcing notion itself. However, as one of our goals is to reduce the whole complexity
of the construction of the models required, we have to remove models of ZFC− from
our instrumentarium. Getting rid of models of ZFC− is thereby a principal technical
achievement of this paper.

We begin in Sections 3–7 with a rather routine material related to arboreal forc-
ings (those with perfect trees in 2<ω as forcing conditions) and their countable finite-
support products called multiforcings, as well as finite tuples of trees called multitrees.
The principal refinement relation π << ϙ between multiforcings π,ϙ is introduced in Sec-



Mathematics 2023, 11, 2517 4 of 38

tion 7. Roughly speaking, its meaning consists in the requirement that every multitree in
MT(ϙ) (all multitrees related to ϙ) has to be meager in every multitree in MT(π) .

The second part of the paper (Sections 8–15) develops the background for the above-
mentioned technical achievement. It is based on the notion of sealing refinement π <<D ϙ

(D being a dense subset of MT(π)), which means that, besides π << ϙ, every multitree
p ∈ MT(ϙ) is covered by a finite collection of D-extendable multitrees in MT(π) (Defi-
nition 11). The following transitivity property takes place: if multiforcings π,ϙ, δ satisfy
π <<D ϙ << δ then (π ∪cw ϙ) <<D δ , where ∪cw is the component-wise union of multiforc-
ings. We consider different types of dense sets to be sealed, including those which govern a
kind of Cantor-Bendixson derivative procedure in Sections 12 and 13.

Corollary 12 summarizes the transitivity property as above for different versions of
<<D . Theorem 4 proves the existence of sealing refinements. Theorem 5 provides conse-
quences for generic extensions.

The next part of the paper (Sections 16–22) presents the key constructions involved in
the proof of Theorem 1. We fix a natural number n ≥ 3 as in Theorem 1, and consider the
constructible universe L as the ground model. Theorem 6 in Section 19 introduces a ω1-
long <<-increasing sequence #”

� ∈ L of countable multiforcings, whose properties include;
first, sealing a sufficient amount of dense sets during the course of the construction; second,
a sort of definable genericity in L ; and third, a definability requirement—as in Definition 23.
The subsequent key forcing notion PP ∈ L (which depends on #”

� ) is defined in Section 20. Its
properties include CCC by Theorem 7. Then, we consider PP-generic extensions of L , called
key models. The main results regarding key models are: Theorem 8, which characterizes
generic reals; and Theorem 9, which provides a ∆1

n-good well-ordering in the generic
model considered, with (i) of Theorem 1 as a consequence. Along with Theorem 7, these
are the main results of this part of the paper.

Claim (ii) of Theorem 1 involves one more important technical tool related to the above-
defined key forcing notion PP. It turns out that the P-forcing relation of Σ1

n−1 formulas is
equivalent (up to level n− 1 of the projective hierarchy of formulas) to a certain auxiliary
forcing relation forc defined and studied in the following part of the paper (Sections 23–
30). Theorem 11 proves the equivalence. This auxiliary forcing is invariant with respect to
permutations of indices ξ < ω1 (Theorem 12), whereas the forcing PP itself is absolutely
not invariant in that sense. Such a hidden invariance plays a crucial role in the construction.
It was applied in [1] in the proof that P-generic extensions satisfy a weaker version of (ii)
only for ∆1

n−1 -good well-orderings. Here, we make use of the invariance to prove, using
Theorem 13, that the full version of (ii) also holds in the PP-generic extensions. Theorems 11–
13 are the main results related to forc, and the introduction and the whole treatment of
the auxiliary forcing in a form compatible with the system of sealing relations without any
reference to countable models of ZFC− is our second principal technical achievement.

The final part of the paper contains Section 31 with a short proof of Theorem 2 and a
brief discussion of its possible reduction to a theory weaker than ZFC−+ ‘ω1 exists’. We
finish in Section 32 with conclusions and problems.

Part I: Basic Constructions

Here, we present a rather routine material on arboreal forcing notions, i.e., those
with perfect trees in 2<ω in the role of forcing conditions. Then, in Section 6, we consider
countable finite-support products of arboreal forcing notions, called multiforcings, as well as
finite tuples of trees called multitrees. We introduce and study a principal refinement relation
between arboreal forcing notions in Section 4 and between multiforcings in Section 7.

3. Trees and Arboreal Forcing Notions

Recall that 2<ω is the set of all tuples (i.e., finite sequences) of 0, 1. If t ∈ 2<ω and
i = 0, 1, then tai is the extension of t by i taking the rightmost position. If s, t ∈ 2<ω , then

• s ⊆ t if and only if t extends s ;
• s ⊂ t if and only if s ⊆ t but s 6= t .
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Generally, ⊂ denotes a strict inclusion (the equality “=” not allowed) in all cases in
this paper, i.e., the same as $. The non-strict inclusion is ⊆ . The length of t is denoted by
lh(t) , and we put 2n = {t ∈ 2<ω : lh(t) = n} , the set all tuples of length n .

Trees in 2<ω are considered. Thus, T ⊆ 2<ω is a tree if t ∈ T =⇒ s ∈ T holds for all
tuples s ⊂ t in 2<ω. Then, the body

[T] = {a ∈ 2ω : ∀ n (a�n ∈ T)} ⊆ 2ω

is a closed set in 2ω. A tree T ⊆ 2<ω is:

− Pruned , if T contains no ⊆-maximal tuples;
− Perfect, if it is pruned and has no isolated branches;
− We let PT contain all perfect trees ∅ 6= T ⊆ 2<ω ;
− If s ∈ T ∈ PT then we put T� s = {t ∈ T : s ⊆ t ∨ t ⊆ s} ; clearly T� s ∈ PT as well.

If T ∈ PT then [T] is a perfect set in 2ω.

Definition 1. If S, T ∈ PT, then define S⊥T (S, T are incompatible) if [S] ∩ [T] = ∅; this is
equivalent to S ∩ T being finite. Then, S 6⊥T means the negation of S⊥T.

A set A ⊆ PT is an antichain if S⊥T holds for all S 6= T in A.

Definition 2 (arboreal forcing notions). A set P ⊆ PT is an arboreal forcing if u ∈ T ∈ P
implies T� u ∈ P. We define AF to be the set of all arboreal forcings P. Any P ∈ AF is:

− Regular, if, for all trees S, T ∈ P, the intersection [S] ∩ [T] is clopen in [S] or in [T] ;
− Special, if P = {T� s : s ∈ T ∈ A} for some finite or countable antichain A ⊆ P—note that

in this case the antichain A is unique and the forcing P has to be countable.

Note that every special arboreal forcing is regular.

Example 1. For any s ∈ 2<ω, define T[s] = {t ∈ 2<ω : s ⊆ t ∨ t ⊆ s} . Then, T[s] ∈ PT and
T[s] = (2<ω)� s , ∀ s. Then, Pcoh = {T[s] : s ∈ 2<ω} is the Cohen forcing, a regular and special
arboreal forcing. The set PT itself is a non-regular arboreal forcing.

Definition 3 (perfect kernels). The perfect kernel of a tree T ⊆ ω<ω is the set

ker(T) = {s ∈ T : there exists a perfect tree S with s ∈ S ⊆ T� s}.

This is the largest perfect tree K ⊆ T .

Definition 4 (meet of perfect trees). If S, T ∈ PT then let S ∧ T = ker(S ∩ T) .

The intersection S ∩ T may not even be pruned, but S ∧ T is a perfect (or empty) tree,
[ker(S ∩ T)] ⊆ [S] ∩ [T] , and the difference ([S] ∩ [T])r [ker(S ∩ T)] is at most countable.

Lemma 1. Let P be a regular arboreal forcing. Then,

(i) If T1, . . . , Tn ∈ P and X = [T1]∩ · · · ∩ [Tn] 6= ∅ then X is a finite union of sets of the form
[S] , S ∈ P, and then T = T1 ∧ . . . ∧ Tn = ker(T1 ∩ · · · ∩ Tn) is a perfect tree equal to a
finite union of trees in P, and [T1] ∩ · · · ∩ [Tn] = [T] .

(ii) Any trees S, T ∈ P are P-compatible (i.e., some tree R ∈ P satisfies R ⊆ S ∩ T ) if and
only if [S] ∩ [T] 6= ∅, equivalently, S 6⊥T.

Proof. (i) Assume that n = 2. By the regularity assumption, let X = [T1] ∩ [T2] be
clopen in say [T1] . Then, there are tuples s1, . . . , sk ∈ T1 such that X = [T] , where
T = ker(T1 ∩ T2) = T1� s1

∪ · · · ∪ T1� sk
. However, T1� si

∈ P as P ∈ AF. As for n > 2,
proceed by induction.

(ii) is an easy corollary of (i).
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Lemma 2. If T ∈ P ∈ AF and S ∈ PT, T 6⊆ S, then there exists a tree T′ ∈ P satisfying T′ ⊆ T
and [T′] ∩ [S] = ∅.

Proof. Let T′ = T� s , where s ∈ T r S .

4. Refinements of Arboreal Forcings

In this section, we introduce the key notion of refinement of arboreal forcings.
We remind that if P = 〈P ;≤〉 is any poset then a set D ⊆ P is:

− Dense in P in case ∀ p ∈ P ∃ q ∈ D (q ≤ p) ;

− Open dense in P if in addition ∀ p ∈ P ∀ q ∈ D (p ≤ q =⇒ p ∈ D) ;

− Pre-dense in P if the set D′ = {p ∈ P : ∃ q ∈ D(p ≤ q)} is dense in P.

An arboreal forcing Q is a refinement of an arboreal forcing P , in symbol P < Q , if:

(1) Q is dense in P ∪Q , so that for any T ∈ P there is Q ∈ Q with Q ⊆ T ;

(2) For any T ∈ Q we have T ⊆fin ⋃ P , meaning that there exists a finite D ⊆ P
satisfying T ⊆ ⋃D , or equivalently [T] ⊆ ⋃S∈D[S] ;

(3) If T ∈ Q and S ∈ P then the intersection [S] ∩ [T] is clopen in [S] , and S 6⊆ T—it
follows that P∩Q = ∅ and the set [S] ∩ [T] is meager in [S] .

Thus, trees in the refinement Q define closed sets that are essentially smaller in the
sense of category than the trees of the original arboreal forcing P do.

Lemma 3. Assume that P < Q are arbitrary regular arboreal forcings. Then:

(i) The union P ∪Q is regular, too, and Q is open dense in P ∪Q;

(ii) If S ∈ P, T ∈ Q, and S 6⊥T, then S ∧ T is a finite union of trees T� s ∈ Q, s ∈ T ;

(iii) If S, S′ ∈ P, T ∈ Q, and T ⊆ S1 ∩ S2 , then there are trees R ∈ P and T′ ∈ Q satisfying
T′ ⊆ T and T′ ⊆ R ⊆ S1 ∩ S2 .

Proof. To prove the regularity of P ∪ Q in (i), make use of (3). To prove (ii) apply (3)
once again. Finally prove (iii). By Lemma 1(i), there are trees R1, . . . , Rn ∈ P such that
[S1] ∩ [S2] = [R1] ∪ . . . ∪ [Rn] . It follows by (ii) that there is a tuple s ∈ T such that
T′ = T� s ⊆ Ri . We observe that T′ ∈ Q as Q is an arboreal forcing. Put R = Ri .

Lemma 4. If P < Q < R are arboreal forcings then P < R, P < (Q ∪ R) , (P ∪Q) < R.

Proof. Prove P < R . Properties (1), (2) are rather obvious. To check (3), let T ∈ R and
S ∈ P . By (2), there is a finite D ⊆ Q with T ⊆ ⋃

D . If U ∈ D , then [T] ∩ [U] is clopen
in [U] and [U] ∩ [S] is clopen in [S] . Thus, [T] ∩ [S] is clopen in [S] . To see that S 6⊆ T,
assume otherwise. Then, S ⊆ ⋃D , and hence there is a tree U ∈ D ⊆ Q such that [U]∩ [S]
is not meager in [S] . On the other hand, [U] ∩ [S] is clopen in [U] by (3). It follows that
there are tuples u, s ∈ 2<ω satisfying U� u = S� s . However, U� u ∈ Q and S� s ∈ P. This
contradicts (3).

The relations P < (Q ∪ R) and (P ∪Q) < R are easy consequences.

Lemma 5 (see Lemma 5.2 in [18]). Let 〈Pα〉α<γ be any <-increasing sequence of special arboreal
forcings. Then, P =

⋃
α<γ Pα is a regular arboreal forcing.

In addition, if 0 < µ < γ then
⋃

α<µ Pα = P<µ < P≥µ =
⋃

µ≤α<γ Pα .
Moreover, if 0 < µ < γ then Pµ is pre-dense in P and P≥µ is dense in P.

Proof. If S ∈ Pα and T ∈ Pβ , α < β , then Pα < Pβ ; hence, [S] ∩ [T] is clopen in [T] by (3)
above. This implies the regularity of P . The additional claims are elementary as well.
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5. Sealing Refinements: Arboreal Forcings

Assume that P < Q . Then, a dense set D ⊆ P is not dense in P ∪ Q any more.
Generally speaking, it may not even be pre-dense in P ∪Q . Yet, it happens that there is a
special type of dense sets called sealed dense that preserves pre-density under refinements,
and a special type of refinements that turns dense sets into sealed dense sets.

The case of arboreal forcings considered here is a simplified introduction into the more
important case of multiforcings in the next section.

Definition 5. Let P ⊆ PT be an arboreal forcing. A set D ⊆ P is sealed dense, if 1) it is open,
i.e., ∀ S ∈ P ∀ T ∈ D (S ⊆ T =⇒ S ∈ D) , and 2) if S ∈ P then S ⊆fin ⋃D.

Lemma 6. Assume that D is a sealed dense set in P ∈ AF. Then, D is open dense.

Proof. To prove the density, assume that S ∈ P . Then, S ⊆ T1 ∪ · · · ∪ Tn , where Ti ∈ D for
all i . At least one of the intersections [S] ∩ [Ti] is not meager in [S] . Then, there is a tuple
t ∈ S such that T = S� t ⊆ Ti . Then, T ∈ P ; hence, T ∈ D by the openness.

Lemma 7. Assume that P < Q are arboreal forcings, and D is a sealed dense set in P. Then,
D⇑Q = {U ∈ Q : ∃ S ∈ D (U ⊆ S)} is a sealed dense set in Q.

Proof. Let U ∈ Q . By (2), in Section 4, the tree U is covered by a finite set of trees in P ,
hence, by a finite set T1, . . . , Tn of trees Ti ∈ D because D is sealed dense in P . Then, any
intersection [U] ∩ [Ti] is clopen in [U] by (3) in Section 4; hence, [U] ∩ [Ti] is equal to a
finite union of sets [V] , V ∈ Q . Thus, overall, [U] itself is equal to a finite union of sets [V] ,
where V ∈ Q is such that V ⊆ Ti for some Ti ∈ D . It remains to note that each such V
belongs to D⇑Q .

Thus, the sealed denseness is preserved by the refinement operation. The next lemma
shows that dense sets give rise to a sealed dense set by a certain kind of refinement.

Definition 6. If P < Q are arboreal forcings and D ⊆ P, then P <D Q means that every tree
T ∈ Q is covered by a finite union of trees in D.

Lemma 8 (see Lemma 5.4 in [18]). Assume that P, Q, R are arboreal forcings, D ⊆ P, and
P <D Q < R. Then, P <D (Q ∪ R) and P ∪Q <D R.

6. Multiforcings and Multitrees

By a multiforcing, we understand any map π : |π| → AF such that |π| = domπ ⊆
ω1 . The set of all multiforcings is denoted by MF. We can represent an arbitrary π ∈MF
in the form of an indexed set π = 〈Pξ〉ξ∈|π| , with Pξ ∈ AF for each ξ ∈ |π| , where all
components Pξ = Pπ

ξ = π(ξ) , ξ ∈ |π| , are arboreal forcings. Say that π is:

− Small, in case both |π| and each set π(ξ) = Pπ
ξ , ξ ∈ |π| , are countable;

− special, in case each π(ξ) = Pπ
ξ is special (then countable) as in Definition 2;

− Regular, in case all π(ξ) = Pπ
ξ are regular as in Definition 2.

Similarly, a multitree is any function p : |p| → PT with a finite domain |p| = dom p ⊆
ω1 . Let MT be the set of all multitrees. Any multitree p ∈ MT can be represented in
the form p = 〈Tp

ξ 〉ξ∈|p| , where Tp
ξ = p(ξ) ∈ PT for all ξ ∈ |p| . The set MT is ordered

component-wise: q 6 p (q is stronger than p) if |p| ⊆ |q| and Tq
ξ ⊆ Tp

ξ for all ξ ∈ |p| .
Let π = 〈Pξ〉ξ∈|π| be a multiforcing. Any multitree p ∈ MT is called a π-multitree,

if |p| ⊆ |π| and for each ξ ∈ |p| the tree p(ξ) = Tp
ξ belongs to Pξ = π(ξ) . Clearly,

the collection MT(π) of all π-multitrees can be identified with the finite support product
∏ξ∈|π| Pξ of the arboreal forcings Pξ = π(ξ) involved.
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Definition 7. If p ∈ MT then define [p] = ∏ξ∈|p|[p(ξ)] , the finite Cartesian product of the
perfect sets [p(ξ)] , ξ ∈ |p| . If |p| ⊆ X ⊆ ω1 , then let [p]↑X = {x ∈ (2ω)X : x� |p| ∈ [p]} ,
this is a cylinder in (2ω)X based on [p] .

Definition 8 (extension). If D ⊆MT and ϙ is an arbitrary multiforcing then we define D⇑ϙ =
{q ∈MT(ϙ) : ∃ p ∈ D (q 6 p)} .

Corollary 1 (of Lemma 1(i)). Let π be a regular multiforcing, p, q ∈MT(π) , X = |p| ∪ |q| .
Then, the intersection ([p]↑X) ∩ ([q]↑X) is equal to a finite (perhaps empty) union of sets [w] ,
where w ∈MT(π) and |w| = X.

