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We prove several dichotomy theorems which extend some known results on σ -bounded and σ -compact-
pointsets. In particular we show that, given a finite number of Δ1

1 equivalence relations F1 , . . . , Fn , any Σ1
1

set A of the Baire space either is covered by compact Δ1
1 sets and lightface Δ1

1 equivalence classes of the re-
lations Fi , or A contains a superperfect subset which is pairwise Fi -inequivalent for all i = 1, . . . , n . Further
generalizations to Σ1

2 sets A are obtained.
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1 Introduction

Effective descriptive set theory appeared in the 1950s as a useful technique of simplification and clarification of
constructions of classical descriptive set theory (cf., e.g., [5] or [18]). Yet it has become clear that development of
effective descriptive set theory leads to results having no direct analogies in classical descriptive set theory. As an
example we recall the following basis theorem: any countable Δ1

1 set A of the Baire space N = ωω consists of
Δ1

1 points. Its remote predecessor in classical descriptive set theory is the Luzin-Novikov theorem on Borel sets
with countable sections.

We shall focus on effectivity aspects of the properties of σ -compactness and σ -boundedness of pointsets in
this paper. Our starting point will be a pair of classical dichotomy theorems on pointsets, together with their
effective versions obtained in the end of 1970s.

The first of them deals with the property of σ -boundedness. Recall that a pointset is σ -bounded iff it is a
subset of a σ -compact set. For subsets of the Baire space N = ωω , the property of σ -boundedness is equivalent
to being bounded in N with the eventual domination order. Saint Raymond [15] proved that if X is a Σ1

1 set
then one and only one of the following two (obviously incompatible) conditions holds:

(I) the set X is σ -bounded;

(II) there is a superperfect set Y ⊆ X (i.e., a closed set homeomorphic to N ).

This result can be compared with an older theorem by Hurewicz [3], which deals with the property of σ -compact-
ness instead of σ -boundedness. It says that if X is a Σ1

1 set then again one and only one of the following two
(incompatible) conditions (I′ ), (II′ ) holds:

(I′ ) the set X is σ -compact;

(II′ ) there is a set Y ⊆ X homeomorphic to N and relatively closed in X .

There is an effective version of the first result: Theorem 3.1 below, by Kechris. It says that if X is a Σ1
1 set

then condition 1 can be strengthened to Δ1
1-effective σ -boundedness, so that a given set X is covered by a Δ1

1
sequence of compact sets. Accordingly, an effective version of the second result, Theorem 3.2 below by Louveau,
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asserts that if X is a lightface Δ1
1 set then condition (I′ ) can be strengthened to Δ1

1-effective σ -compactness, so
that a given set is equal to the union of a Δ1

1 sequence of compact sets.
It occurs that Theorem 3.2 fails for Σ1

1 sets, but we prove a similar more complicated dichotomy theorem on
Σ1

1 sets in Section 4. Several counterexamples with sets outside of Σ1
1 will be outlined in Section 5.

Section 6–8 contain a generalization of Theorem 3.1 (Theorem 8.1) which replaces σ -bounded sets by
{F1 , . . . ,Fn}-σ -bounded sets, where F1 , . . . ,Fn are given Δ1

1 equivalence relations and being {F1 , . . . ,Fn}-
σ -bounded means being covered by the union of a σ -bounded set and countably many equivalence classes of
F1 , . . . ,Fn . Accordingly the condition of existence of a superperfect set strengthens by the requirement that the
superperfect set is pairwise Fi-inequivalent for i = 1, . . . , n. Section 6 develops a necessary technique while the
proof of the generalized dichotomy is presented in Section 8. In the classical form, the case of a single equivalence
relation F in this dichotomy was earlier obtained by Zapletal, cf. [7].

In parallel to this, we prove in Section 7 that a σ -bounded set and a countable union of equivalence classes as
above can be defined so that they depend only on a given set X (and the collection of equivalence relations Fj ),
but are independent of the choice of a parameter p such that X is Σ1

1(p) and the relations are Δ1
1(p).

In the remaining parts of the paper, we prove a generalization of another Kechris’s result of [8], related to Σ1
2

sets, which by necessity involves uncountable unions of equivalence classes and σ -bounded sets.

2 Preliminaries

We use standard notation Σ1
1 , Π1

1 , Δ1
1 for effective classes of points and pointsets in N , as well as Σ1

1 , Π1
1 ,

Δ1
1 for corresponding projective classes.
Let ω<ω be the set of all finite strings of natural numbers, including the empty string Λ. If u, v ∈ ω<ω then

lh u is the length of u, and u ⊂ v means that v is a proper extension of u. If u ∈ ω<ω and n ∈ ω then u�n is
the string obtained by adding n to u as the rightmost term. Let, for u ∈ ω<ω ,

Nu = {x ∈ N : u ⊂ x} (a Baire interval in N ) .

If a set X ⊆ N contains at least two elements then there is a longest string u = stem(X) such that X ⊆ Nu .
We put diam(X) = 1

1+stem(X ) in this case, and additionally diam(X) = 0 whenever X has at most one element.

A set T ⊆ ω<ω is a tree if u ∈ T holds whenever u�n ∈ T for at least one n, and a pruned tree iff u ∈ T
implies u�n ∈ T for at least one n. Any non-empty tree contains Λ. A string u ∈ T is a branching point of T
if there are k �= n such that u�k ∈ T and u�n ∈ T ; let bran(T ) be the set of all branching points of T . The
branching height BHT (u) of a string u ∈ T in a tree T is equal to the number of strings v ∈ bran(T ) , v ⊂ u.
For instance, if T = ω<ω then BHω< ω (u) = lhu for any string u.

A tree T ⊆ ω<ω is compact, if it is pruned and has finite branchings, i.e., if u ∈ bran(T ) then u�n ∈ T
holds for finitely many n. Then

[T ] = {x ∈ N : ∀m (x�m ∈ T )},

the body of T , is a compact set. Conversely, if X ⊆ N is compact then

tree(X) = {x�n : x ∈ X ∧ n ∈ ω}

is a compact tree. Let CT be the Δ1
1 set of all non-empty compact trees.

A pruned tree T ⊆ ω<ω is perfect, if for each u ∈ T there is a string v ∈ bran(T ) with u ⊂ v . Then [T ] is a
perfect set. A perfect tree T is superperfect, if for each u ∈ bran(T ) there are infinitely many numbers n such
that u�n ∈ T . Then [T ] is a superperfect set. Conversely, if X ⊆ N is a perfect set then tree(X) is a perfect
tree, while for any superperfect set X ⊆ N there is a superperfect tree T ⊆ tree(X).

If X , Y are any sets and P ⊆ X× Y then

projP = {x ∈ X : ∃ y (〈x, y〉 ∈ P )} and (P )x = {y ∈ Y : 〈x, y〉 ∈ P}

are, respectively, the projection of P to X, and the (“vertical”) section of P corresponding to x ∈ X. A set
P ⊆ X × Y is uniform if every section (P )x (x ∈ X) contains at most one element. Let a product space be any
finite product of factors ω, ω<ω , N , P(ω<ω ). A discrete product space is a finite product of ω, ω<ω .
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We’ll make use of several known results of effective descriptive set theory. They are listed below, with a few
proofs (of claims which are not in common use in this area) attached to make the text self-contained.

Fact 2.1 (Kreisel selection) If X is a discrete product space, P ⊆ N × X is a Π1
1 set, and A ⊆ projP is a

Σ1
1 set, then there is a Δ1

1 map f : N → X such that 〈x, f(x)〉 ∈ P for all x ∈ A [14, 4B.5].

Fact 2.2 If P (x, y, z, . . . ) is a Π1
1 relation on a product space then the following derived relations belong to

Π1
1 as well:

∃x ∈ Δ1
1 P (x, y, z, . . . ) and ∃x ∈ Δ1

1(y)P (x, y, z, . . . )

[14, 4D.3].

Fact 2.3 (enumeration of Δ1
1 sets) Let X be a product space. There exist Π1

1 sets E ⊆ ω and W ⊆ ω × X,
and a Σ1

1 set W ′ ⊆ ω × X such that

(i) if e ∈ E then (W )e = (W ′)e (where (W )e = {x ∈ X : 〈e, x〉 ∈ W} );

(ii) a set X ⊆ X is Δ1
1 iff there is e ∈ E such that X = (W )e

[14, 4D.2].

There is a useful uniform version of Fact 2.3.

Fact 2.4 Let X be a product space. There exist Π1
1 sets E ⊆ N × ω and W ⊆ N × ω × X, and a Σ1

1 set
W′ ⊆ N × ω × X such that

(i) if 〈p, e〉 ∈ E then (W)pe = (W′)pe (where, as above, (W)pe = {x ∈ X : 〈p, e, x〉 ∈ W} );

(ii) if p ∈ N then a set X ⊆ X is Δ1
1(p) iff there is a number e ∈ E such that T = (W)pe = (W′)pe .

This result implies the following stronger version of Fact 2.1.

Fact 2.5 Suppose that X is a product space, Q ⊆ N × X is Π1
1 , A ⊆ projQ is Σ1

1 , and for each a ∈ A
there is a point x ∈ Δ1

1(a) such that 〈a, x〉 ∈ Q. Then there is a Δ1
1 map f : N → X such that 〈a, f(a)〉 ∈ Q

for all a ∈ A [14, 4D.6].

P r o o f. Assume that X = N , for the sake of brevity. Then any x ∈ X satisfies x ⊆ Y = ω × ω . Making use
of the sets E ⊆ N × ω and W,W′ ⊆ N × ω × Y as in Fact 2.4, we let

P =
{
〈a, e〉 ∈ E : (W)ae ∈ N ∧ 〈a, (W)ae〉 ∈ Q

}
.

Easily the set P and its projection projP both are Π1
1 , and A ⊆ projP . By Fact 2.1, there is a Δ1

1 map
f : N → ω such that 〈a, f(a)〉 ∈ P for all a ∈ A. It remains to define f(a) = (W)a,f (a) for a ∈ A; to prove
that f is Δ1

1 use both sets W and W′ .

Fact 2.6 If X �= ∅ is a countable Δ1
1 set then there exists a Δ1

1 map defined on ω such that X =
{
f(n) :

n < ω
}

[14, 4F.17].

In addition, Facts 2.1, 2.2, 2.3, and 2.5, remain true for relativized classes Σ1
1(p) , Π1

1(p) , Δ1
1(p), where p ∈ N

is any fixed parameter.

3 Two effective dichotomy theorems

The following two theorems were briefly discussed in the introduction.

Theorem 3.1 If A ⊆ N is a Σ1
1 set then one and only one of the following two claims (I), (II) holds:

(I) A is Δ1
1-effectively σ -bounded, in the sense that there is a Δ1

1 sequence {Tn}n∈ω of compact trees
Tn ⊆ ω<ω satisfying A ⊆

⋃
n [Tn ] ;

(II) there is a superperfect set Y ⊆ A

[8, p. 198].
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Theorem 3.2 If A ⊆ N is a Δ1
1 set then one and only one of the next two claims holds:

(I′ ) A is Δ1
1-effectively σ -compact, in the sense that there is a Δ1

1 sequence {Tn}n∈ω of compact trees
Tn ⊆ ω<ω satisfying A =

⋃
n [Tn ] ;

(II′ ) there is a set Y ⊆ A homeomorphic to N and relatively closed in A

(cf. [10] and [14, 4F.18]).

Corollary 3.3 If A ⊆ N is a σ -bounded Σ1
1 set then it is Δ1

1-effectively σ -bounded in the sense of condition
3.1 of Theorem 3.1. Accordingly, if A ⊆ N is a σ -compact Δ1

1 set then it is Δ1
1-effectively σ -compact in the

sense of condition (I) of Theorem 3.2.

In spite of certain differences between the theorems, both of them easily follow from the next much more
general result (which was actually extended by Louveau and Saint Raymond to all levels of the Borel hierarchy).

Theorem 3.4 (Louveau, Saint Raymond [11, 12]) If A,B ⊆ N are disjoint Σ1
1 sets then one and only one

of the next two claims holds:

(I) there exists a Δ1
1 real p such that A is separated from B by a Σ0

2(p) set S—then S is Δ1
1 , and moreover,

there is a Δ1
1 sequence {Tn}n∈ω of trees Tn ⊆ ω<ω such that S =

⋃
n [Tn ] ;

(II) there is a set C ⊆ A ∪ B homeomorphic to 2ω (hence by necessity closed) and such that C ∩ B is a
countable set dense in C .

Let’s show how this result implies Theorems 3.1 and 3.2.

P r o o f o f T h e o r e m 3.1. Recall that the Baire space N is homeomorphic to the Π0
2 set N ′ of all points

x ∈ 2ω with infinitely many terms x(k) equal to 1, via the map H : N
onto−→ N ′ sending each a ∈ N to

H(a) = 1, 0, . . . , 0︸ ︷︷ ︸
a(0) zeros

, 1, 0, . . . , 0︸ ︷︷ ︸
a(1) zeros

, 1, 0, . . . , 0︸ ︷︷ ︸
a(2) zeros

, . . . .

Let A′ = H[A] = {H(a) : a ∈ A} ⊆ N ′ and B′ = 2ω \ N ′ .
Assume that (I) of Theorem 3.4 holds, via a Δ1

1 sequence of trees T ′
n . We can assume that T ′

n ⊆ 2<ω , of
course. Then [T ′

n ] ⊆ N ′ by the choice of B′ , so that the sets Xn = H−1
(
[T ′

n ]
)
⊆ N are compact, the trees

Tn = tree(Xn ) are compact, too, which leads us to (I) of Theorem 3.1.
Assume that (II) of Theorem 3.4 holds, via a (closed) set C ⊆ A′ ∪ B′ homeomorphic to 2ω . Then C ′ =

C \ B′ = C ∩ A′ = C ∩ N ′ is a relatively closed subset of A′ homeomorphic to N . We may note in passing
by that (I) of Theorem 3.4 fails, and moreover A is not even Σ0

2-separated from B—as otherwise C ′ would be a
relative Σ0

2 subset of C , which is impossible.
Further, C = H−1(C) ⊆ N is a relatively closed subset of A and a Σ1

1 set, of course. It remains to prove
that C is not σ -bounded—then it contains a superperfect subset by a Saint Raymond’s theorem mentioned in the
introduction. Suppose, to the contrary, that C ⊆ F , where F ⊆ N is σ -compact. The set F ′ = H[F ] ⊆ N ′ is
then σ -compact, too, and hence Σ0

2 , thus A is Σ0
2-separated from B , contrary to the above.

P r o o f o f T h e o r e m 3.2. Let A′ = H[A] ⊆ N ′ , as above, and now B′ = 2ω \ A′ . If 3.4 of Theorem 3.4
holds, via a Δ1

1 sequence of trees T ′
n ⊆ 2<ω , then just A′ =

⋃
n [T ′

n ], so that, pulling this back to N via H−1 ,
we easily get (I′ ) of Theorem 3.2. If (II) of Theorem 3.4 holds, then the set C ′ = C ∩ A is a relatively closed
subset of A′ homeomorphic to N , thus pulling it back to N via H−1 , we get (II′ ) of Theorem 3.2.

The original proof of Theorem 3.4 in [11] was based on determinacy ideas and technique. A proof by methods
of effective descriptive set theory is also known to those working in this field. It combines two rather independent
results and techniques. One of them is the famous effective separation theorem by Louveau [10]. The other one
is (essentially) Hurewicz’s [3] result cited in the introduction—in a more advanced form of Theorem 21.22 (by
Kechris, Louveau, Woodin) in [9], given there with a proof involving some game. The original Hurewicz proof
was purely topological, and a more transparent version of this proof is given in [16, Lemma 7].
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4 Effective σ-compactness dichotomy for Σ1
1 sets

There is a difference between Theorem 3.1 and Theorem 3.2: the first theorem deals with Σ1
1 sets while the other

one—with Δ1
1 sets. The proof of Theorem 3.2 in Section 3 does not work in the case when A is a Σ1

1 set, and in
fact Theorem 3.2 fails for Σ1

1 sets A, as the next counterexample shows.

Example 4.1 Let {y} be a Π1
1 singleton such that y ∈ 2ω is not Δ1

1 . The set A = 2ω \ {y} is then Σ1
1 and an

open subset of 2ω , hence, σ-compact. Suppose towards the contrary that Theorem 3.2 holds for A. Then (I′ ) of
Theorem 3.2 must be true. Let {Tn}n∈ω be a Δ1

1 sequence of compact trees such that A =
⋃

n [Tn ]. Therefore y
is Δ1

1 , as the only point in 2ω which does not belong to
⋃

n [Tn ], a contradiction.