Definition 9. Multitrees p, q are incompatible, in symbol p⊥ q , if p(ξ)⊥ q(ξ) , or equivalently,
[p(ξ)] ∩ [q(ξ)] = ∅, holds for some index ξ ∈ |p| ∩ |q| , and compatible otherwise. As usual, a
set A ⊆MT of pairwise incompatible multitrees is called an antichain.

Given a multiforcing π , multitrees p, q are π-compatible, if there exists a multitree r ∈
MT(π) such that r 6 p and r 6 q , and otherwise are π-incompatible, in symbol p⊥π q . Sets
A ⊆MT of pairwise π-incompatible multitrees are π-antichains.

If multitrees are incompatible, then they are π-incompatible for any π . The next
corollary shows that the inverse is true for regular multiforcings.

Corollary 2 (of Lemma 1(ii)). Let π be a regular multiforcing and p, q ∈MT(π) . Then, p, q
are π-compatible if p, q are compatible as in Definition 9.

It follows that being an antichain is equivalent to being a π-antichain.

Corollary 3 (of Lemma 2). Let π be a regular multiforcing and p ∈ MT(π) , r ∈ MT. If
p(ξ) 66 r(ξ) for at least one ξ ∈ |r| ∩ |π| , then there exists a multitree q ∈ MT(π) , q 6 p ,
satisfying q⊥ r .

Let π,ϙ be multiforcings. Define a multiforcing σ = π
⋃cw
ϙ (the component-wise

union), so that |σ| = |π| ∪ |ϙ| and

σ(ξ) =


π(ξ) iff ξ ∈ |π|r |ϙ| ,
ϙ(ξ) iff ξ ∈ |ϙ|r |π| ,

π(ξ) ∪ ϙ(ξ) iff ξ ∈ |ϙ| ∩ |π| .

If #”π = 〈πα〉α<λ is a sequence of multiforcings, then the component-wise union π =⋃cw #”π =
⋃cw

α<λ πα ∈ MF is accordingly defined so that |π| = ⋃
α<λ |πα| and π(ξ) =⋃

α<λ, ξ∈|πα | πα(ξ) for all ξ ∈ |π| . We observe that
⋃cw does not preserve regularity.

Definition 10 (component-wise meet of multitrees). Let π be a regular multiforcing. Say
that a finite set of multitrees p1, . . . , pn ∈ MT(π) is compatible as a whole if for any index
ξ ∈ ⋃

i |pi| , we have
⋂

i[pi(ξ)] 6= ∅. (Here, and below, it is understood that pi(ξ) = 2<ω

whenever ξ /∈ |pi|). In such a case, let us define a multitree

p =
∧cw

i pi = p1 ∧cw . . . ∧cw pn

so that |p| = ⋃
i |pi| and p(ξ) =

∧
i pi(ξ) = ker(

⋂
i pi(ξ)) for all ξ ∈ |p| .

Corollary 4 (of Lemma 1(i)). Suppose that π is a regular multiforcing, and a finite set of
multitrees p1, . . . , pn ∈MT(π) is compatible as a whole. Then, p =

∧cw
i pi is a multitree, and

[p] is a finite union of sets of the form [q] , where q ∈MT(π) , |q| = |p| .

Remark 1 (forcing). Let P ∈ AF be an arboreal forcing. We may treat P as a forcing notion, so
that if T ⊆ T′ then T is a stronger condition. Clearly, P adjoins a real in 2ω .
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If π = 〈Pξ〉ξ∈|π| ∈ MF is a multiforcing then the set MT(π) , ordered as above, is ac-
cordingly viewed as a forcing notion which adjoins a generic sequence 〈xξ〉ξ∈|π| , where every
xξ = xξ [G] ∈ 2ω is a Pξ-generic real. Reals of the form xξ [G] will be called principal generic reals
in the extension by a MT(π)-generic set G.

7. Refinements of Multiforcings

Here, we extend the notion of refinement to multiforcings in component-wise way.
Let π,ϙ be arbitrary multiforcings. Then, ϙ is said to be a refinement of π , symbolically

π << ϙ, if |π| ⊆ |ϙ| and we have π(ξ) < ϙ(ξ) in AF for all ξ ∈ |π| .

Corollary 5 (of Lemma 4). If π << ϙ << σ are multiforcings then π << σ , π << (ϙ∪cw σ) , and
(π ∪cw ϙ) << σ .

Corollary 6 (of Lemma 3). Let π << ϙ be regular multiforcings. Then, so is π ∪cw ϙ, and
MT(ϙ) is an open dense set in MT(π ∪cw ϙ) . Moreover, if p, p′ ∈ MT(π) , q ∈ MT(ϙ) ,
and q 6 p, p′ , then there are multitrees r ∈ MT(π) , q′ ∈ MT(ϙ) satisfying q′ 6 q and
q′ 6 r 6 p, p′ .

Corollary 7 (of Lemma 1(i)). Let π << ϙ be regular multiforcings, p ∈ MT(π) , q ∈ MT(ϙ) ,
X = |p| ∪ |q| . Then, the intersection ([p]↑X) ∩ ([q]↑X) is a finite (perhaps empty) union of sets
of the form [w] , where w ∈MT(ϙ) and |w| = X.

Remark 2. It follows from the above that the relations <,<< are strict partial orders on sets resp.
AF, MF. In addition, if π,ϙ are multiforcings and |π| ⊆ |ϙ| , then the relations π << ϙ and
π << ϙ′ are equivalent, where ϙ′ = ϙ� |π| .

Part II: Sealing Refinements

The first goal of this Part is to introduce a notion of sealing refinements for multiforcings,
similar to the sealing refinements for arboreal forcings as in Section 5. This is a considerably
more difficult case because obtaining adequate, working definitions both of the sealed
density and the sealing refinements are somewhat less obvious. In particular, the notion
of sealing refinement π <<D ϙ (D being a dense subset of MT(π)), stipulates, that, besides
π << ϙ, every multitree p ∈ MT(ϙ) is covered by a finite collection of D-extendable
multitrees in MT(π) (Definition 11). We consider different types of dense sets to be
sealed, including those that govern a kind of Cantor-Bendixon derivative procedure in
Sections 12 and 13.

Corollary 12 summarizes the transitivity property as above for different versions of
<<D . Theorem 4 proves the existence of sealing refinements. Theorem 5 provides conse-
quences for generic extensions. These are main results of Part II.

8. Sealing Refinements

Suppose that u is a multitree and D a set of multitrees. Define u ⊆fin ∨D , if there
exists a finite subset D′ ⊆ D such that 1) |v| = |u| for all v ∈ D′ , and 2) [u] ⊆ ⋃v∈D′ [v] .
(Regarding [u] we refer to Definition 7).

Definition 11. Let π be a multiforcing and D ⊆MT.

• A multitree p is D-extendable if there exists a multitree q ∈ D satisfying p = q� |p| .
• If X ⊆ ω1 is finite then let DX

ext(π) = {p ∈MT(π) : |p| = X ∧ p is D-extendable} .

(1) D is sealed dense in MT(π) if D is open in MT(π) and u ⊆fin ∨D|u|ext(π) holds for
every u ∈MT(π) .

(2) A multiforcing ϙ seals D over π , symbolically π <<D ϙ, if π << ϙ and, for every u ∈
MT(ϙ) with |u| ⊆ |π| , the relation u ⊆fin ∨D|u|ext(π) holds.
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(3) A multiforcing ϙ seals D over π in the old sense, symbolically π <<old
D ϙ, if π << ϙ and the

next condition is true:

• if p ∈ MT(π) , u ∈ MT(ϙ) , |u| ⊆ |π| , |u| ∩ |p| = ∅, then there exists q ∈
MT(π) satisfying q 6 p , also |q| ∩ |u| = ∅, and finally u ⊆fin ∨D|u|q , where

D|u|q = {w ∈MT(π) : |w| = |u| ∧ w ∪ q ∈ D} .

The old definition (3) of sealing refinements was given in [18] on the basis of earlier
studies [22,26]. We use here a more flexible definition by (2).

Lemma 9. If π,ϙ are arbitrary multiforcings, D ⊆MT(π) , and π <<old
D ϙ then π <<D ϙ.

Proof. Apply (3) with p = Λ (the empty multitree).

We will use the notation D⇑ϙ as in Definition 8 in the following lemmas.

Lemma 10. Suppose that π,ϙ are regular multiforcings, and D ⊆MT(π) any set. Then :

(i) If D is sealed dense in MT(π) then D is open dense, and moreover, if u ∈ MT(π) ,
X = |u| , then there is a D-extendable multitree v ∈MT(π) with v 6 u and v = X ;

(ii) If D is sealed dense in MT(π) , then π << ϙ implies π <<D ϙ ;

(iii) If π <<D ϙ then D⇑ϙ is sealed dense in MT(ϙ) whereas D itself is pre-dense in MT(π)
and in MT((π ∪cw ϙ)) ;

(iv) If π <<D ϙ, and u ∈ MT(ϙ) , X = |u| , then there exists a (D⇑ϙ)-extendable multitree
v ∈MT(ϙ) with v 6 u and v = X ;

(v) If D is sealed dense in MT(π) , and π << ϙ, then the set D⇑ϙ is sealed dense in MT(ϙ)
and open dense in both MT(ϙ) and MT(π ∪cw ϙ) .

Proof. (i) As the openness of D is given, prove the ‘moreover’ claim. Let u ∈ MT(π) ,
X = |u| . Then, [u] ⊆ [p1] ∪ . . . ∪ [pn] , where the multitrees pi ∈MT(π) satisfy |pi| = X
and are D-extendable. Then, u is compatible with at least one pi , and hence π-compatible
by Corollary 2, so that there is a multitree v ∈ MT(π) with v 6 pi , v 6 u , and still
|v| = X . It remains to be shown that v is D-extendable.

By the choice of pi , there exists a multitree q ∈ D with X ⊆ Y = |q| and q�X = pi .
Define a multitree w ∈MT(π) so that |w| = Y , w�X = v , and w� (Y r X) = q� (Y r X) .
Then, clearly, w 6 q , and hence w ∈ D by the openness of D .

(ii) Let u ∈ MT(ϙ) , |u| = X ⊆ |π| . By π << ϙ, there exists a finite collection
F ⊆MT(π) of sets p ∈MT(π) such that |p| = X and [u] ⊆ ⋃p∈F[p] . However, each [p] ,
p ∈ F , is covered by a finite union of sets [q] , where q is D-extendable.

(iii) The openness of D⇑ϙ in MT(ϙ) is obvious. To prove the sealed density, let
u ∈ MT(ϙ) . Since MT(π ∪cw ϙ) is a product, we can assume that X = |u| ⊆ |π| . As
π <<D ϙ, [u] ⊆ [p1] ∪ . . . ∪ [pn] holds, where the multitrees pi ∈MT(π) satisfy |pi| = X
and are D-extendable; hence, there are p′i ∈ D such that X ⊆ |p′i| and pi = p′i�X .

For each pi , it follows by Corollary 7 that there exists a finite set V(i) of multitrees
v ∈ MT(ϙ) satisfying still |v| = X and [u] ∩ [p] =

⋃
v∈V(i)[v] . Let V =

⋃
i≤n V(i) . Then,

[u] =
⋃

v∈V [v] , so it remains to show that each v ∈ V is (D⇑ϙ)-extendable in MT(ϙ) .
Let v ∈ V(i) and q = p′i , so that q ∈ D and pi = q�X . As u 6 p , there is a multitree

w ∈MT(ϙ) with w 6 q and w�X = v . Then, w ∈ D⇑ϙ; therefore, w witnesses that v is
(D⇑ϙ)-extendable. This completes the proof that D⇑ϙ is sealed dense in MT(ϙ) .

To prove the pre-density of D in MT(π) , let p ∈ MT(π) . As π << ϙ, there is
u ∈ MT(ϙ) , u 6 p . There exists v ∈ D⇑ϙ, v 6 u , by the above. Then, v 6 some q ∈ D .
Thus, v witnesses that p, q are compatible; therefore, p, q are π-compatible by Corollary 2.

To prove (iv) make use of (iii) and apply (i) for D⇑ϙ.
Finally, (v) easily follows from (i) (to infer the open density in MT(ϙ)), (ii), (iii), and

Corollary 6 (to infer the open density in MT(π ∪cw ϙ)).
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Thus, in the case of multiforcings, the sealed density is preserved by the refinement
operation, and just a dense set D converts to a sealed dense set by the refinement <<D .

Lemma 11. Let π,ϙ be regular multiforcings and D1 ∪ D2 ⊆MT(π) . Then :

(i) If D1, D2 are sealed dense sets in MT(π) then D = D1 ∩ D2 is sealed dense as well;

(ii) If D1, D2 are open dense sets in MT(π) , π <<D1 ϙ, and π <<D2 ϙ, then we have π <<D ϙ.

Proof. (i) Both D1, D2 are open dense in MT(π) , and hence, so is D . Now, let u ∈MT(π) ,
X = |u| . As D1 is sealed dense, we have [u] ⊆ [u1] ∪ · · · ∪ [un] , where the multitrees
ui ∈MT(π) satisfy |ui| = X and are D1-extendable. In other words, for any ui there is a
multitree pi ∈ D1 such that X ⊆ |pi| and ui = pi�X . Let Xi = |pi| . As D2 is sealed dense,
we have [pi] ⊆ [pi

1] ∪ · · · ∪ [pi
n(i)] , where the multitrees pi

k ∈MT(π) satisfy |pi
j| = Xi and

are D2-extendable. Thus, for any pi
k there is a multitree wi

k ∈ D2 such that Xi ⊆ |wi
k| and

pi
k = wi

k�Xi . Finally, each set ui
k = wi

k�Xi is D-extendable (to wi
k ), and [u] ⊆ ⋃ik ui

k .
(ii) Let u ∈ MT(ϙ) , X = |u| ⊆ |π| . The sets D1⇑ϙ and D2⇑ϙ are sealed dense in

MT(ϙ) by Lemma 10(iii), hence so is D′ = (D1⇑ϙ) ∩ (D2⇑ϙ) by (i). It follows that we can
w. l.o.g. assume that u is already D′-extendable, so that there is multitrees v ∈ MT(ϙ) ,
p1 ∈ D1 , and p2 ∈ D2 such that X ⊆ Y = |v| and v 6 p1, p2 , u = v�X .

Then, [v] ⊆ ([p1]↑Y)∩ ([p2]↑Y) , and on the other hand we have ([p1]↑Y)∩ ([p2]↑Y) =
[r1] ∪ [r2] ∪ . . . ∪ [rm] by Corollary 4, where ri ∈MT(π) , |ri| = Y . Furthermore, ri ∈ D =
D1 ∩ D2 by the open density assumption in (ii).

For each i , if [v] ∩ [ri] 6= ∅, then, by π << ϙ, there are multitrees wi
1, wi

2, . . . , wi
n(i) ∈

MT(ϙ) such that |wi
j| = Y for all i, j , and [v] ∩ [ri] =

⋃
j≤n(i)[wi

j] . We observe that wi
j 6 ri

for all i, j by construction; hence, wi
j ∈ (D1 ∩ D2)⇑ϙ.

Now, let ui
j = wi

j�X . Then, ui
j ∈ MT(ϙ) , |ui

j| = X , [u] =
⋃

i,j[ui
j] , and each ui

j is(
(D1 ∩ D2)⇑ϙ

)
-extendable (to wi

j ), as required.

Lemma 12. Let π <<D ϙ << δ be regular multiforcings, D ⊆MT(π) . Then:

(i) π <<D (ϙ∪cw δ);

(ii) π <<D δ;

(iii) ϙ <<E δ, where E = D⇑ϙ = {q ∈MT(ϙ) : ∃ p ∈ D(q 6 p)} ;

(iv) (π ∪cw ϙ) <<E δ and (π ∪cw ϙ) <<D δ .

Proof. (i) Corollary 5 implies π << (ϙ∪cw δ) . Let u ∈ MT(ϙ ∪cw δ) , |u| = X ⊆ |π| . As
ϙ << δ , there is a finite collection U ⊆ MT(ϙ) satisfying |v| = X for all v ∈ U , and
[u] ⊆ ⋃

v∈U [v] . As π <<D ϙ, we obtain v ⊆fin ∨DX
ext(π) for any v ∈ U, and hence

u ⊆fin ∨DX
ext(π) .

(ii) The relation π <<D σ is an easy corollary.
(iii) Let u ∈ MT(δ) , |u| = X ⊆ |π| . As ϙ << δ , there exists a finite U ⊆ MT(ϙ)

satisfying |v| = X for each v ∈ U , and [u] ⊆ ⋃v∈U [v] . Then, we have v ⊆fin ∨DX
ext(π)

for every v ∈ U since π <<D ϙ. In other words, there exists a finite W ⊆ DX
ext(π) with

[u] ⊆ ⋃v∈U [v] ⊆
⋃

w∈W [w] . The multitrees in U can be refined using Corollary 7, so that
we obtain a finite collection U′ ⊆MT(ϙ) satisfying

(1) Still |v′| = X for any v′ ∈ U′ ;
(2)

⋃
v′∈U′ [v′] =

⋃
v∈U [v] ;

(3) If v′ ∈ U′ then v′ 6 w for some w ∈W — and hence easily v′ ∈ EX
ext(ϙ) .

It follows that [u] ⊆fin ∨ EX
ext(ϙ) , as required.

(iv) The relation (π ∪cw ϙ) <<E δ is an easy corollary of (3).
Finally, (π ∪cw ϙ) <<D δ is established by the set W in the proof of (iii).
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9. Two Examples

Here, we consider two important types of dense sets that can be made sealed dense.

Example 2. If π is a multiforcing and p0 ∈MT (not necessarily p0 ∈MT(π)), then

(∗) the set Dp0
(π) = {q ∈MT(π) : |p0| ⊆ |q| ∧ (q 6 p0 ∨ p0⊥ q)} is open dense in

MT(π) by Corollary 3 in case |p0| ⊆ |π| , whereas if |p0| 6⊆ |π| then Dp0
(π) = ∅.

If ϙ is another multiforcing then we write π <<p0
ϙ instead of π <<Dp0 (π) ϙ, and say that ϙ

seals p0 over π . Note that |p0| ⊆ |π| in this case.
In addition, if Dp0

(π) is sealed dense in MT(π) then we say that p0 is sealed by π . Still
|p0| ⊆ |π| in this case.