The next theorem is our best result so far, in the direction of Theorem 3.2 for Σ1
1 sets, with still some amount

of effectivity in condition (I′ ).

Theorem 4.2 If A ⊆ N is a Σ1
1 set then one and only one of the following two claims holds:

(I) A is Δ1
3-effectively σ -compact, so that there exists a Δ1

3 sequence {Tn}n<ω of compact Δ1
3 trees Tn ⊆

ω<ω such that A =
⋃

n<ω [Tn ] ;
(II) there is a set Y ⊆ A homeomorphic to N and relatively closed in A.

The following proof is essentially the classical proof of the Hurewicz theorem, at least as presented in [16]
(while in his original proof in [3], Hurewicz deletes in one step all open sets whose images are contained in some
σ -compact subset of the given set). We only add the computation of the complexity of this classical construction.

P r o o f. Given a tree S ⊆ (ω × ω)<ω , define a derived tree S′ ⊆ S so that

(∗) S′ consists of all nodes 〈u, v〉 ∈ S such that proj [S�〈u, v〉] �⊆ A, where S�〈u, v〉 = {〈u′, v′〉 ∈ S :
(u ⊂ u′ ∧ v ⊂ v′) ∨ (u′ ⊆ u ∧ v′ ⊆ v)}.

Note that S′ can contain maximal nodes even if S contains no maximal nodes. Yet if 〈u, v〉 is a maximal node
in S , or generally a note in the well-founded part of S (so [S�〈u, v〉] = ∅ ), then definitely 〈u, v〉 �∈ S′ .

Lemma 4.3 The set {〈S, u, v〉 : 〈u, v〉 ∈ S′} is Σ1
2 . In addition, S′ ⊆ S , and if S ⊆ T then S′ ⊆

T ′ . Moreover, if M is a countable transitive model of a large enough fragment of ZFC and S ∈ M then
(S′)M ⊆ S′ .

P r o o f. As A is Σ1
1 , the key condition proj [S�〈u, v〉] �⊆ A is Σ1

2 .

Beginning the proof of Theorem 4.2, we w.l.o.g. assume, by Theorem 3.1, that A, the given set, is σ -bounded,
and hence if F ⊆ A is an arbitrary closed set then F is σ-compact. Let P ⊆ N × N be a Π0

1 set such that
A = projP . We define

S = {〈x�n, y�n〉 : n ∈ ω ∧ 〈x, y〉 ∈ P} ⊆ ω<ω × ω<ω ,

so that P = [S]. A decreasing sequence of derived trees S(α) , α ∈ Ord, is defined by transfinite induction so
that S(0) = S , if λ is a limit ordinal then naturally S(λ) =

⋂
α<λ S(α) , and S(α+1) =

(
S(α)

)′
for any α.

Obviously there is a countable ordinal λ such that S(λ+1) = S(λ) .

Case 1: S(λ) = ∅. Then, if x ∈ A = projP then by construction there exist an ordinal α < λ and a node
〈u, v〉 ∈ S(α) such that

x ∈ A(α)
uv ⊆ A

(α)
uv ⊆ A, where A(α)

uv = proj
[
S(α)�〈u, v〉

]
,

and hence A is a countable union of sets F ⊆ A of the form A
(α)
uv , where α < λ and 〈u, v〉 ∈ S(α) , closed,

therefore σ-compact by the above.
Let us show how this leads to (I) of the theorem.
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It easily follows from Lemma 4.3 that both the ordinal λ, and each ordinal α < λ, and the sequence{
S(α)

}
α<λ

itself, are Δ1
3 . Therefore there is a Δ1

3 sequence {U (n)}n < ω of the same trees, i.e.,

{
S(α) : α < λ

}
=

{
U (n) : n < ω

}
.

Each tree U (n) , n < ω , is Δ1
3 either, as well as all restricted subtrees of the form U (n)�〈u, v〉 (where 〈u, v〉 ∈

U (n) ) and their “projections”

T (n)
uv =

{
u : ∃ v (〈u, v〉 ∈ U (n)�〈u, v〉)

}
⊆ ω<ω .

On the other hand, if α < λ and 〈u, v〉 ∈ S(α) then we have A
(α)
uv =

[
T

(n)
uv

]
for some n = n(α) by construction.

To conclude, if x ∈ A then there is a Δ1
3 tree T

(n)
uv ⊆ ω<ω such that x ∈

[
T

(n)
uv

]
⊆ A—and

[
T

(n)
uv

]
is

σ -compact in this case. Then by Theorem 3.2 (relativized version) there is a Δ1
1
(
T

(n)
uv

)
sequence of compact

trees T
(n)
uv (k) such that

[
T

(n)
uv

]
=

⋃
k

[
T

(n)
uv (k)

]
. This easily leads to (I) of the theorem.1

Case 2: S(λ) �= ∅, and then S(λ) ⊆ S is a pruned tree and 〈Λ,Λ〉 ∈ S(λ) .

Lemma 4.4 If 〈u, v〉 ∈ S(λ) , u′ ∈ ω<ω , u ⊂ u′ , and A
(λ)
uv ∩ Nu ′ �= ∅ then there is a string v′ ∈ ω<ω such

that v ⊂ v′ and 〈u′, v′〉 ∈ S(λ) .

We’ll define a pair 〈u(t), v(t)〉 ∈ S(λ) for each t ∈ ω<ω , such that

(1) if t ∈ ω<ω then t ⊆ u(t);
(2) if s, t ∈ ω<ω and s ⊆ t then u(s) ⊆ u(t) and v(s) ⊆ v(t);
(3) if t ∈ ω<ω and k �= n then u(t�k) and u(t�n) are ⊆-incomparable;

(4) if s ∈ ω<ω then there exists a point ys ∈ A
(λ)
u(s)v (s) \ A such that any sequence of points xk ∈

A
(λ)
u(s�k)v (s�k) converges to ys .

Suppose that such a system of pairs is defined. Then the associated map f(a) =
⋃

n u(a�n) : N → A is 1-1
and is a homeomorphism from N onto its full image Y = ran f = {f(a) : a ∈ N } ⊆ A.

Let’s prove that Y is relatively closed in A. Consider a sequence of points an ∈ N such that the corre-
sponding sequence of points yn = f(an ) ∈ Y converges to a point y ∈ N ; we have to prove that y ∈ Y or
y �∈ A. If the sequence {an} contains a subsequence convergent to b ∈ N then {yn} converges to f(b) ∈ Y . So
suppose that the sequence {an} has no convergent subsequences. Then there exist a string s ∈ ω<ω , an infinite
set K ⊆ ω , and for each k ∈ K—a number n(k), such that s�k ⊂ an(k) . Then yn(k) ∈ A

(λ)
u(s�k)v (s�k) by

construction. Therefore the subsequence
{
yn(k)

}
k∈ω

converges to a point ys �∈ A by (4), as required.
Finally, on the construction of pairs 〈u(t), v(t)〉. Put 〈u(Λ), v(Λ)〉 = 〈Λ,Λ〉. Suppose that a pair 〈u(t), v(t)〉 ∈

S(λ) is defined. Then A
(λ)
u(t)v (t) �⊆ A by the choice of λ. There is a sequence of pairwise different points

xn ∈ A
(λ)
u(t)v (t) which converges to a point ys ∈ A

(λ)
u(t)v (t) \ A. We can associate a string un ∈ ω<ω with

each xn such that u(t) ⊂ un ⊂ xn , the strings un are pairwise ⊆-incompatible, and lh un → ∞. Then, by
Lemma 4.4, for each n there is a matching string vn such that v(t) ⊂ vn and 〈un , vn 〉 ∈ S(λ) . Put u(t�n) = un

and v(t�n) = vn for all n.

5 Counterexamples above Σ1
1

Here we outline several counterexamples to Theorems 3.1 and 3.2 with sets A more complicated than Σ1
1 .

Example 5.1 Suppose that the universe is a Cohen real extension L[a] of the constructible universe L. The set
A = N ∩L is Σ1

2 and it is not σ -bounded in L[a]. On the other hand, it is known from [2] that A has no perfect

1 Class Δ1
3 in (I) of the theorem looks too bad. One may want to improve it to Δ1

2 at least. This would be the case if the ordinal λ in
the argument of Case 1 could be shown to be Δ1

2 . Yet by Martin [13] closure ordinals of inductive constructions of this sort may exceed the
domain of Δ1

2 ordinals.
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subsets, let alone superperfect ones. Thus A is a Σ1
2 counterexample to both Theorem 3.1 and Theorem 3.2 in

L[a]. We then immediately obtain a similar Π1
1 counterexample, using the Π1

1 uniformization theorem.

Example 5.2 Suppose that the universe is a dominating real extension L[d] of L. The set A = N ∩L is then
σ -bounded in L[d]. The dominating forcing is homogeneous enough for any OD (ordinal-definable) real in L[d]
to be constructible, and hence it is true in L[d] that A cannot be covered by a countable union of OD compact
sets in L[d]. Thus A is a Σ1

2 counterexample to Corollary 3.3.

Yet we don’t know whether there exists a similar definable counterexample to Corollary 3.3.

Example 5.3 Let A = {y} be a Π1
1 singleton such that y is not a Δ1

1 real. Then conditions (I), (II) of
Theorem 3.1 obviously fail for A. The same for Theorem 3.2. Moreover, A is a Π1

1 counterexample to
Corollary 3.3 as well, although not in the same strong sense as in Example 5.2.

It is known that there is a countable Π1
1 set A ⊆ N containing at least one non-Δ1

2 element. Can it serve as
a more profound Π1

1 counterexample than the singleton A of Example 5.3 ?

6 Generalization of the σ-bounded dichotomy: preliminaries

Below, in Section 8, we establish a generalization of Theorem 3.1 for a certain system of pointset ideals which
include the ideal of σ -bounded sets along with equivalence classes of a given finite or countable family of equiv-
alence relations. The next definition introduces a necessary framework.

Definition 6.1 Let F be a family of equivalence relations on a set X0 ⊆ N . A set X ⊆ X0 is F -σ -
bounded, iff it is covered by a union of the form B ∪

⋃
n∈ω Yn , where B is a σ -bounded set and each Yn is an

F-equivalence class for an equivalence relation F = F(n) ∈ F which depends on n.
A set X ⊆ X0 is F -superperfect, if it is a superperfect pairwise F-inequivalent set (i.e., a partial F-trans-

versal) for every F ∈ F .

Clearly F -σ -bounded sets form a σ-ideal containing all σ -bounded sets, and no F -σ -bounded set can be F -
superperfect. What are properties of these ideals? Do they have some semblance of the superperfect ideal itself?
We begin with a lemma and a corollary afterwards, which show that this is indeed the case w.r. t. the property of
being Π1

1 on Σ1
1 . The lemma is a generalization of Corollary 3.3, of course.

Lemma 6.2 Suppose that {Fn}n<ω is a Δ1
1 sequence of equivalence relations on N , and a Σ1

1 set X ⊆ N
is {Fn}n<ω -σ -bounded. Then X is Δ1

1-effectively {Fn}n<ω -σ -bounded, in the sense that there exist:

(1) a Δ1
1 sequence of compact trees Tk ,

(2) a Δ1
1 sequence of numbers nk , and

(3) a Δ1
1 set H ⊆ ω × N

such that, for every k < ω the section (H)k = {a : 〈k, a〉 ∈ H} is an Fnk
-equivalence class and X ⊆⋃

k [Tk ] ∪
⋃

k (H)k .

In particular, if a Σ1
1 set X ⊆ N is {Fn}n<ω -σ -bounded then X is covered by the union of all Δ1

1 F0-classes,
all Δ1

1 F1-classes, all Δ1
1 F2-classes, et cetera, and all Δ1

1 compact sets.

P r o o f. The set C = CT∩Δ1
1 of all Δ1

1 compact trees is Π1
1 , and hence so is K =

⋃
T ∈C [T ]. If n < ω then

let Un be the union of all Δ1
1 Fn -classes. Let’s show that U =

⋃
n Un is Π1

1 either. We make use of sets E ⊆ ω
and W,W ′ ⊆ ω × N as in Fact 2.3. The Π1

1 formula

ϕ(e, n) := e ∈ E ∧ ∀ y, z ∈ (W ′)e (y Fn z) ∧ ∀ y ∈ (W ′)e ∀ z (y Fn z =⇒ z ∈ (W )e)

says that e ∈ E and (W ′)e = (W )e is a Fn -equivalence class. Moreover

x ∈ U ⇐⇒ ∃n ∃ e (ϕ(e, n) ∧ x ∈ (W )e).

Case 1: X ⊆ K ∪ U . Then the set S of all pairs 〈x, h〉 such that

− either h = T ∈ C and x ∈ [T ],
− or h = 〈e, n〉 ∈ Φ = {〈e, n〉 ∈ E × ω : ϕ(e, n)} and x ∈ (W )e ,
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is a Π1
1 set satisfying X ⊆ projS . By Fact 2.5 there is a Δ1

1 map f defined on N and such that 〈a, f(a)〉 ∈ S
for each a ∈ X . The sets

X ′ = {x ∈ X : f(x) ∈ CT} and X ′′ = {x ∈ X : f(x) ∈ Φ}

are Σ1
1 as well as their images

R′ =
{
f(x) : x ∈ X ′} ⊆ C and R′′ =

{
f(x) : x ∈ X ′′} ⊆ Φ,

and X ′ ∪ X ′′ = X , R′ ∪ R′′ = {f(x) : x ∈ X}. By the Σ1
1 Separation theorem there is a Δ1

1 set τ such that
R′ ⊆ τ ⊆ C , and by Fact 2.6 we have τ = {Tk : k < ω}, where k �−→ Tk is a Δ1

1 map. By similar reasons,
there is a Δ1

1 map k �−→ 〈ek , nk 〉 such that R′′ ⊆ ρ = {〈ek , nk 〉 : k < ω} ⊆ Φ. To finish the proof in Case 1, it
remains to define

H =
{
〈k, x〉 ∈ ω × N : x ∈ (W )ek

}
=

{
〈k, x〉 ∈ ω × N : x ∈ (W ′)ek

}
.

Case 2: A = X \(K ∪ U) �= ∅. Then A is a non-empty Σ1
1 set. We are going to derive a contradiction. By

definition, we have X\A ⊆
⋃

k Ck ∪
⋃

n

⋃
k Enk , where each Ck is compact and each Enk is an Fn -class. Let

M be a countable elementary substructure of a sufficiently large structure, containing, in particular, the whole
sequence of covering sets Ck and Enk . Below “generic” will mean Gandy-Harrington generic over M .

As A �= ∅ is Σ1
1 , there is a perfect set P ⊆ A of points both generic and pairwise generic. It is known that

then P is a pairwise Fn -inequivalent set for every n, hence, definitely a set not covered by a countable union of
Fn -classes for all n < ω . Thus to get a contradiction it suffices to prove that P ∩ Ck = ∅ for all k . In other
words, we have to prove that if k < ω and x ∈ A is any generic real then x �∈ Ck .

Suppose towards the contrary that a non-empty Σ1
1 condition Y ⊆ A forces that a ∈ Ck , where a is a

canonical name for the Gandy-Harrington generic real. We claim that Y is not σ -bounded. Indeed otherwise we
have Y ⊆

⋃
n [Tn ] by Theorem 3.1, where all trees Tn ⊆ ω<ω are Δ1

1 and compact, which contradicts the fact
that A does not intersect any compact Δ1

1 set.
Therefore Y �⊆ Ck . Then there is a point x ∈ Y and a number m such that the set I = {y ∈ N :

y�m = x�m} does not intersect Ck . But then the Σ1
1 condition Y ′ = Y ∩ I forces that a �∈ Ck , a contra-

diction.

Corollary 6.3 If {Fn}n<ω is a Δ1
1 sequence of equivalence relations on N then the ideal of {Fn}n<ω -σ -

bounded sets is Π1
1 on Σ1

1 and Π1
1 on Σ1

1 .

Cf. [23, Section 3.8] on Π1
1 on Σ1

1 and Π1
1 on Σ1

1 ideals.

P r o o f. Consider a Σ1
1 set P ⊆ N × N . We have to prove that

X =
{
x ∈ N : (P )x = {y : 〈x, y〉 ∈ P} is {Fn}n<ω -σ-bounded

}

is a Π1
1 set. By the relativized version of Lemma 6.2, x ∈ X iff

(∗) there exist Δ1
1(x) sequences {Tk}k<ω (of compact trees) and {nk}k<ω and a Δ1

1(x) set H ⊆ ω × N
such that, for every k < ω the section (H)k is an Fnk

-equivalence class and (P )x ⊆
⋃

k [Tk ] ∪
⋃

k (H)k .