Corollary 8. Assume that π << ϙ << δ are regular multiforcings, and p0 ∈MT. Then:

(i) If p0 is sealed by π then π <<p0
ϙ ;

(ii) If π <<p0
ϙ then p0 is sealed by ϙ, while Dp0

(π) is open dense in MT(π) .

Proof. We first recall (∗) in Example 2 and observe that (Dp0
(π)⇑ϙ) ⊆ Dp0

(ϙ) . Then, to
prove (i), (ii) apply Lemma 10.

If π is a multiforcing and p, q are π-incompatible multitrees in MT (not necessarily in
MT(π)), then it is well possible that p, q become ϙ-compatible for another multiforcingϙ,
even with π << ϙ. To inhibit such a case, the following condition is introduced.

Example 3. Let π be a multiforcing. If p, q ∈MT (not necessarily ∈MT(π)), then let

N pq(π) = {r ∈MT(π) : r⊥ p ∨ r⊥ q} .

The set N pq(π) is open dense in MT(π) by Corollary 3, provided |p| ∪ |q| ⊆ |π| and p, q
are π-incompatible, but if p, q are π-compatible, then N pq(π) is not dense in MT(π) .

We define π <<pq ϙ to mean that |p| ∪ |q| ⊆ |π| , p and q are π-incompatible, and
π <<N pq(π) ϙ. In this case, we say that ϙ seals p⊥π q over π .

If |p| ∪ |q| ⊆ |π| , p and q are π-incompatible, and N pq(π) is sealed dense in MT(π) ,
then we say that p⊥π q is sealed by π .

The following corollary reinterprets some key results above in terms of <<pq .

Corollary 9. Let π << ϙ and δ be regular multiforcings and p, q ∈MT. Then:

(i) If p⊥π q is sealed by π then π <<pq ϙ ;
(ii) If π <<pq ϙ then p⊥ϙ q is sealed by ϙ, while N pq(π) is open dense in MT(π) ;

(iii) If p⊥π q is sealed by π , p′, q′ ∈ MT, and p′ 6 p , q′ 6 q , |p′| ∪ |q′| ⊆ |π| , then
p′⊥π q′ is sealed by π as well.

Proof. The proof is similar to Corollary 8. We make use of Lemma 10 and Lemma 12(i),(iv),
in view of the fact that (N pq(π)⇑ϙ) ⊆ N pq(ϙ) . As for the extra item (iii), we obviously
have N pq(π) ⊆ N p′q′(π) provided p′ 6 p and q′ 6 q .

10. Real Names and Direct Forcing

In this section, a notational system for names of reals in 2ω is introduced. It is
appropriate for dealing with forcing notions MT(π) .

Definition 12. We let a real name be any c ⊆MT× (ω× 2) such that the sets Kc
ni = {p ∈MT :

〈p, n, i〉 ∈ c} satisfy the following condition: given n < ω , any p ∈ Kc
n0 , q ∈ Kc

n1 are
incompatible, i.e., p⊥ q (Definition 9). Let Kc

n = Kc
n0 ∪ Kc

n1 ; Kc
n ⊆MT(π) .
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A real name c is small if every set Kc
n is finite or countable — then both the set |c| =⋃

n
⋃

p∈Kc
n
|p| , and c itself, are countable as well.

Given a multiforcing π , a real name c is:

− π-complete, whenever every collection Kc
n⇑π = {p ∈MT(π) : ∃ q ∈ Kc

n (p 6 q)} (the
π-cone of Kc

n ) is pre-dense (and then clearly open dense) in MT(π) .
− sealed π-complete, whenever each set Kc

n⇑π is sealed dense in MT(π) .

It is not assumed here that c ⊆MT(π)× (ω× 2) , or equivalently, Kc
n ⊆MT(π) , ∀ n.

Suppose that c is a real name. Say that a multitree p :

• Directly forces c(n) = i , where n < ω and i = 0, 1—in case there is a multitree q ∈ Kc
ni

such that p 6 q ;
• Directly forces s ⊂ c , where s ∈ 2<ω,—in case p directly forces c(n) = i for all

n < lh(s) , where i = s(n) ;
• Directly forces c /∈ [T] , where T ∈ PT—in case there is a tuple s ∈ 2<ω r T such that

p directly forces s ⊂ c .

Lemma 13. Let π be a multiforcing, p ∈MT(π) , n < ω , c a π-complete real name, T ∈ PT.
There exists i = 0, 1 and a multitree q ∈MT(π) , q 6 p , which directly forces c(n) = i .
There exists s ∈ T and a multitree q ∈MT(π) , q 6 p , which directly forces c /∈ [T� s] .

Proof. See Lemma 9.2 in [18].

The definition of direct forcing is associated with the following notion of genericity.

Definition 13. Suppose that π is a multiforcing. A set G ⊆MT(π) is π-generic if:

(1) For any p 6 q in MT(π) , p ∈ G implies q ∈ G.

(2) If p, q ∈ G then there is r ∈ G with r 6 p , r 6 q .

Say that G is π-generic over a given π-complete real name c , if in addition

(3) G intersects every set of the form Kc
n⇑π , n < ω .

In this case, we define a real c[G] ∈ 2ω as follows: c[G](n) = i if G ∩ Kc
ni 6= ∅.

Lemma 14 (obvious). Suppose that π is a multiforcing and c is a π-complete real name. Let
G ⊆MT(π) be π -generic over c . If some p ∈ G directly forces c(n) = i , or s ⊂ c , or c /∈ [T] ,
then resp. c[G](n) = i , s ⊂ c[G] , c[G] /∈ [T] .

Example 4. If ξ < ω1 , then let .xξ be a real name such that each set K
.x ξ

ni consists of a single
multitree Pξ

ni , satisfying |Pξ
ni| = {ξ} (a singleton), and Pξ

ni(ξ) = Tni , where Tni = {s ∈ 2<ω :
lh(s) ≤ n ∨ s(n) = i} . Then, .xξ is a small real name, π-complete for any multiforcing π . If
a set G ⊆ MT(π) is π-generic over .xξ , then the real .xξ [G] is identical to the real xξ [G] (see
Remark 1). In other words, .xξ is a canonical name for xξ [G] .

11. Sealing Real Names and Avoiding Refinements

Here, we develop the idea of Definition 11 in the context of dense sets generated by
real names.

Definition 14. Let π << ϙ be multiforcings and c be a real name. We define that ϙ seals c over
π , in symbol π <<c ϙ, in case ϙ seals each set

Kc
n⇑π = {p ∈MT(π) : ∃ q ∈ Kc

n (p 6 q)} ,

over π , i.e., π <<Kc
n ⇑π ϙ, in the sense of Definition 11.
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Corollary 10. Suppose that π,ϙ, σ are regular multiforcings and c is a real name. Then:

(i) If π <<c ϙ then the name c is π-complete, (π ∪cw ϙ)-complete, and sealed ϙ-complete;

(ii) If π << ϙ and c is sealed π-complete, then c is sealed ϙ-complete.

Proof. To prove (i), (ii) apply Lemma 10 and observe that (Kc
n⇑π)⇑ϙ ⊆ Kc

n⇑ϙ.

If π is a multiforcing then the forcing notion MT(π) adjoins a family of principal
generic reals xξ = xξ [G] ∈ 2ω , ξ ∈ |π| , where every xξ is π(ξ)-generic over the ground set
universe. Obviously many more reals are added. The next definition provides a sufficient
condition for a π-complete real name c to generate not a real of the form xξ .

Definition 15. Suppose that π is a multiforcing and ξ ∈ |π| . A real name c is called non-
principal at ξ over π , if the next set Dc

ξ(π) is open dense in MT(π) :

Dc
ξ(π) = {p ∈MT(π) : ξ ∈ |p| and p directly forces c /∈ [p(ξ)]} .

It will be demonstrated by Theorem 5(i) below that the non-principality at ξ implies
that c is not a name of the real xξ [G] . Moreover, the avoidance condition in the following
definition will be demonstrated to imply that c is a name of a non-generic real.

Definition 16. Let π be a multiforcing and Y ⊆ PT be a set of trees (e.g., Y = π(ξ) for some
ξ ∈ |π|). A real name c is said to avoid Y over π , if for each tree Q ∈ Y, the set

Dc
Q(π) = {r ∈MT(π) : r directly forces c /∈ [Q]}

is sealed dense (then open dense) in MT(π) in the sense of Definition 11.
Let π,ϙ be multiforcings, π << ϙ, Y ⊆ PT be a set of trees. We write π <<c

Y ϙ, if for each
tree Q ∈ Y, ϙ seals the set Dc

Q(π) over π — that is formally π <<Dc
Q(π) ϙ.

The relation π <<c
Y ϙ will be applied mainly in case Y = ϙ(ξ) for some ξ ∈ |π| .

Theorem 11.1 in [18] demonstrates that if π is a small regular multiforcing, ξ ∈ |π| ,
and a real name c is non-principal at ξ over π (in the sense of Definition 15) then there is a
special multiforcing ϙ with π <<c

ϙ(ξ)
ϙ (as in Definition 16). This fact will be used in the

proof of Theorem 4 below.

Lemma 15. Let π << ϙ be regular multiforcings, Y ⊆ PT be a set of trees, c be a real name.

(i) If π <<c
Y ϙ then c avoids Y over ϙ ;

(ii) If c avoids Y over π then c avoids Y over ϙ as well.

Proof. (i) Let Q ∈ Y . The set D = Dc
Q(π)⇑ϙ is sealed dense in MT(ϙ) by Lemma 10(iii).

However, clearly, D ⊆ Dc
Q(ϙ) ; thus, the set Dc

Q(ϙ) is sealed dense in MT(ϙ) as well.
(ii) Let Q ∈ Y . The set D = Dc

Q(π) is sealed dense in MT(π) by the avoidance
assumption. Thus, D⇑ϙ is a sealed dense set in MT(ϙ) by Lemma 10(iii). However, clearly,
(D⇑ϙ) ⊆ Dc

Q(ϙ) . It follows that the set Dc
Q(ϙ) is sealed dense in MT(ϙ) as well.

12. Inductive Analysis of Well-Foundedness

Here, we accomplish some work related to the combinatorial description of forcing of
well-founded trees. This will be applied in Part IV as a tool to define an auxiliary forcing
relation for formulas in Σ1

1 and Π1
1 via the well-foundedness of certain trees.

A set τ ⊆ MT× ω<ω is called a tree-name, if whenever s ⊂ t belong to ω<ω and
p ∈MT then 〈p, t〉 ∈ τ =⇒ 〈p, s〉 ∈ τ . Following Section 10, say that a multitree q ∈MT
directly forces s ∈ τ if 〈q0, s〉 ∈ τ for some q0 ∈MT(π) such that q0 > q .

Definition 17. Assume that π is a multiforcing and τ ⊆MT×ω<ω is a tree-name.
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If p ∈MT and s ∈ ω<ω then define

MT(π)6p = {q ∈MT(π) : q 6 p};
Ws
6p(τ) = {q ∈MT : q 6 p ∧ ∃ j (q directly forces sa j ∈ τ)};

Ws
6p(τ, π) = Ws

6p(τ) ∩MT(π)6p ;
+Ws
6p(τ, π) = {q ∈MT(π) : q ∈Ws

6p(τ, π) or q is incompatible with p} .

Let the derivative τ′π ⊆ τ contain all pairs 〈p, s〉 ∈ τ such that Ws
6p(τ, π) is dense in

MT(π)6p (then clearly open dense too), so that ∀ r ∈ MT(π)6p ∃ q ∈ Ws
6p(τ, π) (q 6 r) .

This is equivalent to saying that Ws
6p(τ) is dense in MT(π) below p.

Note that τ′π is a tree-name. Define a descending sequence of tree-names τν
π , ν < ω1 ,

by transfinite induction, so that τ0
π = τ , τν+1

π = (τν
π)
′
π for ν < ω1 , and τλ

π =
⋂

ν<λ τν
π for

limit λ . Then, eventually τν+1
π = τν

π for some ν = νπ(τ) < ω1 , and we let τ∞
π = τν

π for
this index ν . Thus, τ∞

π ⊆ τ is a tree-name as well, and (τ∞
π )′π = τ∞

π .

Lemma 16. Let τ ⊆ MT× ω<ω be a tree-names, π << ϙ be regular multiforcings, and σ =
π ∪cw ϙ. Then, τν

σ = τν
ϙ

for all ν , and accordingly τ∞
σ = τ∞

ϙ .

Proof. It suffices to prove that just τ′σ = τ′ϙ ; all further inductive steps are similar. Recall
that MT(ϙ) is open dense in MT(σ) by Corollary 6. It follows that one and the same set
Ws
6p(τ) is dense in MT(ϙ)6p if it is dense in MT(σ)6p .

Definition 18. A set G ⊆ MT(π) is π -generic over τ if G is π -generic as in Definition 13,
and G intersects every set of the form +Ws

6p(τ
ν
π , π) , dense in MT(π) , where 〈p, s〉 ∈ τ and

ν ≤ νπ(τ) . Put τ[G] = {s ∈ ω<ω : ∃ p ∈ G (p directly forces s ∈ τ)} .

Thus, τ[G] is a tree is ω<ω because τ is a tree-name.
For any tree T ⊆ ω<ω , let T′ be the pruned derivative, that consists of all s ∈ T that are

not terminal nodes in T , and let T∞ be the pruned kernel, the largest subtree S ⊆ T with no
terminal nodes, that consists of all s ∈ T that belong to infinite branches B ⊆ T .

Lemma 17. Assume that π is a multiforcing, τ ⊆ MT× ω<ω is a tree-name, and a set G ⊆
MT(π) is π -generic over τ . Then:

(i) τ′π [G] is the pruned derivative of the tree τ[G] ⊆ ω<ω ;

(ii) τ∞
π [G] is the pruned kernel of τ[G] ⊆ ω<ω;

(iii) G remains π -generic over τ′π and over τ∞
π .

Proof. (i) The contrary assumption results in the two following cases.
Case 1 : some s ∈ τ′π [G] is maximal in τ[G] . In particular, we have multitrees p ∈ G

and p0 such that 〈p0, s〉 ∈ τ′π and p 6 p0 . By definition, the set Ws
6p0

(τ) has to be dense
in MT(π)6p0

. Therefore, as G is generic over τ , and p ∈ G , some q ∈ Ws
6p0

(τ) belongs

to G as well. By definition, q directly forces sa j ∈ τ for some j < ω . Then, there is a
multitree q0 satisfying q 6 q0 and 〈q0, sa j〉 ∈ τ . However, sa j ∈ τ[G] , contrary to the
choice of s .

Case 2 : a tuple sa j belongs to τ[G] but s does not belong to τ′π [G] . Then, we have
〈p0, sa j〉 ∈ τ , p ∈ G , p 6 p0 . It follows that 〈p0, s〉 ∈ τ′π , and hence s ∈ τ′π [G] , contrary
to the choice of s .

Claim (ii) is a corollary of (i). To check (iii) note that τ1+ν
π = (τ′π)

ν
π for all ν .

Corollary 11. Under the assumptions of the lemma, let p ∈ G.

(i) If p directly forces s ∈ τ∞
π then τ[G] has an infinite chain containing s.
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(ii) If no condition q ∈MT(π) , q 6 p directly forces s ∈ τ∞
π , then τ[G] is well-founded over s.

Proof. By Lemma 17, τ∞
π [G] is the the pruned kernel of τ[G] . Thus, τ[G] includes an

infinite chain containing some s ∈ τ[G] if s ∈ τ∞
π [G] . This easily implies both items.

13. Absoluteness of the Derivative

The key result of this section will be to show that, under certain restrictions, the pruned
derivative operation introduced in Section 12 is absolute with respect to refinements of the
multiforcings involved. We need, however, to introduce another property of the form of
sealing of dense sets, as in Definition 11.

Definition 19. Let π be a multiforcing, and τ ⊆ MT× ω<ω is a tree-name, as in Section 12.
Say that τ is sealed in π , if the following conditions hold:

(a) If p ∈ dom τ = {p : ∃ s (〈p, s〉 ∈ τ)} then |p| ⊆ |π| ,
(b) If ν ≤ νπ(τ) , 〈p, s〉 ∈ τν

π , and D = +Ws
6p(τ

ν
π , π) (see Section 12) is a set dense (then

open dense as well) in MT(π) , then D is sealed dense in MT(π) .

Let ϙ be another multiforcing with π << ϙ, so that ϙ is a refinement of π . Say that ϙ seals τ
over π , symbolically π <<τ ϙ, if the next two conditions hold:

(c) Just as (a) above;

(d) If ν ≤ νπ(τ) and 〈p, s〉 ∈ τν
π , and the set D = +Ws

6p(τ
ν
π , π) is dense (then open dense)

in MT(π) , then π <<D ϙ.

The following claims show the effect of <<τ in terms of Lemma 16.

Lemma 18 (obvious). Let τ ⊆ MT× ω<ω be a tree-name, π <<τ ϙ be regular multiforcings.
Then π <<τν

π
ϙ for all ν , and accordingly π <<τ∞

π
ϙ.

Theorem 3. Let τ ⊆MT×ω<ω be a tree-name, π << ϙ be regular multiforcings, π <<r ϙ holds
for all r ∈ dom τ , and σ = π ∪cw ϙ. Then, the following holds :

(i) If 〈r, s〉 ∈ τ , then Ws
6r(τ, π)⇑ϙ ⊆Ws

6r(τ,ϙ) and Dr(π)⇑ϙ ⊆ Dr(ϙ);

(ii) If 〈p, s〉 ∈ τ , then the set Ws
6p(τ, π)⇑ϙ is dense in Ws

6p(τ,ϙ) ;

(iii) If τ is sealed in π , then π <<τ ϙ ;

(iv) If π <<τ ϙ, then τν
π = τν

ϙ
= τν

σ for all ν , and accordingly τ∞
π = τ∞

ϙ = τ∞
σ ;

(v) If π <<τ ϙ, then τ is sealed in ϙ ;

(vi) If π <<τ ϙ, s ∈ ω<ω , p ∈MT, and π <<pq0
ϙ (see Example 3) holds for all q0 ∈ dom τ

such that p, q0 are π-incompatible— then the following are equivalent :

(1) No multitree r ∈MT(π)6p directly forces s ∈ τ∞
π ;

(2) No multitree r ∈MT(σ)6p directly forces s ∈ τ∞
σ ;

(3) No multitree r ∈MT(ϙ)6p directly forces s ∈ τ∞
ϙ .