A routine analysis (as in the proof of Lemma 6.2) shows that this is a Π1
1 description of the set X .

7 Digression: another look on the effectivity

As usual, Lemma 6.2 and Corollary 6.3 remain true for relativized classes. In particular, if p ∈ N , Fn are Δ1
1(p)

equivalence relations, and a Σ1
1(p) set X ⊆ N is {Fn}n<ω -σ -bounded then X is covered by the union of all

Δ1
1(p) Fn -classes, n = 0, 1, 2, . . . , and all Δ1

1(p) compact sets. If now p �= q ∈ N is a different parameter,
but still Fn are Δ1

1(q) and X is Σ1
1(q) and {Fn}n<ω -σ -bounded then accordingly X is covered by the union

of all Δ1
1(q) Fn -classes, n = 0, 1, 2, . . . , and all Δ1

1(q) compact sets. Those two countable coverings of the
same set X can be different, of course. This leads to the question: is there a covering of X of the type indicated,
which depends on X and Fn themselves, but not on the choice of a parameter p such that X is Σ1

1(p) and Fn

are Δ1
1(p). We are able to answer this question in the positive at least in the case of finitely many equivalence

relations. The next theorem will be instrumental in the proof of a theorem in Section 10.
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Theorem 7.1 Suppose that n ≥ 1, F1 , . . . ,Fn are Borel equivalence relations on N , and a Σ1
1 set X ⊆ N

is {F1 , . . . ,Fn}-σ -bounded. Then there exist Borel sets Y1 , . . . , Yn ,Xn+1 ⊆ N such that

(i) X ⊆ Y1 ∪ · · · ∪ Yn ∪ Xn+1 ,
(ii) each set Yj is a countable union of Fj -equivalence classes while the set Xn+1 is σ -bounded,

(iii) if w ∈ N , X is Σ1
1(w), and all relations Fm are Δ1

1(w), then there is a parameter w̄ ∈ N in Δ1
2(w)

such that both Xn+1 and all sets Yj are Δ1
1(w̄), hence Δ1

2(w).

Thus, under the assumptions of the theorem, there is a Borel covering of the set X satisfying (i) and (ii), and ef-
fective as soon as X and Fj are granted some effectivity. Note that the covering (i.e., the sets Y1 , . . . , Yn ,Xn+1 )
depends only of X and F1 , . . . ,Fn , but does not depend on w in the context of (iii). It is a challenging problem to
get rid of w̄ in (iii)

(
so that the sets Xn+1 and Yj are just Δ1

1(w) with the same parameter w
)

, but this remains
open.

P r o o f. We define sets X = X1 ⊇ X2 ⊇ X3 ⊇ . . . ⊇ Xn ⊇ Xn+1 so that Xj+1 = Xj \ Yj , where

Yj = {x ∈ N : the set Xj ∩ [x]Fj
is not {Fj+1 , . . . ,Fn}-σ-bounded}(1)

by induction. In particular,

Y1 = {x ∈ N : the set X1 ∩ [x]F1 is not {F2 , . . . ,Fn}-σ-bounded},
Y2 = {x ∈ N : the set X2 ∩ [x]F2 is not {F3 , . . . ,Fn}-σ-bounded},

. . .

Yn−1 = {x ∈ N : the set Xn−1 ∩ [x]Fn −1 is not {Fn}-σ-bounded},
Yn = {x ∈ N : the set Xn ∩ [x]Fn

is not ∅-σ-bounded},

where ∅-σ -bounded is the same as just σ -bounded.

Lemma 7.2 If 1 ≤ j ≤ n then Yj is a countable union of Fj -equivalence classes and the set Xj+1 = Xj \Yj

is {Fj+1 , . . . ,Fn}-σ -bounded.

P r o o f. Let Yj be the family of all sets Y such that Y is a union of at most countably many Fj -classes
and Xj\Y is {Fj+1 , . . . ,Fn}-σ -bounded. Note that Yj is a non-empty (since Xj is {Fj , . . . ,Fn}-σ -bounded by
induction) σ-filter (since the collection of all {Fj+1 , . . . ,Fn}-σ -bounded sets is a σ-ideal). Therefore Y ′

j =
⋂

Yj

is a set in Yj , in fact, the ⊆-least set in Yj .
It remains to show that Yj = Y ′

j . We claim that if C is an Fj -class then C ⊆ Y ′
j iff C ⊆ Y ′

j . Indeed if
C ∩ Yj = ∅ then Xj ∩C is {Fj+1 , . . . ,Fn}-σ -bounded, thus Y ′

j \C is still a set in Yj , therefore C ∩ Y ′
j = ∅.

Conversely if C ∩ Y ′
j = ∅ then (Xj ∩ C) ⊆

(
Xj \ Y ′

j

)
, and hence Xj ∩ C is {Fj+1 , . . . ,Fn}-σ -bounded, so

C ∩ Yj = ∅, as required.

Thus by the lemma the sets Yj and Xn+1 satisfy (i) and (ii). To verify (iii), assume that w ∈ N , X is Σ1
1(w),

and all Fm are Δ1
1(w). The main issue is that the sets Yj , albeit Borel (as countable unions of Borel equivalence

classes) do not seem to be Δ1
1(w), at least straightforwardly. For instance, Y1 is Σ1

1(w) by Corollary 6.3 (rela-
tivized), and accordingly X2 is Π1

1(w) (instead of Δ1
1(w) ), which makes it very difficult to directly estimate the

class of Y2 at the next step. This is where a new parameter appears.
We precede the last part of the proof of the theorem with the following auxiliary fact on equivalence relations,

perhaps, already known.

Lemma 7.3 Let E be a Δ1
1 equivalence relation on N , and X ⊆ N be a Σ1

1 set which intersects only
countably many E-classes. Then all E-classes [x]E , x ∈ X, are Δ1

1 sets, and there is an E-invariant Δ1
1 set

Y ⊆ N such that X ⊆ Y and all E-classes [y]E , y ∈ Y , are Δ1
1 sets (therefore Y still contains only countably

many E-classes).

P r o o f. The union C of all Δ1
1 E-classes is an E-invariant Π1

1 set. (Cf., e.g., [6, Claim 10.1.2].) Thus, if
X �⊆ C then H = X \C is a non-empty Σ1

1 set which does not intersect Δ1
1 E-classes. Then (see, e.g., Case 2
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in the proof of [6, Theorem 10.1.1]) the set H contains a perfect pairwise E-inequivalent set, which contradicts
our assumptions. Therefore X ⊆ C , so indeed all E-classes [x]E , x ∈ X , are Δ1

1 . To prove the second claim
apply the invariant Σ1

1 separation theorem (cf., e.g., [6, 10.4.2]), which yields an E-invariant Δ1
1 set Y satisfying

X ⊆ [X]E ⊆ Y ⊆ C .

We continue the proof of Theorem 7.1. The next goal is to find a parameter q1 ∈ N in Δ1
2(w) such that the

Σ1
1(w) set Y1 is Δ1

1(q1). Let Π1
1 sets E ⊆ N × ω and W ⊆ N × ω × N , and a Σ1

1 set W′ ⊆ N × ω × N
be as in Fact 2.4. If w ∈ N then let E(w) = {e : 〈w, e〉 ∈ E} and, for e < ω ,

We(w) = {x : 〈w, e, x〉 ∈ W} and W ′
e(w) =

{
x : 〈w, e, x〉 ∈ W′},

so that We(w) = W ′
e(w) for all e ∈ E(w).

Assume that w ∈ N and X is Σ1
1(w), as in (iii) of the theorem. Let Q1(w) contain all numbers e ∈ E(w)

such that the set We(w) is an F1-class, and the set W ′
e(w) ∩ X1 is not {F2 , . . . ,Fn}-σ -bounded. Then

x ∈ Y1 ⇐⇒ ∃ e ∈ Q1(w) (x ∈ We(w)) ⇐⇒ ∃ e ∈ Q1(w)
(
x ∈ W ′

e(w)
)

holds for all x ∈ N by Lemma 7.3 (relativized). Thus the set Y1 is Δ1
1(q1), where q1 = Q1(w), and accordingly

the set X2 = X1 \ Y1 is Σ1
1(w, q1).

If e ∈ E(w)
(

and this is a Π1
1 formula

)
, then using We(w) and W ′

e(w) interchangeably, we express “We(w)
is an F1-class” as a Π1

1 property

(2) ∀x, y
(
xF1 y =⇒

(
x ∈ W ′

e(w) =⇒ y ∈ We(w)
)
∧ (y ∈ W ′

e(w) =⇒ x ∈ We(w))
)
.

Finally, “W ′
e(w) ∩ X1 is not {F2 , . . . ,Fn}-σ -bounded” is a Σ1

1 property by Corollary 6.3. It follows that e ∈
Q1(w) is a Δ1

2 relation
(

more precisely, a conjunction of Π1
1 and Σ1

1
)

.
Arguing the same way, we let Q2(w, q1) contain all e ∈ E(w) such that We(w) is an F2-class and W ′

e(w)∩X2
is not {F3 , . . . ,Fn}-σ -bounded. Then, by the same reasons, e ∈ Q2(w, q1) is a Δ1

2 relation, Y2 is Δ1
1(q2), where

q2 = Q2(w, q1), and accordingly X3 = X2 \Y2 is Σ1
1(w, q1 , q2).

Iterating this construction, we define parameters q1 , q2 , . . . , qn such that each Yj is Δ1
1(qj ) and each

qj+1 is Δ1
2(w, q1 , q2 , . . . , qj ), and hence Δ1

2(w) by induction. The concatenation Q′(w) ∈ N of the reals
w, q1 , q2 , . . . , qn is then Δ1

2(w), therefore w̄ = Q′(w) implies (iii).

We don’t know whether the theorem still holds for countably infinite sequences of equivalence relations. Yet
the proof miserably fails in this case. Indeed, let, for any n, Fn be an equivalence relation on N whose classes are
Ik = {x ∈ N : x(0) = k}, k = 0, 1, . . . , n, and all singletons outside of these large classes. The whole space
N =

⋃
n In is {F0 ,F1 ,F2 , . . .}-σ -bounded, of course. But running the construction as above, we’ll obviously

have Y0 = Y1 = Y2 = · · · = ∅ (as each Fn -class is covered by an appropriate Fn+1-class), which results in
nonsense.

There is another interesting problem. Under the assumptions of the theorem, the covering of X by sets
Y1 , . . . , Yn ,Xn+1 ⊆ N depends on X but is independent of the choice of a parameter p as in (iii). On the
other hand, if such a parameter p, and accordingly p̄ as in (iii), is given then not only each Yj but also a repre-
sentation of Yj =

⋃
m Yjm as a countable union of Fj -classes Yjm , can be obtained in Δ1

1(p̄) by Lemma 6.2.
One may ask whether such a decomposition of each Yj is available in a way independent of the choice of p (as
the sets Yj themselves). The answer in the negative is expected, but it may likely take a lot of work.

8 Generalization of the σ-bounded dichotomy: the theorem

Coming back to the content of Section 6, we’ll prove the following theorem in this section.

Theorem 8.1 Suppose that n < ω , F1 , . . . ,Fn are Δ1
1 equivalence relations on N , and A ⊆ N is a Σ1

1
set. Then one and only one of the following two claims holds:

(I) the set A is {F1 , . . . ,Fn}-σ -bounded—and therefore Δ1
1-effectively {Fn}n<ω -σ -bounded as in Lemma

6.2;
(II) there exists an {F1 , . . . ,Fn}-superperfect set P ⊆ A.
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If n = 0 then this theorem is equivalent to Theorem 3.1: indeed, if F = ∅ then ∅-σ -bounded sets are just
σ -bounded, while ∅-superperfect sets are just superperfect.

The following key result of Solecki and Spinas [20, Corollary 2.2] will be an essential pre-requisite in the
proof of Theorem 8.1.

Proposition 8.2 Let E ⊆ N × N be a Σ1
1 set such that every section (E)x , x ∈ N , is σ -bounded. Then

there is a superperfect set P ⊆ N free for E in the sense that if x �= y belong to P then 〈x, y〉 �∈ E .

Note that if E is an equivalence relation then a set free for E is the same as a pairwise E-inequivalent set.

P r o o f o f T h e o r e m 8.1. We argue by induction on n. The case n = 0 (then {F1 , . . . ,Fn} = ∅ ) is
covered by Theorem 3.1. Now the step n → n + 1.

Let F1 , . . . ,Fn ,Fn+1 be Δ1
1 equivalence relations on N , and A ⊆ N be a Σ1

1 set. The set

U = {x ∈ A : [x]F1 ∩ A is non-{F2 , . . . ,Fn+1}-σ-bounded}

is Σ1
1 by Corollary 6.3.

Case 1: the Σ1
1 set U has only countably many F1-classes. Then by Lemma 7.3, there is an F1-invariant Δ1

1
set D such that U ⊆ D , D contains only countably many F1-classes, and all of them are Δ1

1 .

Subcase 1.1: the complementary Σ1
1 set B = A \ D is {F2 , . . . ,Fn+1}-σ -bounded. Then the whole domain

A = D ∪ B is {F1 , . . . ,Fn+1}-σ -bounded, hence we have (I) for F1 , . . . ,Fn ,Fn+1 .

Subcase 1.2: B is non-{F2 , . . . ,Fn+1}-σ -bounded. By the inductive hypothesis there is an {F2 , . . . ,Fn+1}-
superperfect set P ⊆ B . Let x ∈ P . Then the class [x]F1 is {F2 , . . . ,Fn+1}-σ -bounded. We claim that the set
Px = [x]F1 ∩ P is just σ -bounded. Indeed by definition Px ⊆ Y ∪

⋃
k Xk , where Y is σ -bounded while each

Xk is an Fn(k)-equivalence class for some n(k) = 2, 3, . . . , n + 1. By construction P has at most one common
point with each Xk . Therefore the set Px \Y is at most countable, hence, σ -bounded, and we are done.

Thus all F1-classes inside P are σ -bounded. By Proposition 8.2, there is a superperfect pairwise F1-inequivalent
set Q ⊆ P —then the set Q is {F1 , . . . ,Fn+1}-superperfect by construction. Thus (II) holds.

Case 2: U has uncountably many F1-classes. Then by Silver there exists a perfect pairwise F1-inequivalent
set X ⊆ U . If x ∈ X then by definition the set [x]F1 ∩ A is not {F2 , . . . ,Fn+1}-σ -bounded. Therefore by the
inductive hypothesis there exists an {F2 , . . . ,Fn+1}-superperfect set Y ⊆ [x]F1 ∩ A, and hence a superperfect
tree T ⊆ ω<ω such that [T ] = Y . The next step is to get such a tree T by means of a Borel function.

Lemma 8.3 In our assumptions, there is a perfect set X ′ ⊆ X and a Borel map x �−→ Tx defined on X ′ ,
such that if x ∈ X ′ then Tx is a superperfect tree, [Tx ] ⊆ [x]F1 ∩ A, and [Tx ] is {F2 , . . . ,Fn+1}-superperfect.

P r o o f. Let p ∈ N be a parameter such that X is Π0
1(p).

Let V be the set universe considered, and let V+ be a generic extension of V such that ω
L[p ]
1 is countable

in V+ . Let X+ be the V+ -extension of X , so that X+ is Π0
1(p) in V+ and X = X+ ∩ V . Let A+ and F+

i

be similar extensions of resp. A, Fi . It is true then in V+ by the Shoenfield absoluteness that each F+
i is a Δ1

1
equivalence relation on N , and X+ is a perfect set in Π0

1(p). Moreover, it is true in V+ by Shoenfield that

(∗) if x ∈ X+ then the set [x]F+
1
∩ A+ is not

{
F+

2 , . . . ,F+
n+1

}
-σ -bounded

— simply because the formula

∀x ∈ X ([x]F1 ∩ A is not {F2 , . . . ,Fn+1}-σ-bounded)

is essentially Π1
2 by Corollary 6.3, and is true in V . It follows by the inductive hypothesis (applied in

V+ ) that, in V+ , the Π1
1(p) set W+ of all pairs 〈x, T 〉 such that x ∈ X+ , T ⊆ ω<ω is a superperfect

tree, and

[T ] ⊆ [x]F+
1
∩ A+ ∧ the set [T ] is

{
F+

2 , . . . ,F+
n+1

}
-superperfect,

— satisfies proj W+ = X+ . Therefore by the Shoenfield absoluteness theorem the set W = W+ ∩ V is
Π1

1(p) and satisfies projW = X in V .
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Applying the Kondô-Addison uniformization in V+ , we get a Π1
1(p) set U+ ⊆ W+ which uniformizes W+ ,

in particular, proj U+ = projW+ = X+ . The corresponding set U = U+ ∩ V of type Π1
1(p) in V then

uniformizes W and satisfies projU = projW = X still by Shoenfield.
Now, by the choice of the universe V+ , the uncountable Π1

1(p) set U+ must contain a perfect subset P+ ⊆
U+ of class Π0

1(q) for a parameter q ∈ L[p], hence, q ∈ V . The according set P = P+ ∩ V is then a perfect
subset of U in V , and hence X ′ = proj P ⊆ X is a perfect set.