Proof. (i) Let u ∈MT(ϙ) belong to Ws
6r(τ, π)⇑ϙ. There is a multitree q ∈Ws

6r(τ, π) with
u 6 q . Then, q directly forces sa j ∈ τ , some j , and hence, so does u ; thus, u ∈Ws

6r(τ,ϙ) .
(ii) Let u ∈ Ws

6p(τ,ϙ) , meaning that u ∈ MT(ϙ) , u 6 p , and also u 6 r , where
〈r, sa j〉 ∈ τ for some j < ω . Let X = |u| . Note that both r, p belong to dom τ ; therefore,
we have π <<r ϙ and π <<p ϙ, and then π <<Dr(π)∩Dp(π) ϙ by Lemma 11(ii). It follows
by Lemma 10(iv) that there is a

(
(Dr(π) ∩ Dp(π))⇑ϙ

)
-extendable multitree v ∈MT(ϙ) ,

v 6 u , with |v| = X . In other words, there are multitrees w ∈MT(ϙ) with X ⊆ Y = |w|
and w�X = v , and q ∈ Dr(π) ∩ Dp(π) with w 6 q . As w 6 v 6 u 6 p, r , the
multitree q cannot be incompatible with p and with r . Therefore, q 6 r, p . This implies
q ∈Ws

6p(τ, π) , and hence, w ∈ q ∈Ws
6p(τ, π)⇑ϙ. This ends the proof.
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(iii) Suppose that ν ≤ νπ(τ) , 〈p, s〉 ∈ τν
π , and the set D = +Ws

6p(τ
ν
π , π) is dense in

MT(π) . Then, π <<D ϙ holds by Lemma 10(ii), as required.

(iv) In view of Lemmas 16 and 18, it suffices to prove τ′ϙ ⊆ τ′π ⊆ τ′σ .
Step 1: τ′π ⊆ τ′σ . Let 〈p, s〉 ∈ τ′π . Then, 〈p, s〉 ∈ τ , and by definition, the set

Ws
6p(τ, π) is dense in MT(π)6p . We conclude that D = +Ws

6p(τ, π) (see Section 12)
is open dense in the whole MT(π) , and hence, π <<D ϙ holds. Then, D⇑ϙ is open dense
in MT(σ) by Lemma 10(iii),(v). Accordingly, Ws

6p(τ, π)⇑ϙ is open dense in MT(σ)6p .
Then, Ws

6p(τ,ϙ) , a bigger set by (i), is open dense in MT(σ)6p , too. Thus, 〈p, s〉 ∈ τ′σ .
Step 2: τ′ϙ ⊆ τ′π . Assume that 〈p, s〉 ∈ τ′ϙ , so that 〈p, s〉 ∈ τ and the set Ws

6p(τ,ϙ) is
open dense in MT(ϙ)6p . Then, the set Ws

6p(τ, π)⇑ϙ is dense in MT(ϙ)6p as well by (ii).
We claim that the set Ws

6p(τ, π) is dense in MT(π)6p .
Indeed, let p1 ∈MT(π)6p . Then, there is q1 ∈MT(ϙ) , q1 6 p1 . By (ii), there exists a

pair q2 6 p2 of multitrees p2 ∈Ws
6p(τ, π) and q2 ∈MT(ϙ) such that q2 6 q1 . Therefore,

q2 witnesses that the multitrees p1, p2 in MT(π) are compatible, and hence, compatible
right in MT(π) by Corollary 2. Thus, we have established that the set Ws

6p(τ, π) is at least
pre-dense, and then obviously dense in MT(π)6p , as required.

(v) Prove (b) of Definition 19 for ϙ. In view of (iv) and Lemma 18, it suffices to only
consider the case ν = 0, i.e., given 〈p, s〉 ∈ τ , and assuming that the set D = +Ws

6p(τ,ϙ)
is dense in MT(ϙ) , we have to prove that D is sealed dense in MT(ϙ) .

By definition, the set Ws
6p(τ,ϙ) is dense (then open dense) in MT(ϙ)6p . It follows by

(ii) that the set Ws
6p(τ, π)⇑ϙ is also dense in MT(ϙ)6p . We conclude (see Step 2 above)

that the set Ws
6p(τ, π) itself is dense in MT(π)6p . Then, the set E = +Ws

6p(τ, π) itself is
dense in MT(π)p . Therefore, we have π <<E ϙ because π <<τ ϙ is assumed.

It follows by Lemma 10(iii) that E↑ϙ is sealed dense in MT(ϙ) . However, easily
E↑ϙ ⊆ D by (ii). This ends the proof that D is sealed dense in MT(ϙ) .

(vi) Recall that MT(ϙ) is dense in MT(σ) by Corollary 6. Therefore, (iv) implies that
(2) ⇐⇒ (3) . Moreover, (iv) implies as well that (2) =⇒ (1) simply because MT(π) ⊆
MT(σ) . It remains to be proven that conversely (1) =⇒ (3) .

Let (3) fail, that is, we assume that u ∈ MT(ϙ)6p0
, X = |u| , and u directly forces

s ∈ τ∞
σ . Then, by (iv) u directly forces s ∈ τ∞

π ; hence, u 6 q0 holds for some q0 with
〈q0, s〉 ∈ τ∞

π . Thus, p, q0 are ϙ-compatible (by u). It follows that p, q0 are π-compatible as
well. Indeed, otherwise we have π <<pq0

ϙ by the assumptions of (vi). This implies that
p⊥ϙ q is sealed by ϙ by Corollary 9(ii). However, this contradicts the ϙ-compatibility of
p, q0 . Finally, the π-compatibility of p, q0 means ¬(1) .

14. Combining Refinement Types

The properties of generic refinements considered above in Sections 5, 8, 9, and 11 are
summarized by the next definition.

Definition 20. Let π << ϙ be multiforcings and M be any set. W define π <<<<M ϙ to mean that
the following conditions hold:

(1) If ξ ∈ |π| , D ⊆ π(ξ) , D ∈ M, D is pre-dense in π(ξ) , then we have π(ξ) <D ϙ(ξ) ;

(2) If D ⊆MT(π) , D ∈ M, D is open dense in MT(π) , then we have π <<D ϙ;

(3) If p ∈ M ∩MT and |p| ⊆ |π| , then π <<p ϙ;

(4) If p, q ∈ M ∩MT, |p| ∪ |q| ⊆ |π| , and p, q are π-incompatible, then π <<pq ϙ;

(5) If c ∈ M and c is a π-complete real name then we have π <<c ϙ;

(6) If c ∈ M is a π-complete real name, non-principal at ξ ∈ |π| over π, then π <<c
ϙ(ξ)
ϙ;

(7) If τ ∈ M, τ ⊆MT×ω<ω is a tree-name, then π <<τ ϙ.

Corollary 12. Let M be a countable set, π,ϙ, δ be regular multiforcings, and π <<<<M ϙ << δ .
Then, π <<<<M (ϙ∪cw δ) and (π ∪cw ϙ) <<<<M δ .
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Proof. Our basic reference is Lemma 12(i)(iv), which has to be applied for those sets D
involved in the definition of π <<<<M ϙ above (Definition 20).

This follows a refinement existence result.

Theorem 4. If π is a small regular multiforcing and M a countable set, then there exists a special
multiforcing ϙ satisfying |π| = |ϙ| and π <<<<M ϙ.

Proof (sketch). The proof is based on some rather difficult results in [18] which we make
use of here without proofs.

First of all, we can assume that M ∈ HC = all hereditarily countable sets, since all
elements in M r HC are irrelevant. Let M ⊆ HC be the (countable) set containing π, M ,
every ξ ∈ |π| , and every element of M . Let M+ contain all sets X ⊆ HC, ∈-definable
over HC, with sets in M allowed as parameters.

Definition 7.1 in [18] introduces the notion of M-generic refinements. Lemma 7.2 and
Theorem 7.3 in [18] prove the existence of a special multiforcing ϙ, which satisfies |ϙ| = |π|
and is an M-generic refinement of a given small regular multiforcing π . If ϙ is such, then
Theorem 8.1 in [18] proves the relation π <<old

D ϙ, and hence, π <<D ϙ, for all open dense
sets D ∈M+ , D ⊆MT(π) . This implies (1)–(5) and (7) of Definition 20 because all dense
sets involved there belong to M+ by construction.

Finally, (6) of Definition 20 is separately established by Theorem 11.1 in [18]. We may
note that (6) of Definition 20 differs from other items of this definition in that the list of the
dense sets involved depends on the new multitree ϙ (the one claimed to exist). Therefore,
it needs a special theorem in [18], namely Theorem 11.1.

15. Consequences for Generic Extensions

Lemma 19 shows that real names provide a suitable representation of reals in MT(π)-
generic extensions. Then, corollaries for non-principal names will be the subject of
Theorem 5.

Lemma 19. Assume that π is a regular multiforcing in the ground set universe V , and G ⊆
MT(π) is a MT(π)-generic set over V .

(i) If x ∈ 2ω is a real in V[G] then there exists a π-complete real name c ∈ V , c ⊆MT(π)×
ω× 2, satisfying x = c[G] .

(ii) Let MT(π) be a CCC forcing in V , and c ∈ V , c ⊆MT(π)×ω× 2 be a π-complete real
name. Then, there exists a small π-complete real name d ∈ V , d ⊆MT(π)×ω× 2, such
that every condition in MT(π) forces the equality c[G] = d[G] over V .

As usual, the CCC property means here that every π-antichain (i.e., antichain in
MT(π) , see Definition 9 and Corollary 2) A ⊆MT(π) is at most countable.

Proof. Claim (i) is a partial case of a general forcing theorem. To prove claim (ii), consider
open dense set Kc

n⇑π = {p ∈MT(π) : ∃ q ∈ Kc
n (p 6 q)} , choose maximal antichains

An ⊆ Kc
n⇑π in those sets, note that each An is countable by CCC, and finally, define

d = {〈p, n, i〉 : p ∈ Ani} , where Ani = {p ∈ An : ∃ q ∈ Kc
ni (p 6 q)} .

Theorem 5. Suppose that π is a regular multiforcing, and ξ ∈ |π| . Then, the following holds.

(i) If MT(π) is a CCC forcing, G ⊆MT(π) is a set generic over the ground set universe V ,
x ∈ 2ω is a real in V[G] , and x 6= xξ [G] , then there exists a small π-complete real name
c ⊆MT(π)× (ω× 2) , non-principal at ξ over π , satisfying x = c[G] .

(ii) If c ⊆MT(π)× (ω× 2) is a π-complete real name that avoids π(ξ) over π , ϙ is a regular
multiforcing, π << ϙ, and G ⊆MT(π ∪cw ϙ) is generic over V , then c[G] /∈ ⋃Q∈π(ξ)[Q] .
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Proof. (i) By a general forcing theorem, there exists a π-complete real name c such that
x = c[G] and MT(π) forces that c 6= xξ [G] . We can assume that c is small, by Lemma 19
(as MT(π) is CCC). Let us prove that c is non-principal at ξ over π , meaning that the set

Dc
ξ(π) = {p ∈MT(π) : p directly forces c /∈ [p(ξ)]} .

is open dense in MT(π) . As the openness is clear, it remains to prove the density.
Let q ∈ MT(π) . Then, by the choice of c , q MT(π)-forces c 6= xξ [G] . Thus, we

may assume that, for some n , the inequality c(n) 6= xξ [G](n) is MT(π)-forced by q . By
Lemma 13, there is a tuple s ∈ ωn+1 and a multitree p ∈ MT(π) , p 6 q , such that p
directly forces the sentence s ⊆ c . It remains to be checked that s /∈ p(ξ) . Indeed, assume
otherwise: s ∈ p(ξ) . Then, the tree T = p(ξ)� s belongs to MT(π) . Define a multitree r
by r(ξ) = T and r(ξ ′) = p(ξ ′) for all ξ ′ 6= ξ . Then, r ∈ MT(π) and we have r 6 p 6 q .
However, r directly forces both c(n) and xξ [G](n) to be equal to the same number ` = s(n) ,
which contradicts the choice of n .

(ii) Suppose towards the contrary that Q ∈ π(ξ) and c[G] ∈ [Q] . Lemma 15 (ii)
implies that c avoids π(ξ) over ϙ as well. Lemma 10 implies that the set Dc

Q(π)⇑ϙ is
open dense in MT(π ∪cw ϙ) . Therefore, the set Dc

Q(π) itself is pre-dense in MT(π ∪cw ϙ) .
We conclude that G ∩ Dc

Q(π) 6= ∅ by the genericity, so that some multitree r ∈ G directly
forces c /∈ [Q] . It follows that c[G] /∈ [Q] , which is a contradiction.

Part III: The Forcing and the Model

Here, we present the key forcing constructions of the proof of Theorem 1.
We consider the constructible universe L as the ground model.
Fix a natural number n ≥ 3 as in Theorem 1.
Theorem 6 in Section 19 introduces a ω1-long <<-increasing sequence #”

� ∈ L of special
multiforcings, whose properties include: first, sealing many dense sets during the course
of the construction; second, a sort of definable genericity in L ; and third, a definability
requirement—as in Definition 23. The subsequent key forcing notion PP ∈ L (which depends
on #”

� ) is defined in Section 20. Its properties include CCC by Theorem 7. Then, we consider
PP-generic extensions of L , called key models. The main results about key models are
Theorem 8, which characterizes generic reals, and Theorem 9, which provides a ∆1

n-good
well-ordering, with (i) of Theorem 1 as a consequence. Along with Theorem 7, they are the
main results of this Part.

We begin with routine stuff on <<-increasing sequences of special multiforcings.

16. Increasing Sequences of Multiforcings

Based on Remark 2, we consider <<-increasing sequences of multiforcings. Let

MFsp = {π ∈MF : π is a special, hence small multiforcing}.

Thus, a multiforcing π ∈MF (the set of all multiforcings) belongs to MFsp if |π| ⊆ ω1
is finite or countable and each π(ξ) , ξ ∈ |π| , is a special forcing. (See Sections 3 and 6).

• If κ ≤ ω1 , then let
#    ”
MFκ be the set of all <<-increasing sequences #”π = 〈πα〉α<κ of

multiforcings πα ∈MFsp, of length dom( #”π) = κ , which are domain-continuous, so that
if λ < κ is a limit ordinal then |πλ| =

⋃
α<λ |πα| .

• Let
#    ”
MF =

⋃
κ<ω1

#    ”
MFκ (<<-increasing sequences of countable length).

• The set
#    ”
MF∪ #    ”

MFω1 is ordered by the relations ⊆ , ⊂ of extension of sequences. Thus,
#”π ⊂ #”

ϙ means that a sequence #”ρ properly extends #”π .

• If #”π ∈ #    ”
MFκ , then let

⋃cw #”π =
⋃cw

α<κ πα (the component-wise union), MT( #”π) =
MT(π) , | #”π| = |⋃cw #”π| :=

⋃
α<κ | #”π(α)| (a subset of ω1 ).
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Lemma 20. Assume that #”π ∈ #    ”
MFκ and 0 < γ < λ < κ . Let πα = #”π(α) for all α . Then :

(i) The multiforcings π =
⋃cw

α<κ πα , π<µ =
⋃cw

α<µ πα , π≥µ =
⋃cw

µ≤α<κ πα , π>µ =⋃cw
µ<α<κ πα are regular, and we have : π<µ << πµ << π>µ , π<µ << π≥µ , and πµ << πλ ;

(ii) The set MT(πµ) is pre-dense in MT(π) and MT(π≥µ) is dense in MT(π) .

Proof. To prove (i),(ii) apply Lemma 5.

The following is a related form of <<-type definitions.

Definition 21. Let #”π ∈ #    ”
MFκ , #”

ϙ ∈ #    ”
MFλ , κ < λ , and M be any set. Define #”π ⊂M

#”
ϙ , if #”π ⊂ #”

ϙ

(i.e., ϙ extends π ) and
⋃cw #”π <<<<M

#”
ϙ(κ) , where

⋃cw #”π =
⋃cw

α<κ
#”π(α) is the component-wise

union and #”
ϙ(κ) is the first term in #”

ϙ absent in #”π .

Lemma 21. Assume that M is a countable set. Then :

(i) If κ < λ < ω1 and #”π ∈ #    ”
MFκ , then there exists a sequence #”

ϙ ∈ #    ”
MFλ such that #”π ⊂M

#”
ϙ ;

(ii) If κ < λ ≤ ω1 , #”π ∈ #    ”
MFκ , #”

ϙ ∈ #    ”
MFλ , #”π ⊂M

#”
ϙ , and a set D ∈ M is open dense in

MT( #”π) , then π =
⋃cw #”π <<D ϙ≥κ =

⋃cw
κ≤α<λ

#”
ϙ(α) , so that D is pre-dense in MT( #”

ϙ) .

Proof. (i) Let π =
⋃cw #”π . By Theorem 4, there is a special multiforcing σ satisfying

|π| = |σ| and π <<<<M′ σ , where M′ = M ∪ {Dα : α < κ} and

Dα = #”π(α)⇑π = {p ∈MT(π) : ∃ q ∈MT( #”π(α))(p 6 q)} .

Each Dα is open dense in MT(π) because MT( #”π(α)) is pre-dense by Lemma 20(ii).
Then, using Theorem 4 for M = {Dα : α < γ} in iteration, we define by transfinite
induction special multiforcings σγ , κ ≤ γ < λ , such that σ0 = σ and the sequence
#”σ = 〈σγ〉κ≤γ<λ is just <<-increasing. Now, let #”

ϙ = #”π ∪ #”σ , that is, #”
ϙ(α) = #”π(α) for α < κ

but #”
ϙ(γ) = σγ for κ ≤ γ < λ . Then, #”

ϙ ∈ #    ”
MFλ and #”π ⊂M

#”
ϙ by construction.

(ii) We have π <<<<M ϙ≥κ by Corollary 12, hence in particular π <<D ϙ≥κ . It follows by
Lemma 10(iii) that D is a pre-dense set in MT(π ∪cw ϙ≥κ) = MT( #”

ϙ) .