Finally, if x ∈ X ′ then let Tx be the only element such that 〈x, Tx〉 ∈ P . The map x �−→ Tx is Borel. On the
other hand, still by the Shoenfield theorem, if x ∈ X ′ then [Tx ] ⊆ [x]F1 ∩A, and the set [Tx ] is {F2 , . . . ,Fn+1}-
superperfect.

We continue the proof of Theorem 8.1. Let X ′ ⊆ X and a Borel map x �−→ Tx be as in the lemma. If x ∈ X ′

and i = 2, . . . , n + 1, then every Fi-class [y]Fi
has at most one point common with the set Yx = [Tx ]. Thus if C

is a {F2 , . . . ,Fn+1}-σ -bounded set then the intersection C ∩ Yx is σ -bounded and hence C ∩ Yx is meager in
Yx .

There is a Borel set W ⊆ X ′ × N such that the collection of all sections (W )x , x ∈ X ′ , is equal to the
family of all countable unions of Fi-classes, i = 2, . . . , n + 1, plus a σ -bounded Fσ set. (Note that σ -bounded
Fσ sets is the same as σ -compact sets, and that every σ -bounded set is a subset of a σ -bounded Fσ set.) Thus if
x ∈ X ′ then (W )x ∩ Yx is meager in Yx by the above. Therefore, by a version of “comeager uniformization”,
there is a Borel map f defined on X ′ such that if x ∈ X ′ then f(x) ∈ Yx \(W )x . Clearly f is 1 − 1, hence the
set R =

{
f(x) : x ∈ X ′} is Borel.

Moreover R is pairwise F1-inequivalent by construction. We assert that R is non-{F2 , . . . ,Fn+1}-σ -bounded,
in particular, not σ -bounded!

Indeed suppose otherwise. Then there is x ∈ X ′ such that R ⊆ (W )x . But then f(x) ∈ (W )x , which
contradicts the choice of f .

Thus indeed R is non-{F2 , . . . ,Fn+1}-σ -bounded. It follows by the inductive hypothesis that there exists a
{F2 , . . . ,Fn+1}-superperfect set P ⊆ R . And P is pairwise F1-inequivalent since so is R . We conclude that P
is even {F1 , . . . ,Fn+1}-superperfect, which leads to (II) of the theorem.

It is an interesting problem to figure out whether Theorem 8.1 is true for a countable infinite family of equiv-
alence relations (as in Lemma 6.2). The inductive proof presented above is of little help, of course. Another
problem is to figure out whether the theorem still holds for Π1

1 equivalence relations, as the classical Silver
dichotomy does. This is open even for the case of one Π1

1 equivalence relation, since the background result,
Proposition 8.2, does not cover this case. And finally we don’t know whether Theorem 8.1 can be strengthened
to yield the existence of sets free (as in Proposition 8.2) for a given (finite or countable) collection of Borel sets.

It remains to note that Theorem 8.1 (in its relativized form) implies the following theorem, perhaps, not known
previously in such a generality.

Theorem 8.4 Suppose that F1 , . . . ,Fn are Borel equivalence relations on a Polish space X, and A ⊆ X is a
Σ1

1 set. Then either A is {F1 , . . . ,Fn}-σ -bounded, or there exists an {F1 , . . . ,Fn}-superperfect set P ⊆ A.

Yet the case n = 1 is known in the form of the following (not yet published) superperfect dichotomy theorem
of Zapletal:

Theorem 8.5 If E be a Borel equivalence relation on N and A ⊆ N is a Σ1
1 set then either A is covered

by countably many E-classes and a σ -bounded set or there is a superperfect pairwise E-inequivalent set P ⊆ A.

Theorem 8.5 can be considered as a “superperfect” version of Silver’s dichotomy (cf. [19] or [6, 10.1]), saying
that if E is a Borel equivalence relation then either the domain of E is a union of countably many E-classes or
there is a perfect pairwise E-inequivalent set Y ⊆ D .

9 The case of Σ1
2 sets: preliminaries

In view of the counterexamples in Section 5, one can expect that positive results for Σ1
2 sets similar to

Theorems 3.1, 8.1, and 3.2 should be expected in terms of ω1-unions of compact sets. And indeed using a
determinacy-style argument, Kechris proved in [8] the following theorem, presented here in a somewhat abridged
form.
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Theorem 9.1 If A ⊆ N is a Σ1
2 set then one of the following two claims (I), (II) holds:

(I) A is L-σ -bounded, in the sense that it is covered by the union of all sets [T ], where T ∈ L is a compact
tree2 (hence not necessarily a countable union)—or equivalently, for each x ∈ A there is y ∈ N ∩ L
with x ≤∗ y , where ≤∗ is the eventual domination order on N ,

(II) there is a superperfect set P ⊆ A.

Our next goal is to generalise this result in the directions of Theorem 8.1. We are going to change superperfect
sets in (II) by {F1 , . . . ,Fn}-superperfect sets, where F1 , . . . ,Fn is a given collection of Δ1

1 equivalence relations.
As for (I), one would naturally look for a condition like: for each x ∈ A, either there is y ∈ N ∩L with x ≤∗ y ,
or there is j = 1, . . . , n and an “L-presented” Fj -equivalence class containing x, whatever being “L-presented”
would mean. The following example shows that the most elementary definition of “L-presented” as “containing
a constructible element” fails.

Example 9.2 Let F be the equivalence relation of equality of countable sets of reals. That is, its domain is
the set N ω of all infinite sequences of reals, and for x, y ∈ N ω , x F y iff ranx = ran y . Let us work in a
Coll

(
ωL

1
)
-generic extension L[f ] of L, where f : ω

onto−→ ωL
1 is a generic collapse map. Let A consist of all

x ∈ N ω such that ranx (a set of reals) belongs to L (but x itself does not necessarily belong to L ). Then A
is Σ1

2 in L[f ]. Moreover if x ∈ A then the F-class [x]F is not σ -bounded, and the quotient A/F (the set of all
F-classes inside A ) is uncountable in L[f ].

We believe that there is no perfect (let alone superperfect) pairwise F-inequivalentset P ⊆ A in L[f ], which
is quite a safe conjecture in view of the results in [2]. Yet to make the example self-contained let us add to L[f ] a
set C of ℵL

3 = ℵL[f ]
2 Cohen reals. By a simple cardinality argument, there are no perfect pairwise F-inequivalent

sets P ⊆ A in L[f, C].
However, in L[f, C], the quotient A/F has uncountably many particular F-classes which are non-σ -bounded

and even non-L-σ -bounded in the sense of (I) above, but contain no constructible elements. Thus A neither
contains an F-superperfect subset nor satisfies the condition that for each x ∈ A, either there is y ∈ N ∩L with
x ≤∗ y , or there is an F-equivalence class containing x and containing a constructible element.

Our model for “L-presented” will be somewhat more complex than just “containing a constructible element”.
It will be based on a certain uniform version of Δ1

1 , with ordinals as background parameters.
Let WO ⊆ N be the Π1

1 set of all codes of countable (including finite) ordinals, and if ξ < ω1 then let
WOξ = {w ∈ WO : w codes ξ}.

Definition 9.3 A Σ1
2 map h : N → N is absolutely total if it remains total in any set-generic extension of

the universe. In other words, it is required that there is a Σ1
2 formula σ(·, ·) such that h = {〈x, y〉 : σ(x, y)} and

the sentence ∀x ∃ y σ(x, y) is forced by any set forcing.

A total but not absolutely total map can be defined in L by letting h(x) be the Gödel-least w ∈ WO such that
x appears at the ξ-th step of the Gödel construction, where ξ < ω1 is the ordinal coded by w .