17. Definability Lemma

Recall that HC is the set of all hereditarily countable sets. Thus, X ∈ HC if the transitive
closure TC (X) is at most countable. Note that HC = Lω1 under V = L .

We use the standard notation ΣHC
n , ΠHC

n , ∆HC
n (slanted lightface Σ, Π , ∆ ) for classes of

parameter-free definability in HC (no parameters allowed), and Σn(HC) , Πn(HC) , ∆n(HC)
for full definability in HC (parameters from HC allowed). We will make use of the following
known result, see e.g., Lemma 25.25 in Jech [24]: if X ⊆ 2ω and n ≥ 1 then

X ∈ ΣHC
n ⇐⇒ X ∈ Σ1

n+1 , and X ∈ Σn(HC) ⇐⇒ X ∈ Σ1
n+1 , (1)

and similar equivalences for the classes Π , Π , ∆ , ∆ instead of Σ , Σ .

Lemma 22 (in L). The following ternary relation belongs to the class ∆HC
1 = ∆

Lω1
1 :

#”π, #”
ϙ ∈ #    ”

MF∧M ∈ HC∧ #”π ⊂M
#”
ϙ .

Proof. Note first of all that
#    ”
MF ⊆ HC, so that the claim makes sense. The proof goes on

by routine verification that all sets and relations involved are definable by ∆0 formulas,
i.e., those with only bounded quantifiers over suitable countable sets such as ω or 2<ω,
despite the fact that their prima facie definitions may include quantifiers over uncountable
sets such as 2ω. Consider for instance the relation

C(S, T) := S, T ∈ PT∧ [S] ∩ [T] is clopen in [S] ,
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that participates in several definitions, e.g., in the definition of regular arboreal forcing
(Definition 2), in the definition of refinements in Section 4, etc. We observe that, because of
the compactness of 2ω , if S, T ∈ PT then for [S] ∩ [T] to be clopen in [S] it is necessary and
sufficient that there exists a finite set U ⊆ S such that⋃

t∈U S� t = {r ∈ S ∩ T : (S ∩ T)� r is infinite} ,

and this condition is obviously ∆0 . Thus, this implies that the refinement relations < and
<D between arboreal forcings (Sections 4 and 5) are definable by ∆0 formulas.

To check that π <<D ϙ as a ternary relation (Definition 11) is definable by ∆0 formula,
it suffices to prove the ∆0 definability of the relation [u] ⊆ ⋃

v∈D′ [v] (see the beginning
of Section 8), where it is assumed that u ∈ MT, D′ ⊆ MT is finite, and |v| = |u| for all
v ∈ D′ . Then, the relation [u] ⊆ ⋃v∈D′ [v] is equivalent to the following:

if sξ ∈ u(ξ) for all ξ ∈ |u| then there is v ∈ D′ such that sξ ∈ v(ξ) for all ξ ∈ |u| .

However, this condition is ∆0 as required.

18. Auxiliary Diamond Sequence

We argue in L . Let us recall the technique of diamond sequences in L .

Lemma 23 (3ω1 in L). There is a ∆HC
1 sequence 〈Sα〉α<ω1 of sets Sα ⊆ α , such that

(∗) if X ⊆ ω1 then the set {α < ω1 : Sα = X ∩ α} is stationary in ω1 , so that it has a
non-empty intersection with each club (i.e., a closed unbounded set) C ⊆ ω1 .

Proof. The existence of a sequence satisfying (∗) is the diamond principle 3ω1 , see ([24],
Theorem 13.21). The ∆HC

1 -definability (see is achieved by taking the 6L-least possible Sα

at each step α , where 6L is the Gödel’s well-ordering of L , see ([24], p. 558).

Definition 22 (in L). We fix a sequence 〈Sα〉α<ω1 given by Lemma 23.
We let cα = αth element of HC = Lω1 in the sense of 6L ; thus HC = {cα : α < ω1} .
If Z ⊆ HC and α < ω1 then let (Z)<α = {cξ ∈ Z : ξ < α} .
If α < ω1 then let Aα = {cξ : ξ ∈ Sα} . Then, 〈Aα〉α<ω1 is still a ∆HC

1 sequence.
Let An

α = {a : 〈n, a〉 ∈ Aα} .
Let M(α) = {An

α : n < ω} . Then, 〈M(α)〉α<ω1 is still a ∆HC
1 sequence.

An ordinal γ < κ is a crucial ordinal for a sequence #”π = 〈πα〉α<κ ∈
#    ”
MFκ if the relation

(
⋃cw

α<γ πα) <<<<M(γ) πγ holds. This is equivalent to #”π�γ ⊂M(γ)
#”π .

We obtain the following lemma as an easy corollary.

Lemma 24 (in L). (i) If Z ⊆ HC then the set W ′ = {α < ω1 : Aα = (Z)<α} is stationary.

(ii) If Zn ⊆ HC for all n then the set W ′′ = {α < ω1 : ∀ n (An
α = (Zn)<α)} is stationary.

Proof. To prove (i), let X = {α < ω1 : cα ∈ Z} . The set W = {α < ω1 : Sα = X ∩ α} is
then stationary. However, easily W = W ′ . To prove (ii) put Z = {〈n, x〉 : n < ω ∧ x ∈ Zn}
and apply (i).

19. The Key Sequence

The next theorem (Theorem 6) is a crucial step towards the construction of the forcing
notion that will prove Theorem 1. The construction employs some ideas related to definable
generic transfinite constructions, and it will go on by a transfinite inductive definition of
a sequence #”

� ∈ #    ”
MFω1 in L from countable subsequences. The result can be viewed as a

maximal branch in
#    ”
MF, generic with respect to all sets of a given complexity.

Definition 23 (in L). From now on a number n ≥ 3 as in Theorem 1 is fixed.
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A sequence #”π ∈ #    ”
MF blocks a set W if either #”π belongs to W (a positive block) or no sequence

#”
ϙ ∈W ∩ #    ”

MF extends #”π (a negative block).
Any sequence #”

� = 〈�α〉α<ω1 ∈
#    ”
MFω1 ∩ L , satisfying (in L) the following four conditions

(A)–(D) for this n, will be called a key sequence:

(A) The set | #”� | = ⋃
α<κ |

#”
�(α)| is equal to ω1 .

(B) Every γ < ω1 is a crucial ordinal for #”
� in the sense of Definition 22.

(C) If in fact n ≥ 4 and W ⊆ #    ”
MF is a boldface Σn−3(HC) set (a definition with parameters),

then there exists an ordinal γ < ω1 such that the subsequence #”
� �γ blocks W — so that

either #”
� �γ ∈W , or there is no sequence ϙ ∈W extending #”

� �γ .

(D) The sequence #”
� belongs to the definability class ∆HC

n−2 .

Theorem 6 (in L). There exists a key sequence #”
� = 〈�α〉α<ω1 ∈

#    ”
MFω1 .

Proof. We argue under V = L , with n ≥ 3 fixed. In case n ≥ 4, let unn(p, x) be a universal
Σn−3 formula. In other words, the collection of all boldface Σn−3(HC) sets X ⊆ HC is
equal to the family of all sets of the form Υn(a) = {x ∈ HC : HC |= unn(a, x)} , a ∈ HC.

Claim 1. If n ≥ 4 then {〈 #”π, a〉 : #”π ∈ #    ”
MF∧ a ∈ HC∧ #”π blocks Υn(a)} is a ∆HC

n−2 set.

Proof (Claim). We skip a routine verification that
#    ”
MF is ∆HC

1 . Further, if #”π ∈ #    ”
MF and

a ∈ HC then for #”π to block Υn(a) it is necessary and sufficient that

#”π ∈ Υn(a)︸ ︷︷ ︸
ΣHC

n−3

∨ ¬ ∃ #”
ϙ
( #”
ϙ ∈ #    ”

MF∧ #”
ϙ extends #”π︸ ︷︷ ︸

∆HC
1

∧ #”
ϙ ∈ Υn(a)︸ ︷︷ ︸

ΣHC
n−3

)
︸ ︷︷ ︸

ΠHC
n−3

.

This is a disjunction of ΣHC
n−3 and ΠHC

n−3 , hence, ∆HC
n−2 , and we are finished.

Coming back to the proof of the theorem, a sequence #”π[α] ∈ #    ”
MF is defined by

induction on α < ω1 . To begin with, we put #”π[0] = ∅ (the empty sequence).
Step α → α + 1. Assume that #”π[α] ∈ #    ”

MF is already defined. Put κ = dom #”π[α] ,
M = M(α) , and let pα be the α-th element of HC = Lω1 in the sense of the Gödel well-
ordering 6L of L . By Lemma 21(i), there is a sequence #”τ ∈ #    ”

MFκ+1 with #”π[α] ⊂M
#”τ , and

then a sequence #”
ϙ ∈ #    ”

MFκ+2 with #”τ ⊂ #”
ϙ . If α /∈ | #”ϙ(κ + 1)| then we trivially extend the

last term #”
ϙ(κ + 1) of the construction by #”

ϙ(κ + 1)(α) = Pcoh (see Example 1).
Finally if n ≥ 4 then there is a sequence #”π ∈ #    ”

MF satisfying #”
ϙ ⊂ #”π and blocking the

set Υn(pα) , while if n = 3 then simply put #”π =
#”
ϙ .

Thus, overall we have:

(∗) #”π[α] ⊂M
#”π , κ + 1 < dom #”π , α ∈ | #”ϙ(κ + 1)| , and #”π blocks Υn(pα) in case n ≥ 4.

Finally we let #”π[α + 1] be the 6L -least one of all sequences #”π ∈ #    ”
MF satisfying (∗).

Note the role of the blanket assumption V = L in this construction (step α→ α + 1);
otherwise, the 6L -least choice of #”π[α + 1] could not be executed.

Limit step. If λ < ω1 is a limit ordinal then we obviously define #”π[λ] =
⋃

α<λ
#”π[α] .

We have α < β =⇒ #”π[α] ⊂ #”π[β] by construction; hence, #”
� =

⋃
α

#”π[α] ∈ #    ”
MFω1 .

Let us check (D) of Definition 23. Note first of all that the relation R( #”π, #”
ϙ ,M) :=

#”π ⊂M
#”
ϙ is ∆HC

1 by Lemma 22. Easily “to block Υn(p)” is a ∆HC
n−2 relation by Claim 1

above. On the other hand, it is known that choosing the 6L -least element in each non-
empty section of a ∆HC

k set under V = L results in a set (transversal) of the same class ∆HC
k .

Therefore, the assignment α 7→ M(α) is ∆HC
1 as well. With these estimations, a routine

calculation shows that the relation (∗) still is a ∆HC
n−2 relation (in L). This helps to easily

accomplish the verification of (D), which we leave to the reader.
To check (A) of Definition 23, note that α ∈ |⋃cw #”π[α + 1]| by construction.
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To check (C) of Definition 23 (n ≥ 4), note that any boldface Σn−3(HC) set W ⊆ #    ”
MF

is equal to Υn(pα) for some α < ω1 , so γ = dom #”π[α + 1] is as required.
Finally, (B) holds by by construction.

Definition 24 (in L). From now on we fix a key sequence #”
� = 〈�α〉α<ω1 ∈

#    ”
MFω1 , given by

Theorem 6 for the number n ≥ 3 fixed by Definition 23. It satisfies (A)–(D) of Definition 23.
We call this fixed #”

� ∈ L the key sequence.

Lemma 25. Assume that n ≥ 4. Let W ⊆ #    ”
MF be a Σn−3(HC) set dense in

#    ”
MF. Then, there

exists an ordinal γ < ω1 satisfying #”
� �γ ∈W .

Proof. By (C) of Definition 23, #”
� �γ blocks W for some ordinal γ < ω1 . The negative block

is rejected because W is dense. Therefore, #”
� �γ ∈W .

20. The Key Forcing Notion

Based on Definition 24, we introduce some derived notions.

Definition 25 (in L). Using the key sequence #”
� = 〈�α〉α<ω1 , we define the regular multiforcing

� =
⋃cw

α<ω1
�α ∈MF, and the forcing notion PP = MT(�) = MT( #”

�) .
We put PPα = MT(�α) , �<γ =

⋃cw
α<γ �α , PP<γ = MT(�<γ) = MT( #”

� �γ) =
⋃

γ<α PPγ .
We also put �≥γ =

⋃cw
γ≤α<ω1

�α .
If ξ < ω1 , then, following (A) of Definition 23, we let α(ξ) < ω1 be the smallest ordinal α

with ξ ∈ |�α| . Thus, an arboreal forcing notion �α(ξ) ∈ AF is defined whenever the inequality
α(ξ) ≤ α < ω1 holds. Moreover, 〈�α(ξ)〉α(ξ)≤α<ω1

is a <<-increasing sequence of special forcings
�α(ξ) ∈ AF, thus �(ξ) =

⋃
α(ξ)≤α<ω1

�α(ξ) ∈ AF.

We will call � the key multiforcing below, and accordingly the set PP = MT(�) will
be our key forcing notion. The following lemmas present principal properties of PP in the
ground universe L , and of according PP-generic models in the next section.

Lemma 26 (in L). The sequences 〈α(ξ)〉ξ<ω1 (of ordinals) and 〈�α(ξ)〉ξ<ω1, α(ξ)≤α<ω1
(of arbo-

real forcings) belong to the definability class ∆HC
n−2 .

Proof. The following double equivalence

α < α(ξ) ⇐⇒ ∃π(π = �α ∧ ξ ∈ domπ) ⇐⇒
⇐⇒ ∀π(π = �α =⇒ ξ ∈ domπ) .

holds by construction. Yet, “π = �α ” is a ∆HC
n−2 formula by (D) of Definition 23.

Therefore, the sequence 〈α(ξ)〉ξ<ω1 is ∆HC
n−2 as well. The other sequence is treated simi-

larly.

Lemma 27 (in L). (i) �α(ξ) is pre-dense in �(ξ) whenever ξ < ω1 and α(ξ) ≤ α < ω1 .

(ii) � is a regular multiforcing and |�| = ω1 , thus PP = ∏ξ<ω1
�(ξ) (finite support).

(iii) C′ = {γ < ω1 : |�<γ| = γ} is a club (closed unbounded) in ω1 , where �<γ =
⋃cw

α<γ �α .

Proof. (i), (ii) Use Lemma 5. To check that |�| = ω1 recall (A) of Definition 23.
(iii) is clear.

The next lemma claims that PP satisfies CCC.

Theorem 7 (in L). The forcing notion PP satisfies CCC. Therefore PP-generic extensions of L
preserve cardinals.
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Proof. Let Z ⊆ PP be a maximal antichain. Then, D = {p ∈ PP : ∃ q ∈ Z (p 6 q)} is open
dense in PP. In terms of Definition 22, the set C of all limit ordinals γ < ω1 , such that

(∗) (Z)<γ = Z ∩PP<γ , (Z)<γ is a maximal antichain in PP<γ = MT( #”
� �γ) , (D)<γ is open

dense in PP<γ , and the equality (D)<γ = {p ∈ PP<γ : ∃ q ∈ (Z)<γ (p 6 q)} holds,

is a club. Therefore, by Lemma 24(ii), there is an ordinal γ ∈ C such that (Z)<γ = A0
γ and

(D)<γ = A1
γ , and hence (D)<γ ∈M(γ) .

Note that �<γ <<<<M(γ) �γ , or equivalently #”
� �γ ⊂M(γ)

#”
� , by (B) of Definition 23.

However, D′ = (D)<γ ∈M(γ) is open dense in PP<γ by (∗). Therefore, Lemma 21(ii)
implies that D′ remains pre-dense in the whole set PP = MT( #”

�) , and hence, A′ = (A)<γ

itself by (∗) remains a maximal antichain in PP. We conclude that A = A′ is countable.

Corollary 13 (in L). Let a set D ⊆ PP be pre-dense in PP. There is an ordinal γ < ω1 such that
D ∩ PP<γ is already pre-dense in PP.

Proof. We can w. l.o.g. assume that D is even dense. Let A ⊆ D be a maximal antichain in
D . Then, A is a maximal antichain in PP since D is dense. Then, A ⊆ PP<γ for some ordinal
γ < ω1 by Theorem 7. However, A is pre-dense in PP.

21. The Key Model

We aim to prove Theorem 1 using PP-generic extensions of L , which we call key
models. We will mostly argue in L and in ωL

1 -preserving generic extensions, in particular,
in PP-generic extensions of L (cardinal-preserving by Theorem 7). Therefore, we will always
have ωL

1 = ω1 . This allows us to view things so that |�| = ω1 (rather than ωL
1 ).

Definition 26. Let a set G ⊆ PP be generic over the constructible set universe L . If ξ < ω1 , then,
following the remark in the end of Section 6,

− We put G(ξ) = {p(ξ) : p ∈ G and ξ ∈ |p|} ⊆ �(ξ) ;
− We define xξ = xξ [G] ∈ 2ω as the unique real which belongs to

⋂
T∈G(ξ)[T] ;

− We finally let X = X[G] = 〈xξ [G]〉ξ<ω1 = {〈ξ, xξ [G]〉 : ξ < ω1} .

To conclude, the forcing notion PP adjoins an array X[G] of reals xξ [G] to L , where every real
xξ = xξ [G] ∈ 2ω ∩ L[G] is �(ξ)-generic over L , and we have L[G] = L[X[G]] .

Theorem 8. Assume that a set G ⊆ PP is PP-generic over L , ξ < ω1 , and x ∈ L[G] ∩ 2ω. Then,
the following statements are equivalent :

(1) x = xξ [G] ;

(2) the real x is �(ξ)-generic over L ;

(3) we have x ∈ ⋂α(ξ)≤α<ω1

⋃
T∈�α(ξ)[T] .

Proof. The implication (1) =⇒ (2) is routine (see Remark 1). To check (2) =⇒ (3) note
that, by Lemma 27(i), all sets �α(ξ) are pre-dense in �(ξ) . Finally, prove (3) =⇒ (1) .

Suppose that x ∈ L[G] ∩ 2ω but x 6= xξ [G] , i.e., (1) fails. As PP = MT(�) is CCC by
Theorem 7, Theorem 5(i) implies the existence of a small �-complete real name c ∈ L , such
that x = c[G] , c ⊆ PP×ω× 2, and c is non-principal at ξ over �, meaning that

D = Dc
ξ(�) = {p ∈ PP = MT(�) : p directly forces c /∈ [p(ξ)]}

is a set open dense in PP = MT(�) . By the smallness, c is a �<γ0-complete real name for
some ordinal γ0 < ω1 .

In terms of Definition 22, the set C of all limit ordinals γ < ω1 , such that

(∗) γ ≥ γ0 and the set (D)<γ satisfies (D)<γ = D ∩ PP<γ and is open dense in PP<γ ,
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is a club. Therefore, by Lemma 24(ii), there is an ordinal γ ∈ C such that (D)<γ = A0
γ ∈

M(γ) and c = A1
γ ∈ M(γ) . Then, c is non-principal at ξ over �<γ . On the other hand,

�<γ <<<<M(γ) �γ , by (B) of Definition 23. It follows that �<γ <<<<M(γ) �≥γ by Lemma 21(ii).
Then, we have �<γ <<c

ξ �≥γ as well by Definition 20(6), since c ∈M(γ) and because of the
non-principality of c .

Now, Theorem 5(ii) with π = �<γ and ϙ = �≥γ implies x = c[G] /∈ ⋃Q∈�≥γ(ξ)[Q] .
(We observe that π ∪cw ϙ = �).

In particular, x does not belong to
⋃

Q∈�γ(ξ)[Q] . Thus, (3) fails, as required.

Corollary 14. Let a set G ⊆ PP be PP-generic over L . Then, it holds in L[G] that X[G] belongs to
the definability class ΠHC

n−2 , and hence, to class Π1
n−1 by (1) of Section 20.

Proof. By Theorem 8, it is true in L[G] that 〈ξ, x〉 ∈ X[G] if and only if

∀ α < ω1 ∃ T ∈ �α(ξ)
(
α(ξ) ≤ α =⇒ x ∈ [T]

)
,

which can be re-written as

∀ µ < ω1 ∀ α < ω1 ∀Y ∃ T ∈ Y
(
Y = �α(ξ) ∧ µ = α(ξ) ∧ µ ≤ α =⇒ x ∈ [T]

)
.

Note that the equalities µ = α(ξ) and Y = �α(ξ) belong to the class ∆HC
n−2 by Corollary 26.

This implies that the whole relation is ΠHC
n−2 , since the quantifier ∃ T ∈ Y is bounded.

22. Well-Orderings in the Key Model

According to the following theorem, the key model satisfies (i) of Theorem 1. The reals
are treated as points of 2ω, the Cantor space. The proof see Theorem 2 in [1].

Theorem 9. Assume that a set G ⊆ PP is PP-generic over L . Then, in L[G] , there is a ∆1
n -good

well-ordering of 2ω of length ω1 , and hence (i) of Theorem 1 holds.

Our final step is to prove the result complementary to Theorem 9, that is, the key
model also fulfills (ii) of Theorem 1. This will need some more effort. We will argue under
the following assumption.

Assumption 1. We assume that n ≥ 4 from now on.

This leaves aside the case n = 3 in (ii) of Theorem 1. Therefore, this case requires a
separate consideration to justify the assumption. Assume that n = 3. We assert that (ii) of
Theorem 1 holds in L[G] (which is the key model), where G is an arbitrary set PP-generic
over L . Suppose towards the contrary that (ii) of Theorem 1 fails, so that there is a ∆1

2
well-ordering of the reals. (We even do not assume that the well-ordering is good). Then,
Theorem 25.39 in [24] implies that 2ω ⊆ L[x] in L[G] for some real x ∈ 2ω in L[G]. Yet this
cannot be the case for the key models L[G] we consider.

Indeed, arguing in L[G] , suppose to the contrary that x ∈ 2ω ∩ L[G] = L[〈xξ [G]〉ξ<ω1 ]
and 2ω ∩L[G] ⊆ L[x] . Theorem 7 then implies that there exists an ordinal λ < ω1 = ωL

1 sat-
isfying x ∈ L[〈xξ [G]〉ξ<λ] . However, the real y = xλ[G] does not belong to L[〈xξ [G]〉ξ<λ]
by the product forcing theory. We conclude that y /∈ L[x] , which contradicts the choice
of x .

Part IV: Non-existence of Simpler Well-orderings

Claim (ii) of Theorem 1 involves one more important technical tool related to the above-
defined key forcing notion PP. It turns out that the P-forcing relation of Σ1

n−1 formulas is
equivalent (up to level n− 1 of the projective hierarchy of formulas) to a certain auxiliary
forcing relation forc defined and studied in Sections 23–30 below. Theorem 11 proves the
equivalence. This auxiliary forcing is invariant with respect to permutations of indices
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ξ < ω1 (Theorem 12), whereas the forcing PP itself is, generally speaking, not invariant in
that sense. Such a hidden invariance plays a crucial role in the construction. Here, we make
use of the invariance to prove, using Theorem 13, that the full version of (ii) holds in PP-
generic extensions of L . Theorems 11–13 are the main results of this Part.

23. Auxiliary Forcing Relation

We argue in L. We make use of the second-order arithmetic language. It involves
variables k, l, m, n, . . . (type 0) assumed to run over ω , and variables a, b, x, y, . . . (type 1)
over 2ω . The atomic formulas are only those of the form x(k) = n . Consider the extension
L of this language, which allows us to substitute natural numbers for variables of type 0,
and small real names (Definition 12) c ∈ L for variables of type 1.

• We define natural classes LΣ1
n , LΠ1

n of L -formulas, as usual.
• Given a formula ϕ in LΣ1

n (resp., LΠ1
n ), let ϕ− be the result of canonical transforma-

tion of ¬ ϕ to the LΠ1
n (resp., LΣ1

n ) form.

Now, we introduce a relation p forcπ ϕ between multitrees p , small multiforcings
π ∈ #    ”

MF, and closed L -formulas ϕ in LΣ1
n ∪LΠ1

n , n ≥ 1, which will approximate the
true PP-forcing relation. The definition proceeds by induction on the L -structure of ϕ .

1◦. Let π be a small regular multiforcing, p ∈MT (not necessarily p ∈MT(π)), and ϕ

be a closed LΣ1
1 formula. We assume that ϕ has the following canonical Σ1

1 form:

(f1) ϕ := ∃ x ∀m R(x�m, c1�m, . . . , ck�m), where R ⊆ (ω<ω)k+1 is a recursive relation
and every ci ⊆MT× (ω× 2) is a small real name.

Consider a tree-name τ = τ(R) which consists of all pairs 〈q, s〉 ∈MT×ω<ω such
that there exist tuples t1, . . . , tk ∈ ωm, where m = lh(s) , and multitrees ri

j ∈ Kci
j,ti(j) ,

1 ≤ i ≤ k , j < m (see Definition 12), satisfying:

(I) R(s�n, t1�n, . . . , tk�n) for all n ≤ m ;

(II) q is equal to the multitree
∧cw

1≤i≤k , j<mri
j —see Section 6 on

∧cw , therefore q

satisfies q 6 ri
j for all i, j , and hence q directly forces ti ⊂ ci for all 1 ≤ i ≤ k .

We define p forcπ ϕ if the following conditions (a)–(d) and (e1) hold:

(a) Every q ∈ dom τ is sealed by π (see Example 2);

(b) If q ∈ dom τ and p⊥π q then p⊥π q is sealed by π (see Example 3);

(c) Every name ci in ϕ is sealed π-complete (see Definition 12);

(d) τ = τ(R) is sealed in π (see Definition 19);

(e1) p directly forces Λ ∈ τ∞
π , i.e., there is a multitree p0 > p with 〈p0, Λ〉 ∈ τ∞

π .

2◦. Let π be a small regular multiforcing, p ∈MT (not necessarily p ∈MT(π)), and ψ

be a closed LΠ1
1 formula. We assume that ψ has the following canonical Π1

1 form

(f2) ψ := ∀ x ∃m¬ R(x�m, c1�m, . . . , ck�m), where R ⊆ (ω<ω)k+1 is a recursive relation
and every ci is a small real name.

We define a tree-name τ = τ(R) as above. Then, define p forcπ ψ if conditions
(a)–(d), as above, hold and the following condition (e2) holds too instead of (e1) above:

(e2) if p1 ∈MT(π) , p1 6 p , then p1 does not directly force Λ ∈ τ∞
π .

3◦. If ϕ(x) is a LΠ1
n formula, n ≥ 1, then we define p forcπ ∃ x ϕ(x) if and only if there

exists a small real name c such that p forcπ ϕ(c) .

4◦. If ϕ is a closed LΠ1
n formula, n ≥ 2, then define p forcπ ϕ if and only if there is no

special multiforcing ϙ and p′ ∈MT(ϙ) such that π << ϙ, p′ 6 p , and p′ forcϙ ϕ− .

Remark 3. If p forcπ ϕ holds then it is not necessary that p ∈MT(π) , and it is not necessary
that every name c in ϕ satisfies c ⊆MT(π)× (ω× 2).
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Definition 27. Given a class K of the form LΣ1
n , LΠ1

n (n ≥ 1), we let FORC[K] contain all
triples 〈π, p, ϕ〉 satisfying p forcπ ϕ .

Then, FORC[K] is a subset of HC. Recall that if V = L then HC = Lω1 .

Lemma 28 (in L). FORC[LΣ1
1] and FORC[LΠ1

1 ] belong to ∆HC
1 .

Given any n ≥ 2, FORC[LΣ1
n] belongs to ΣHC

n−1 and FORC[LΠ1
n] belongs to ΠHC

n−1 .

Proof. Relations such as “being a small regular multiforcing”, “being a formula in LΣ1
n ,

LΠ1
n ”, p ∈ MT(π) , etc., are definable in HC = Lω1 by bounded formulas, hence ∆HC

1 .
Such also are the operations R 7→ τ(R) , and τ 7→ τ′π , τ 7→ τ∞

π (provided π is small, as in
1◦, 2◦). This wraps up the ∆HC

1 estimation for the cases of LΣ1
1 and LΠ1

1 .
The inductive step by 3◦ is quite simple.
Now, for the step by 4◦, assume that n ≥ 2, and FORC[LΣ1

n] ∈ ΣHC
n−1 is already

established. Then, 〈π, p, ϕ〉 ∈ FORC[LΠ1
n] if π is a small regular multiforcing, p ∈MT,

ϕ is a closed LΠ1
n formula, and, by 4◦, there is no triple 〈ϙ, p′, ψ〉 ∈ FORC[LΣ1

n] such that
ϙ is a special multiforcing, π << ϙ, p′ ∈MT(ϙ) , p′ 6 p , and ψ is ϕ− . This clearly implies
the estimation ΠHC

n−1 of FORC[LΠ1
n] as required.

24. Elementary Properties of the Auxiliary Forcing

We still argue in L .

Lemma 29. Assume that π << ϙ are small regular multiforcings, p, p′ ∈MT, p′ 6 p , ϕ is an
L -formula. Then p forcπ ϕ implies p′ forcϙ ϕ .

Proof. If ϕ is a formula in LΣ1
1 as in 1◦ of Section 23, and p forcπ ϕ , which is witnessed

by (a)–(d) and (e1), then q forcϙ ϕ also holds.
Indeed, condition (a) transfers from π to ϙ by Corollary 8(i), (ii).
Condition (b) transfers to ϙ by Corollary 9(i)(ii) (with same p) and (iii) (to p′ 6 p).
Condition (c) transfers to ϙ by Corollary 10 (ii).
Condition (d) transfers to ϙ by Theorem 3(iii)(v).
Finally, (e1) transfers to ϙ because τ∞

π = τ∞
ϙ by Theorem 3 (iv).

The LΠ1
1 case is rather similar, yet the transfer of (e2) from π to ϙ deserves attention.

Note that all premises of Theorem 3(vi) hold for π,ϙ, p , and s = Λ . That is, π <<τ ϙ holds
by Theorem 3(iii) and (d), whereas π <<pq0

ϙ holds for all q0 ∈ dom τ , π-incompatible with
p , by Corollary 9(i) and (b).

Now, condition (e2) for π and p means that (1) of Theorem 3(vi) fails for π, p , and
s = Λ . Therefore, (3) fails as well, that is, no p′1 ∈MT(ϙ) , p′1 6 p , directly forces Λ ∈ τ∞

ϙ .
However, p′ 6 p , and therefore, we have (e2) for ϙ and p′ (instead of π, p), as required.

The induction step ∃ , as in 3◦, is pretty elementary.
Now, for the induction step ∀ , as in 4◦, assume that n ≥ 2 and ϕ is a closed formula in

LΠ1
n satisfying p forc #”π ϕ . Suppose that q forcϙ ϕ fails. Then, by 4◦ there exist: a special

multiforcing ϙ′ and a multitree q′ ∈MT(ϙ′) such that ϙ << ϙ′ , q′ 6 q , and q′ forcϙ′ ϕ− .
However, then we have π << ϙ′ and q′ 6 p . We conclude that p forcπ ϕ fails by 4◦.

Lemma 30 (in L). Let π be a small regular multiforcing, ϕ a formula in LΣ1
n , n ≥ 1, p ∈

MT(π) , and if n = 1 then ∃ q ∈MT(π) (q 6 p) . Then p forcπ ϕ implies ¬(p forcπ ϕ−) .

Recall that ϕ− is the canonical transformation of ¬ϕ to the prenex form.

Proof. If n ≥ 2 then the result follows from definition 4◦. Therefore, let n = 1, so that, by
the contrary assumption and Lemma 29, there exists q ∈MT(π) such that both q forc #”π ϕ
and q forc #”π ϕ− . However, then (e1) immediately contradicts (e2) with p1 = q .
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Lemma 31 (in L). Let π be a small regular multiforcing, p ∈ MT(π) , ϕ a formula in LΣ1
n ,

n ≥ 1, and each name c in ϕ is π-complete. Then, there is a special multiforcing ϙ and a multitree
q ∈MT(ϙ) such that π << ϙ, q 6 p , and either q forcϙ ϕ or q forcϙ ϕ− .

Proof. Suppose that n = 1, so that ϕ has the canonical form (f1) with a recursive R . Then,
τ = τ(R) ⊆MT×ω<ω is a tree-name. As each name in ϕ is π-complete, Theorem 4 gives
a special multiforcing ϙ satisfying π <<r ϙ for each multitree r in dom τ , π <<c ϙ for each
name c in ϕ , and π <<τ ϙ.

Case 1 : some q ∈MT(ϙ) , q 6 p directly forces Λ ∈ τ . Then, q forcϙ ϕ by 1◦.
Case 2 : not case 1. Then, we have p forcϙ ϕ− by 2◦ of Section 23.
If n ≥ 2, then the result follows from definition 4◦ of Section 23.

25. Forcing the First Level Formulas

The following theorem shows that the auxiliary forcing relation is properly connected
with the ordinary forcing at least for formulas in LΣ1

1 ∪LΠ1
1 .

Theorem 10 (in L). Let #”π = 〈πα〉α<ω1 ∈
#    ”
MFω1 and Q = MT( #”π) . Assume that α < ω1 and

p ∈MT(πα) , ϕ is a formula in LΣ1
1 ∪LΠ1

1 , and p forcπα ϕ . Then, p Q-forces the sentence
ϕ[G] over the universe in the ordinary sense.

Proof. Case 1: ϕ is a formula in LΣ1
1 , of the canonical form (f1), that is,

ϕ := ∃ x ∀m R(x�m, c1�m, . . . , ck�m), (2)

where R ⊆ (ω<ω)k+1 is a recursive relation and every ci ⊆MT× (ω× 2) is a small real
name, and p forcπα ϕ , so that properties (a)–(d) and (e1) of Section 23 hold for π = πα ,
τ = τ(R) , and p . In particular, (*) p directly forces Λ ∈ τ∞

πα
by (e1).

Now, consider any set G ⊆ Q , generic over the given universe V and containing p ;
the goal is to prove that ϕ[G] holds in V[G] . The following lemma simplifies the task.

Lemma 32. The set Gα = G ∩MT(πα) is πα-generic over τ in the sense of Definition 18, and is
πα-generic over each name ci occurring in ϕ , in the sense of Definition 13.

In addition, ci[G] = ci[Gα] for any such name ci , as well as τ[G] = τ[Gα] .

Proof (Lemma). First of all, we have to check (2) of Definition 13 for Gα . Thus, let u, v ∈
MT(πα) belong to Gα . However, u, v are sealed by πα by (a) of Section 23, thus the sets

Du(πα) = {q ∈MT(π) : |u| ⊆ |q| ∧ (q 6 u ∨ q⊥u)}

and Dv(πα) are sealed dense in MT(πα) . Then, Du(πα) ∩ Dv(πα) is sealed dense in
MT(πα) as well by Lemma 11(i). Therefore, if α < β < κ = dom( #”π) then

(
Du(πα) ∩ Dv(πα)

)
⇑πβ

is a sealed dense, and therefore open dense, set in MT(πβ) by Lemma 10(iii). We con-
clude, by the genericity of G , that there is a multitree w ∈ G that belongs to (Du(πα) ∩
Dv(πα))⇑πβ for some β > α . Then, there is a multitree q ∈ Du(πα) ∩ Dv(πα) satisfying
w 6 q . We have q ∈ G since w ∈ G . On the other hand, u, v ∈ G as well; therefore, q
cannot be incompatible with u, v . It follows that q 6 u and q 6 v .

This ends the proof of (2) of Definition 13 for Gα .
Now, check the special condition of Definition 18. Let 〈p, s〉 ∈ τ , ν ≤ νπα(τ) , and let

the set +Ws
6p(τ

ν
πα

, πα) be dense in MT(πα) ; prove that +Ws
6p(τ

ν
πα

, πα) ∩ G 6= ∅. Note
that τ is sealed in MT(πα) by (d) of Section 23. It follows that +Ws

6p(τ
ν
πα

, πα) is sealed
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dense in MT(πα) (see Definition 19(b)). Therefore, by Lemma 10(iii), if β ≥ α , then the
set +Ws

6p(τ
ν
πα

, πα)⇑πβ is dense in MT(πβ) . It follows, by the genericity of G , that there
is a multitree w ∈ G ∩ (+Ws

6p(τ
ν
πα

, πα)⇑πβ) , for some β > α . Then, we have a multitree
q ∈ +Ws

6p(τ
ν
πα

, πα) satisfying w 6 q . Then, q ∈ G since w ∈ G , and we are finished.
The genericity over the occurring names is verified similarly, starting from (c).
Finally, prove the additional part of the lemma. To check τ[G] = τ[Gα] , assume that

s ∈ τ[G] , meaning that there is q ∈ G with 〈q, s〉 ∈ τ , and thus, q ∈ dom τ . If follows by by
(a) of Section 23 that q is sealed by πα , in other words, the set

Dq(πα) = {r ∈MT(π) : |q| ⊆ |r| ∧ (r 6 q ∨ r⊥ q)}

is sealed dense in MT(π) . Then, arguing as above we prove that G ∩ (Dq(πα)⇑πβ) 6= ∅
for some β > α , and hence there exists r ∈ Gα ∩ Dq(πα) . However, r⊥ q is impossible
since q ∈ G either, so we have r 6 q . Thus, r witnesses that s ∈ τ[Gα] .

The proof that ci[G] = ci[Gα] for any name ci in ϕ is similar.

We return to the proof of Theorem 10.
We know that p directly forces Λ ∈ τ∞

πα
. The set Gα is πα-generic over τ by Lemma 32.

Therefore, by Corollary 11, τ[Gα] is ill-founded, i.e., has an infinite chain, and hence, τ[G]
is ill-founded because τ[Gα] = τ[G] still by Lemma 32.

Our goal is to prove that the sentence ϕ[G] := ∃ x ∀m R(x�m, y1�m, . . . , yk�m) (see
Formula (2) above) holds in V[G] , where yi = ci[G] = ci[Gα] , i = 1, . . . , k . We put

Ty1,...,yk = {s ∈ ω<ω : ∀ n ≤ lh(s) R(s�n, y1�n, . . . , yk�n)}.

Thus, Ty1,...,yk ⊆ ω<ω is a tree, and ϕ[G] is true if Ty1,...,yk is ill-founded. However,
τ[G] is ill-founded, see just above. Thus, it remains to be shown that Ty1,...,yk = τ[G] .

Let s ∈ τ[G] , m = lh(s) . We have 〈q, s〉 ∈ τ for some q ∈ G . By definition, there are
tuples t1, . . . , tk ∈ ωm satisfying (I) and (II) of Section 23; in particular, q directly forces
ti ⊂ ci by (II) for all i = 1, . . . , k , and hence, ti = yi�m for all i . Thus, s ∈ Ty1,...,yk by (I).

Conversely let s ∈ Ty1,...,yk , that is, R(s�n, t1�n, . . . , tk�n) holds for all n ≤ m = lh(s) ,
where ti = yi�m for all i . As yi = ci[G] , there is a family of conditions ri

j ∈ Kci
j,ti(j) ∩ G ,

1 ≤ i ≤ k , j < m . Then, the multitree q =
∧cw

1≤i≤k , j<mri
j belongs to G as well as G is

generic, and by definition we have 〈q, c〉 ∈ τ(R) . It follows that s ∈ τ[G] .
Thus, Ty1,...,yk = τ[G] , as required.
Case 2: ϕ is a formula in LΠ1

1 . We write ψ instead of ϕ . Thus, let ψ be a LΠ1
1

formula of the form (f2), i.e., essentially the negation of ϕ above, and let p forcπα ψ , so
that properties (a)–(d) and (e2) of Section 23 hold for π = πα , τ = τ(R) , and p . In
particular, if p1 ∈MT(π) , p1 6 p , then p1 does not directly force Λ ∈ τ∞

πα
, by (e2). Given

any G ⊆ Q , generic over L and containing p , the goal is to prove that ψ[G] holds in V[G] .
As p ∈ Gα and Gα is πα-generic over τ by Lemma 32, Corollary 11(ii) implies that

τ[Gα] = τ[G] is well-founded. Then, the tree Ty1,...,yk , defined as above, is well-founded
either, since it is equal to τ[Gα] . Therefore, ψ[G] holds, as required.

26. Forcing inside the Key Sequence

It is implied by Theorem 11 below that the forcing relation forcπ , considered with
the terms π = �α of the key sequence #”

� , really approximates the true PP-forcing relation at
level n− 1 and below. Recall that n ≥ 4 is assumed (see Assumption 1).

We argue in L. Recall that the key sequence #”
� = 〈�α〉α<ω1 ∈

#    ”
MFω1 , satisfying (A), (B),

(C), (D) of Definition 23 was defined by Theorem 6, � =
⋃cw

α<ω1
�α is the key multiforcing,

and PP = MT( #”
�) = MT(�) is our forcing notion.

Definition 28. We write p forcα ϕ instead of p forc�α
ϕ , for the sake of brevity. Let p forc ϕ

mean: p forcα ϕ for some α < ω1 .
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Lemma 33 (in L). Assume that p ∈ PP, α < ω1 , and p forcα ϕ . Then, the following holds :

(i) If α ≤ β < ω1 , q ∈ PP<β = MT( #”
� � β) , and q 6 p , then q forcβ ϕ ;

(ii) If q ∈ PP, q 6 p , then there exists β , α ≤ β < ω1 , such that q forcβ ϕ ;

(iii) If q ∈ PP and q forc ϕ− then p⊥ q ;

(iv) It follows that, first, if p, q ∈ PP, q 6 p , and p forc ϕ then q forc ϕ , and second,
p forc ϕ and p forc ϕ− are incompatible.

Proof. Lemma 29 implies (i). To prove (ii), choose an ordinal β with α < β < ω1 , satisfying
q ∈MT( #”

� � β) , and apply (i). To check (iii), we observe that p, q are incompatible in PP, as
otherwise (i) leads to contradiction. On the other hand, multitrees incompatible in PP are
⊥ by Corollary 2.

Theorem 11. Assume that 1 ≤ n ≤ n− 2 and ψ is a closed formula in LΠ1
n ∪LΣ1

n+1 , with all
names small and �-complete, and p ∈ PP. Then p PP-forces ψ[G] over L in the usual sense, if and
only if p forc ψ .

Proof. Let ‖− be the ordinary PP-forcing relation over L .

Part 1: ψ is a LΠ1
1 formula, of the canonical form (f2) in Section 23, with a recursive

R . Define the tree-name τ = τ(R) by (I), (II) in Section 23.
If p forc ϕ then p forc�γ

ϕ for some γ < ω1 , and then p ‖− ϕ[G] by Theorem 10.
To prove the converse suppose that p ‖− ϕ[G] . By the choice of ϕ , there is an ordinal

λ0 < ω1 such that all names in ϕ are �<λ0-complete, where �<λ0 =
⋃cw

α<λ0
�α . Thanks to

Lemma 24(ii), the set C of all ordinals λ ≥ λ0 such that

(∗) M(λ) contains all names in ψ , all multitrees in dom τ , and p, τ as well,

is stationary. Therefore, there is an ordinal λ ∈ C , λ > λ0 .
Property (B) in Definition 23 implies �<λ <<M(λ) �λ . In particular, it follows by (∗),

that �<λ <<q �λ for all q ∈ dom τ , �<λ <<pq �λ for all q ∈ dom τ , �<λ-incompatible with
p , �<λ <<c �λ for all names c in ψ , and �<λ <<τ �λ .

We conclude that properties (a)–(d) of Section 23 hold for �λ in the role of π (and for
the given p, ψ). Indeed, to check (a), recall that �<λ <<q �λ holds for all q ∈ dom τ by the
above; hence, every q ∈ dom τ is sealed by �λ by Corollary 8(ii). To check (b), (c), (d) for
�λ argue similarly but refer to resp. Corollary 9(ii), Corollary 10(i), Theorem 3(v).

We claim that (e2) of Section 23 also holds, i.e., if p1 ∈MT(�λ) , p1 6 p , then p1 does
not directly force Λ ∈ τ∞

�λ
. Indeed, suppose to the contrary that p1 ∈MT(�λ) , p1 6 p is

a counterexample, so that p1 directly forces Λ ∈ τ∞
�λ

. Then, p1 forc�γ
ϕ , where ϕ is ψ− ,

by the definition in 1◦ of Section 23. We conclude that p1 ‖− ϕ[G] by Theorem 10, that is,
p1 ‖− ¬ψ[G] . However, this contradicts the assumption that p ‖− ϕ[G] .

Part 2: the step LΠ1
n → LΣ1

n+1 (n ≥ 1). Let ϕ(x) be a LΠ1
n formula. Suppose

that p forc ∃ x ϕ(x) . Then, by definition, we have p forc ϕ(c) for a small real name
c . The inductive hypothesis implies p ‖− ϕ(c)[G] ; hence, p ‖− ∃ x ϕ(x)[G] . To prove
the converse, let p ‖− ∃ x ϕ(x)[G] . As PP is CCC, there exists a small real name c (in
L) satisfying p ‖− ϕ(c)[G] . Then, p forc ϕ(c) by the inductive hypothesis; therefore,
p forc ∃ x ϕ(x) .

Part 3: the step LΣ1
n → LΠ1

n (2 ≤ n ≤ n− 2). Let ϕ be a closed LΣ1
n formula, and

p forc ϕ− . Lemma 33(iv) implies that no multitree q ∈ PP, q 6 p , satisfies q forc ϕ . We
conclude that p ‖− ϕ−[G] by the inductive hypothesis.

Conversely, let p ‖− ϕ−[G] . There is an ordinal λ < ω1 such that every name in ϕ is
�<λ-complete, where �<λ =

⋃cw
α<λ �α . Consider the set U of all sequences #”π ∈ #    ”

MF, of
successor length dom( #”π) = κ + 1, such that κ > λ and there is a multitree q ∈MT( #”π) , q 6
p , such that q forc #”π (κ) ϕ . Then, U is a Σn−1(HC) set (defined with ϕ , p0 as parameters)
by Lemma 28; hence, U belongs to Σn−3(HC) . (Recall that n ≥ 4 by Assumption 1).
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Therefore, using Theorem 6 (and (C) of Definition 23) there is an ordinal β < ω1 such that
the restricted sequence #”

� � β blocks U .

Case 1: #”
� � β ∈ U , so that β = κ + 1, κ > λ , and there is a multitree q ∈ MT( #”

� � β)
satisfying q 6 p and q forc�κ

ϕ . Then, q ‖− ϕ[G] holds by the inductive hypothesis,
which contradicts the choice of p . We conclude that Case 1 is impossible.

Case 2: no sequence in U extends #”
� � β . We can assume that β > λ and β is a

successor, β = κ + 1. (If not, replace β by max{β + 1, λ + 1}). We asert that p forcκ ϕ− .
Indeed, otherwise, 4◦ implies that there exists a special multiforcing ϙ and a multitree
q ∈ MT(ϙ) , satisfying �κ << ϙ, q 6 p , and q forcϙ ϕ . However, then the extended
sequence #”

ϙ = ( #”
� � β)aϙ belongs to U . However, #”

� � β ⊆ #”π , which contradicts the Case 2
assumption. Thus, p forc ϕ− , as required.

27. Permutation Invariance

The theory of forcing admits various invariance theorems. Theorem 12 is related to
the invariance of the auxiliary forcing under permutations.

We argue in L. Let PERM be the set of all bijections h : ω1
onto−→ ω1 , satisfying h = h−1 and

such that the non-identity domain NI(h) = {ξ : h(ξ) 6= ξ} is at most countable. Bijections in
PERM will be called permutations.

We extend the action of any h ∈ PERM as follows:

• If p is a multitree then hp is a multitree, |hp| = h ”|p| = {h(ξ) : ξ ∈ |p|} , and
(hp)(h(ξ)) = p(ξ) for each ξ ∈ |p| ;

• If π ∈ MT is a multiforcing then accordingly h ·π = π ◦ (h−1) is a multiforcing,
|h ·π| = h ”π and (h ·π)(h(ξ)) = π(ξ) for each ξ ∈ |π| ;

• If c ⊆ MT× (ω × ω) is a real name, then we define hc = {〈hp, n, i〉 : 〈p, n, i〉 ∈ c} ,
so that hc is a real name as well;

• If #”π = 〈πα〉α<κ ∈
#    ”
MF, then h #”π = 〈h ·πα〉α<κ , this is still a sequence in

#    ”
MF;

• If ϕ := ϕ(c1, . . . , cn) is a L -formula (all names indicated), then hϕ is ϕ(hc1, . . . , hcn).

Many notions and relations defined above are rather obviously PERM-invariant. Thus,
p ∈ MT(π) if hp ∈ MT(h ·π) , π <<old

ϙ if h ·π <<old h ·ϙ, et cetera. As the next lemma
shows, the invariance also holds with respect to the relation forc . An obvious proof by
induction on n is left to the reader. (See Theorem 24.1 in [18]).

Theorem 12. Assume that h ∈ PERM, π is a small regular multiforcing, p ∈MT, n ≥ 1, and
a closed formula ϕ belongs to LΠ1

n ∪LΣ1
n+1 . Then, p forcπ ϕ if (hp) forchπ (hϕ) .

28. Embedding Multiforcings in the Key Sequence

The following lemma proves that any special multiforcing admits a suitable embed-
ding into the key sequence #”

� = 〈�α〉α<ω1 , due to the generic properties of the latter.
In L , if ϑ < ω1 , then we define shift permutations h1[ϑ] , h2[ϑ] ∈ PERM so that

NI(h1[ϑ]) = [0, ϑ·2) and h1[ϑ](ξ) = h1[ϑ]
−1(ξ) = ϑ + ξ for all ξ < ϑ ,

NI(h2[ϑ]) = [0, ϑ) ∪ [ϑ·2, ϑ·3) and h2[ϑ](ξ) = h2[ϑ]
−1(ξ) = ϑ·2 + ξ for ξ < ϑ ,

where as usual, ϑ·2 = ϑ + ϑ and ϑ·3 = ϑ + ϑ + ϑ . In other words, h1[ϑ] , h2[ϑ] are
order-preserving shifts between [0, ϑ) and resp. [ϑ, ϑ·2) , [ϑ·2, ϑ·3) .

Lemma 34 (in L). Let σ be a special multiforcing, α < ω . There exist a special multiforcing
ϙ, and ordinals ν, � < ω1 , such that σ << ϙ, α < min{ν, �} , |ϙ| ⊆ �, and the multiforcings
ϙ1 = h1[�] ·ϙ, ϙ2 = h2[�] ·ϙ satisfy ϙ1,ϙ2 ⊆ �ν , i.e., ϙ1 = �ν� |ϙ1| and ϙ2 = �ν� |ϙ2| .

Under the conditions of the lemma, it follows by the definition of h1[�] and h2[�]
above that |ϙ1| ⊆ [�, �·2) and |ϙ2| ⊆ [�·2, �·3) . This lemma will have two applications
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below. One of them (the proof of Lemma 35) will really need the effect of both h1[�] and
h2[�] . The other one (Section 30) will involve only h1[�] .

Proof. We argue in L. First of all, fix any special multiforcing ϙ satisfying σ << ϙ and
|ϙ| = |σ| . Let U be the set of all sequences #”π ∈ #    ”

MF such that:

(†) there are ordinals ν < dom( #”π) , � < ω1 |ϙ| ⊆ [0, �) , and the shifted multiforcings
ϙ1 = h1[�] ·ϙ, ϙ2 = h2[�] ·ϙ satisfy ϙ1,ϙ2 ⊆ �ν .

Easily, U is a Σ1(HC) set (with ϙ as the only parameter of the Σ1 definition in HC);
therefore, a Σn−3(HC) set, because n ≥ 4 by Assumption 1. It follows by Definition 23(C)
that there exists an ordinal ν < ω1 such that #”

� � ν blocks U . We can w. l.o.g. assume that
ν = γ + 1 is a successor; otherwise, just substitute ν + 1 for ν . We put π = �γ .

Case 1: no sequence in U extends #”
� � ν . To demonstrate that this is inconsistent, let

� < ω1 be the least ordinal satisfying |π| ∪ |ϙ| ⊆ [0, �) . Let π′ be any special multiforcing
satisfying π << π′ and still |π′| = |π| ⊆ [0, �) .

We define ϙ1 = h1[�] ·ϙ, ϙ2 = h2[�] ·ϙ. Thus, π,ϙ1,ϙ2 are special multiforcings with
disjoint domains |π′| ⊆ [0, �) , |ϙ1| ⊆ [�, �·2) , |ϙ2| ⊆ [�·2, �·3) . ’ It follows that the simple
union σ = π′ ∪ ϙ1 ∪ ϙ2 is still a multiforcing, and by the way π << σ since π << π′ .
It follows that the extended sequence #”π = ( #”

� � ν)aσ belongs to
#    ”
MF and ( #”

� � ν) ⊂ #”π ,
dom( #”π) = ν + 1, and #”π(ν) = σ = π′ ∪ ϙ1 ∪ ϙ2 , so that ϙ1,ϙ2 ⊆ #”

�(ν) .
We conclude that #”π ∈ U , but this contradicts the Case 1 assumption.

Case 2: #”π = #”
� �λ ∈ U . Let this be witnessed by an ordinal ν < λ and �,ϙ as

in (†). Then, ϙ1 = h1[�] ·ϙ, ϙ2 = h2[�] ·ϙ satisfy ϙ1,ϙ2 ⊆ #”π(ν) = �ν , and hence, this
accomplishes the proof of the lemma.

29. The Non-Well-Orderability Claim, Part I

Here, we begin the proof of Theorem 1 in part (ii). It will be completed in the end of
Section 30. We are going to establish the following even somewhat stronger result.

Theorem 13. Assume that a set G ⊆ PP is PP-generic over L . Then, in L[G] , there is no Σ1
n−1

well-orderings of the reals, and moreover, no Σ1
n−1 relation well-orders the set {xξ [G] : ξ < ωL

1 } .

Our plan is to infer a contradiction from the next assumption contrary to Theorem 13.

Assumption 2. Assume that �(x, y) is a Σ1
n−1 parameter-free formula, � < ω1 , p ∈ PP� =

MT(��) , and p PP-forces, over L , that “the relation <� , defined by x <� y if �(x, y) , strictly
well-orders the set {xξ [G] : ξ < ωL

1 } in L[G]”.

We begin with the next lemma. See Example 4 regarding real names of the form .xξ .

Lemma 35 (in L). Under Assumption 2, suppose that σ is a small regular multiforcing, ξ ∈ |σ| ,
and s ∈ MT(σ) . Then, there exists a special multiforcing π , a multitree p ∈ MT(π) , and an
ordinal η ∈ |π| , such that σ << π , p 6 s , and p forcπ �(

.xη , .xξ) .

Proof. We argue in L . We recall that p ∈ PP� = MT(��) . By Lemma 34, there exist a
special multiforcing ϙ, and ordinals ν, � < ω1 , such that σ << ϙ, � < ν , |ϙ| ∪ |p| ⊆ �, and
the shifted multiforcings ϙ1 = h1[�] ·ϙ, ϙ2 = h2[�] ·ϙ satisfy ϙ1,ϙ2 ⊆ �ν .

Let ξ1 = h1[�](ξ) , ξ2 = h2[�](ξ) . Pick a multitree q ∈MT(ϙ) with q 6 s . Then

q1 = h1[�]q ∈MT(ϙ1) and q2 = h2[�]q ∈MT(ϙ2),

hence, q1, q2 ∈ PPν . We observe that q1 6 s1 = h1[�]s and q2 6 s2 = h2[�]s .
Note that the sets |p| , |q1| , |q2| are subsets of the pairwise disjoint intervals resp.

[0, �) , [�, �·2) , [�·2, �·3) . Then, the simple union p′ = p∪ q1 ∪ q2 is still a multitree in PP≤ν

stronger than each of p, q1 , q2 .
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Then, by the choice of p, there exists a condition p′′ ∈ PP, p′′ 6 p′ , which either PP-
forces �(xξ1 [G], xξ2 [G]) or PP-forces �(xξ2 [G], xξ1 [G]) . Let p′′ PP-force say �(xξ2 [G], xξ1 [G])
over L . We can assume that p′′ ∈ MT(�µ) for some µ < ω1 , satisfying µ ≥ ν + 2 and
[0, �·3) ⊆ |�µ| . Using Theorem 11, we have

(1) p′′ forc�λ
�(

.xξ2 , .xξ1), for some λ < ω1.

Here, λ can be chosen large enough for λ > µ by Lemma 29. Then, there exists a
multitree r ∈MT(�λ) = PPλ satisfying r 6 p′′ and |r| = |p′′| . Lemma 29 implies:

(2) r forc�λ
�(

.xξ2 , .xξ1),

and then acting by h1[�] = (h1[�])−1 on (2), we obtain by Theorem 12:

(3) p forcπ �(
.xξ2 , .xξ)—by Theorem 12,

where π = h1[�]�λ and p = h1[�]r ∈MT(π) because h1[�](ξ1) = (h1[�])−1(ξ1) = ξ .
It remains to be observed that σ << ϙ; hence, σ1 << ϙ1 , and further σ1 << �ν because

ϙ1 ⊆ �ν by construction. Therefore, σ1 << �λ since ν < λ . Acting by h1[�] = h1[�]
−1 , we

obtain σ = h1[�]σ1 << π . We similarly obtain p 6 s = h1[�]s1 because r 6 p′′ 6 p′ 6
q1 6 s1 by construction. This ends the proof of the lemma, with η = ξ2 .

The goal of the next lemma is to strengthen Lemma 35 to the effect that a whole dense
set of conditions with the same property will be obtained.

Lemma 36 (in L). Under Assumption 2, there is a sequence #”π = 〈πk〉k<ω ∈
#    ”
MF satisfying the

following for all ξ ∈ | #”π| :

(i) If q ∈ MT(π) , where π =
⋃cw #”π =

⋃cw
k<ω πk , then there is a condition p ∈ MT(π) ,

p 6 q , and an ordinal η ∈ | #”π| , such that p forc #”π �(
.xη , .xξ) ;

(ii) The set Dξ [π] = {p ∈MT(π) : ∃ η ∈ | #”π| ∃ k < ω
(

p forcπk �(
.xη , .xξ)

)
} is dense (then

in fact open dense by Lemma 29) in MT(π) .

Proof. (i) Using Lemma 34, we define πk by induction so that for each k there is a certain
pair of ξk ∈ |πk| and qk ∈MT(πk) , satisfying:

∃ pk ∈MT(πk+1) ∃ ηk ∈ |πk+1|
(

pk 6 qk ∧ pk forcπk+1 �(
.xηk , .xξk )

)
.

Moreover, the enumeration by ξk and qk can be arranged so that for each ordinal
ξ ∈ | #”π| and condition q ∈MT(π) there exists k such that ξk = ξ and qk = q . However,
#”π is as required. Claim (ii) is just a reformulation of (i).

Corollary 15 (in L). Under Assumption 2, let #”π ∈ #    ”
MFω satisfy (ii) of Lemma 36 : if ξ ∈ |π|

then Dξ [π] is open dense in MT(π) , where π =
⋃cw #”π . There is a special multiforcing ϙ, such

that πk << ϙ for each k, and each set Dξ [π]⇑ϙ, ξ ∈ | #”π| , is sealed dense in MT(ϙ) .

Proof. Consider the (countable) collection of all sets Dξ [π] , ξ ∈ |π| . By Lemma 21(i),
there exists an extension #”

ϙ ∈ #    ”
MFω+1 of #”π , by the rightmost term ϙ =

#”
ϙ(ω) , satis-

fying π <<Dξ [π] ϙ for all ξ ∈ |π| . Then, each set Dξ [π]⇑ϙ is sealed dense in ϙ by
Lemma 10(iii).

30. The Non-Well-Orderability Claim, Part II

Still arguing under the conditions of Assumption 2, we proceed with the following
construction.

(I) Pick #”π = 〈πk〉k<ω ∈
#    ”
MFω by Lemma 36, so that

Dξ [π] = {p ∈MT(π) : ∃ η ∈ |π| ∃ k
(

p forcπk �(
.xη , .xξ)

)
}

is an open dense set in MT(π) for any ξ ∈ |π| , where π =
⋃cw #”π =

⋃cw
k<ω πk .
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(II) Then, pick a special multiforcing ϙ by Corollary 15, so that πk << ϙ for each k , and if
ξ ∈ |π| then π <<Dξ [π] ϙ, and hence, the set Dξ [

#”π]⇑ϙ is sealed dense in MT(ϙ) .

(III) By Lemma 34, there exist a special multiforcing χ , and ordinals ν, � < ω1 , such that
ϙ << χ , |χ| ⊆ �, and the multiforcing χ∗ = h1[�] ·χ satisfies χ∗ ⊆ �ν . Accordingly,
we let ϙ∗ = h1[�] ·ϙ, #  ”π∗ = h1[�] · #”π , π∗ = h1[�] ·π , π∗k = h1[�] ·πk , so that π∗k <<

ϙ∗ << χ∗ for all k , and π∗ << ϙ∗ << χ∗ . If ξ ′ ∈ |π∗| then put

Dξ ′ [π∗] = {p′ ∈MT(π∗) : ∃ η′ ∈ |π∗| ∃ k < ω
(

p′ forcπ∗k �(
.xη′ ,

.xξ ′)
)
}.

Lemma 37. If ξ ′ ∈ |π∗| and τ∗ is a special multiforcing, χ∗ << τ , then the set Dξ ′ [π∗]⇑τ is
sealed dense and open dense in MT(τ) .

Proof. Let us make use of the action of h1[�] on (II) above. We assert that

(∗) Dξ ′ [π∗] = h1[�] ”Dξ [π] := {h1[�] · p : p ∈ Dξ [π]} .

Indeed, suppose that ξ ∈ |π| and p ∈ Dξ [π] show that p′ = h1[�] · p ∈ Dξ ′ [π∗] ,
where accordingly ξ ′ = h1[�](ξ) . By definition there is an ordinal η ∈ | #”π| , such that
p forcπk �(

.xη , .xξ)
)

. Then, p′ forcπ∗k �(
.xη′ ,

.xξ ′)
)

by Theorem 12, where η′ = h1[�](η) .
This completes the proof of (∗) from right to left. The inverse implication is similar.

Now, it follows from (∗) and (II) that each set Dξ ′ [π∗]⇑ϙ∗ , where ξ ′ ∈ |π∗| is sealed
dense in MT(ϙ∗) . However, we have ϙ∗ << χ∗ << τ . It follows that the set Dξ ′ [π∗]⇑τ
is sealed dense and open dense in MT(τ) simply because Dξ ′ [π∗]⇑ϙ∗⇑τ ⊆ Dξ ′ [π∗]⇑τ ,
whereas Dξ ′ [π∗]⇑ϙ∗⇑τ is sealed dense and open dense in MT(τ) by Lemma 10(ii),(iii).

We now obtain a related the pre-density result in the context of the the key sequence
#”
� . Recall that p forc ϕ means that p forc�α

ϕ holds for some α < ω1 . (See Definition 28).

Lemma 38. If ξ ′ ∈ |π∗| , then the following set is open dense in PP = MT( #”
�) :

Dξ ′ = {s ∈ PP : ∃ η′ ∈ |π∗|
(
s forc �(

.xη′ ,
.xξ ′)
)
}.

Proof. The openness holds by Lemma 29. To show the density, pick any p0 ∈ PP. The goal
is to find an ordinal η′ ∈ |π∗| , and a multitree s ∈ MT( #”

�) = PP such that s 6 p0 and
s forc �(

.xη′ ,
.xξ ′)) . As #”

� is <<-increasing, there is an ordinal γ > ν + 1 and a stronger
multitree p1 ∈ MT(�γ) , p1 6 p0 . It follows from (III) that χ∗ ⊆ �ν << �ν+1 ; hence,
χ∗ << �ν+1 , which implies χ∗ << �γ′ for each γ′ ≥ ν + 1; therefore, χ∗ << �γ for the ordinal
γ chosen just above. However, the set Dξ ′ [π∗]⇑�γ is open dense in MT(�γ) by Lemma 37
(with τ = �γ ). It follows that there is a multitree q ∈ Dξ ′ [π∗]⇑�γ , q 6 p1 6 p .

Then, p1 6 r , where r ∈ Dξ′ [π∗], and hence, r forcπ∗k �(
.xη′ ,

.xξ′) for some η′ ∈ |π∗| and
k. We conclude that then q forc�γ

�(
.xη′ ,

.xξ′) by Lemma 29; thus, q ∈ Dξ′ , as required.

Let ‖− be the PP-forcing relation over L . It essentially coincides with forc by Propo-
sition 11. Therefore, the lemma implies the following corollary.

Corollary 16. If ξ ′ ∈ | #  ”π∗| then the following set is open dense in PP :

Dξ ′ = {s ∈MT(
#”

�) : ∃ η′ ∈ | #  ”π∗|
(
s ‖− �(

.xη′ [G], .xξ ′ [G])
)
}.

Proof of Theorem 13. It follows from Corollary 16 that if G if PP-generic over L , then the
set {xξ ′ [G] : ξ ′ ∈ |π∗|} contains no <�-minimal element, which contradicts Assumption 2.
The contradiction negates Assumption 2 and thereby proves Theorem 13.

Combining Theorems 13 and 9, we complete the proof of Theorem 1.
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Part V: Final

This final Part contains Section 31 with a short proof of Theorem 2 and a brief discus-
sion of its possible reduction to a theory weaker than ZFC−+ ‘P(ω) exists’. We finish in
Section 32 with conclusions and problems.

31. Proof of Theorem 2 and Comments

First of all, we recall that ZFC− is a subtheory of ZFC obtained as follows:

(a) We exclude the Power Set axiom PS;

(b) The well-orderability axiom WA, which claims that every set can be well-ordered, is
substituted for the usual set-theoretic Axiom of Choice AC of ZFC;

(c) The Separation schema is preserved, but the Replacement schema (which happens
to be not sufficiently strong in the absence of PS) is substituted with the Collection
schema: ∀X ∃Y ∀ x ∈ X

(
∃ y Φ(x, y) =⇒ ∃ y ∈ Y Φ(x, y)

)
.

A comprehensive account of main features of ZFC− is given in e.g., [27–29].

Proof of Theorem 2. Arguing in ZFC− , let us drop to the subuniverse L− of all con-
structible sets in the ZFC− universe of discourse. Then, L− satisfies ZFC− too, and if
P(ω) exists then P(ω) ∩ L− ∈ L− exists in L− . Thus, instead of ZFC− + ‘P(ω) exists’,
we argue in the theory ZFC− + (V = L) + ‘P(ω) exists’, whose universe is L− .

Now, the existence of the power set P(ω) = {X : X ⊆ ω} leads to the existence
of sets such as ω1 and HC = Lω1 , and basically, the existence of all sets involved in
the construction of the key forcing notion PP (including PP itself). After this remark, all
arguments in the proof of Theorem 1 in Parts I, II, III, and IV above naturally go through,
giving the proof of Theorem 2 by means of a PP-generic extension of L− .

It is really interesting to further reduce the assumptions of Theorem 2 down to PA2
(see [20,30,31] and elsewhere on second-order Peano arithmetic PA2 ) or ZFC− without the
extra assumption of the existence of P(ω) , or the associated class theory GBc− , which is
formalized in a two-sorted language with separate variables and quantifiers for sets and
classes, so that lower-case letters are used for set variables, whereas upper-case letters are
used for class variables. The minus − still reflects the absence of the Power Set axiom. The
axiomatization of GBc− (see e.g., [29]) includes axioms for sets (exactly those of ZFC− )
and those for classes. In particular, (1) extensionality for classes; (2) the class replacement
axiom asserting that every class function restricted to a set is a set; and (3) a predicative
comprehension schema asserting that every collection of sets, definable by a formula with
no quantified class variables, is a class.

Theories PA2 , ZFC− , and GBc− have been known to be equiconsistent for a while,
see e.g., [20,30,31] for PA2 vs. ZFC− , and [32–34] for ZFC− vs. GBc− .

Such objects as ω1 and HC are legitimate classes in GBc− , and such are all ZFC-
sets that play any role in the proof of Theorem 1 above, with one notable exception.
The exceptional case being the ∆HC

1 3ω1 -sequence used in Lemma 24. The ZFC con-
struction of such a sequence (as e.g., in [24]) can be maintained as a proper class in
GBc− + ‘all sets are constructible’ as well as in ZFC + (V = L) . However, unfortunately,
the proof of the 3ω1 -property of the resulting sequence does not go through in GBc−

because the ZFC proof involves ordinals beyond ω1 , and hence, does not directly translate
to the GBc− level. This will be the subject of our forthcoming paper aimed at solving this
technical obstacle by means of recently discovered methods as, e.g., in [35,36].

32. Conclusions and Problems

In this study, the method of finite-support products of Jensen’s forcing was applied to
the problem of obtaining a model of ZFC in which, for a given n ≥ 3, there is a ∆1

n-good
well-ordering of the reals, but no well-orderings of the reals exist in the class ∆1

n−1 at the
preceding level of the hierarchy. This is achieved by Theorem 1, our first main result. We
also demonstrate that this theorem can be obtained on the basis of the consistency of ZFC−
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(i.e., ZFC sans the Power Set axiom) plus the claim that P(ω) exists, which is a much
weaker assumption than the consistency of ZFC usually assumed in such independence
results obtained by forcing method. This is achieved by Theorem 2, our second main result.
Two principal technical achievements, related to getting rid of countable models of ZFC−

as a technical tool and according treatment of the auxiliary forcing, were mentioned in
Section 2. These are new results in such a generality (with n ≥ 3 arbitrary), and valuable
improvements upon our earlier results in [1]. They may lead to further progress in studies
of the projective hierarchy.

From our study, it is concluded that the technique of definable generic inductive con-
struction of forcing notions in L that carry hidden automorphisms, developed for Jensen-type
product forcing in our earlier papers [17,18,21], succeeds to solve other important descrip-
tive set theoretic problems of the same kind, using Theorems 1 and 2.

These results (Theorems 1 and 2) continue the series of recent research such as a
model [37] in which there is Π1

n real singleton {a} that codes a cofinal map f : ω → ωL
1 ,

while every Σ1
n set X ⊆ ω is constructible, and hence, cannot code a cofinal map ω → ωL

1 ,
and another model [38], in which there is a non-ROD-uniformizable Π1

n set with countable
cross-sections, while all Σ1

n sets with countable cross-sections are ∆1
n+1 -uniformizable—in

addition to the research already mentioned in Section 2 above.
This study may also be a contribution to the search for solutions of several similar and

still open problems related to the projective hierarchy, such as separation of the countable
AC at different levels of the projective hierarchy, a similar problem for the principle DC of
dependent choices, and a critically significant problem posed by S. D. Friedman in ([39], p.
209) and ([40], p. 602): assuming the consistency of an inaccessible cardinal, find a model
for a given n in which all Σ1

n sets of reals are Lebesgue measurable and have the Baire and
perfect set properties, while there is a ∆1

n+1 well-ordering of the reals.
From the result of Theorem 1, the following more concrete problems arise.

Problem 1. Prove that it is true in the key model L[G] of Section 20 that there is no boldface ∆1
n−1

well-ordering of the reals.

The boldface specification means that the real parameters are allowed in the definitions
of pointsets, whereas they are not allowed in the lightface case. This is a principal difference.

Problem 2. Prove a version of Theorem 1 with the additional requirement that the negation
2ℵ0 > ℵ1 of the continuum hypothesis holds in the generic extension considered.

The model for Theorem 1 introduced in Section 20 definitely satisfies the continuum
hypothesis 2ℵ0 = ℵ1 . The problem of obtaining models of ZFC in which 2ℵ0 > ℵ1 and there
is a projective well-ordering of the real line, has been known since the beginning of modern
set theory. See, e.g., problem 3214 in an early survey [41] by Mathias. Harrington [42]
solved this problem using a generic model in which 2ℵ0 > ℵ1 and there is a ∆1

3 well-
ordering of the continuum, using a combination of methods based on such coding forcing
notions as the almost-disjoint forcing [43] and a forcing by Jensen and Johnsbråten [44].
Such a different forcing notion as the product/iterated Sacks forcing [45,46] may also be of
interest here.
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