Definition 9.4 (1) Suppose that ξ < ω1 . A set X ⊆ N is essential Σ1
n (ξ) if there is a Σ1

n formula ϕ(x,w)
such that X = {x ∈ N : ϕ(x,w)} for every w ∈ WOξ . Essential Π1

n (ξ) sets are defined similarly, while an
essential Δ1

n (ξ) set is any set both essential Σ1
n (ξ) and essential Π1

n (ξ).
(2) A set X is essential

(
Δ1

1/Δ1
2
)
(ξ) if there is an absolutely total Σ1

2 map h, a Σ1
1 formula χ(·, ·), and a Π1

1
formula χ′(·, ·), such that if w ∈ WOξ then X = {x ∈ N : χ(x, h(w))} = {x ∈ N : χ′(x, h(w))}.

Cf. Section 11 for more on essential
(
Δ1

1/Δ1
2
)
(ξ) sets. In particular we’ll show that those sets admit a direct

Borel coding with codes in L.

10 The case of Σ1
2 sets: the result

Here we prove a theorem which generalizes Theorem 9.1. If F is an equivalence relation on N then let a σ-F-
class be any finite or countable union of F-equivalence classes.

Theorem 10.1 Assume that n < ω , F1 , . . . ,Fn are Δ1
1 equivalence relations on N and A ⊆ N is a Σ1

2
set. Then we have one of the following:

2 L is the constructible universe.
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(I) A is L-{F1 , . . . ,Fn}-σ -bounded, in the sense that for each x ∈ A :
– either there is y ∈ N ∩ L such that x ≤∗ y ,

– or there is j = 1, . . . , n and a σ-Fj -class C which contains x and is essential
(
Δ1

1/Δ1
2
)
(ξ) for some

ξ < ω1 ;
(II) there exists an {F1 , . . . ,Fn}-superperfect set P ⊆ A.

The “or” option in (I) of Theorem 10.1 leaves a certain sense of dissatisfaction since one would rather look for
coverage by Fj -classes themselves than σ-Fj -classes. Cf. Section 12 on resolution of σ-Fj -classes into appropri-
ately definable Fj -classes, in the context of (I) of the theorem.

P r o o f. (Based on Theorems 7.1 and 8.1 in key arguments.) First of all, we can w.l.o.g. assume that A is a Π1
1

set. Indeed, by Kondô’s uniformization, A is the projection of a uniform Π1
1 set B ⊆ N ×2ω . For 〈x, a〉, 〈x′, a′〉

being pairs in N × 2ω , let 〈x, a〉 F′
j 〈x′, a′〉 iff x Fj x′ . If Theorem 10.1 holds for B and F′

1 , . . . ,F
′
n (with

〈x, a〉 ≤∗ y iff x ≤∗ y in (I)) then quite clearly it holds for A and F1 , . . . ,Fn .
Thus let A be a Π1

1 set, and let A =
⋃

ξ<ω1
Aξ be the ordinary decomposition of A into pairwise disjoint

Borel sets Aξ (called constituents). There is a Σ1
1 formula β(w, x) and a Π1

1 formula β′(w, x) such that

(∗) if ξ < ω1 and w ∈ WOξ then Aξ = {x : β(w, x)} = {x : β′(w, x)} is a Borel set, and in fact even set
essential Δ1

1(ξ).

Case A: There is an ordinal ξ < ω1 such that Aξ is not {F1 , . . . ,Fn}-σ -bounded. Then we have (II) of the
theorem by Theorem 8.1.

Case B: All sets Aξ are {F1 , . . . ,Fn}-σ -bounded. Then, by Theorem 7.1, for each ξ there exist Borel sets
Y ξ

1 , . . . , Y ξ
n ,Xξ

n+1 ⊆ N satisfying (i), (ii), (iii) of Theorem 7.1 for X = Aξ —in particular, each set Y ξ
j is a

countable union of Fj -equivalence classes, each set Xξ
n+1 is σ -bounded, and Aξ ⊆ Y ξ

1 ∪ · · · ∪ Y ξ
n ∪ Xξ

n+1 .

Our initial plan was to prove that the sets Y ξ
j and Xξ

n+1 are essential (Δ1
1/Δ1

2)(ξ), and moreover, each set

Xξ
n+1 (and in fact any set both essential (Δ1

1/Δ1
2)(ξ) and σ -bounded) is L-{F1 , . . . ,Fn}-σ -bounded by virtue

of exclusively the “either” option in (I) of the theorem. The “moreover” claim was based on a metamathematical
product forcing argument, similar to the one used in the proof of Lemma 8.3. The anonymous referee suggested
another argument of more conventional sort, which we present here with thanks.

Coming back to the proof of Theorem 7.1 with the given set X = X(w) = {xβ(w, x)} and w ∈ N being
an arbitrary parameter, we observe that the argument yields a Δ1

2 function Q′ : N → N such that

(i) Q′ is absolutely total Σ1
2 —since it is defined in n steps, such that each step is governed by a combination

of Σ1
1 and Π1

1 formulas;

(ii) if ξ < ω1 and w ∈ WOξ , then Xn+1(w) = Xξ
n+1 ;

(iii) if ξ < ω1 and w ∈ WOξ then Xn+1(w) is Σ1
1(Q

′(w));
(iv) moreover, there is a single Σ1

1-set U ⊆ N ×N such that Xn+1(w) = {x : 〈Q′(w), x〉 ∈ U} whenever
ξ < ω1 and w ∈ WOξ .

It immediately follows that B =
⋃

ξ<ω1
Xξ

n+1 =
⋃

w∈WO Xn+1(w) is a Σ1
2 set. Therefore, by Theorem 9.1,

either B is L-σ -bounded as in (I) of Theorem 9.1, or there is a superperfect set P ⊆ B . Thus to prove Theo-
rem 10.1 it remains to check that the “or” option here definitely fails.

Suppose towards the contrary that S ⊆ B is a superperfect set. Then S ⊆ A, and hence, by the known
properties of constituents, there is an ordinal ξ < ω1 such that S ⊆ A<ξ =

⋃
η<ξ Aη . Then obviously S ⊆

B<ξ =
⋃

η<ξ Xη
n+1 . However each set Xη

n+1 is σ -bounded by the above, and hence the set B<ξ is σ -bounded
as well, so it cannot contain a superperfect subset, as required.

11 The case of Σ1
2 sets: Borel coding and absoluteness

Each essential
(
Δ1

1/Δ1
2
)
(ξ) set X is Borel, hence, it admits a Borel code. Moreover, if X is essential

(
Δ1

1/Δ1
2
)
(ξ)

via an absolutely total Σ1
2 map h, and w ∈ WOξ , then X admits a Borel code in L[w]. Our next goal will be
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to show that such a set X admits a Borel code—in a certain generalized sense which allows uncountable Borel
operations—even in L.

Let Ord<ω be the class of all strings (finite sequences) of ordinals. If s ∈ Ord<ω and ξ ∈ Ord then s�ξ
denotes the string s extended by ξ ; if s ∈ Ord<ω then lh s is the length of s; if m < lh s then s�m is the
restricted string. By Λ we denote the empty string; lh Λ = 0 and Λ = s�0 for any s ∈ Ord<ω .

A set T ⊆ Ord<ω is a tree if T �= ∅, and for any s ∈ T and m < lh s we have s�m ∈ T . Then let supT be
the least ordinal λ such that T ⊆ λ<ω , and let Max T be the set of all ⊆-maximal elements s ∈ T . Obviously
Λ ∈ T for any tree T .

A tree T is well-founded iff it contains no infinite branches. In this case, a rank function s �−→ |s|T ∈ Ord
can be associated with T so that |t|T = supt�ξ∈T (|t�ξ|T + 1) (the least ordinal strictly bigger than all ordinals
of the form |t�ξ|T , where ξ ∈ Ord and t�ξ ∈ T ) for each t ∈ T . In particular |s|T = 0 for any s ∈ Max T .
Let |T | = |Λ|T (the rank of T ).

Definition 11.1 Let K be the class of all generalized Borel codes in L, i.e., all pairs c = 〈T, d〉 = 〈Tc, dc〉 ∈ L,
where T ⊆ Ord<ω is a well-founded tree and d ⊆ T × ω<ω . In this case, a set [T, d, s] ⊆ N can be defined for
each s ∈ T by induction on |s|T so that

if s ∈ Max T then [T, d, s] = N \
⋃

〈s,u〉∈d Nu ;

if |s|T > 0 then [T, d, s] = N \
⋃

s�ξ∈T [T, d, s�ξ].

Recall that Nu =
{
a ∈ N : u ⊂ a

}
is a Baire interval. Finally we put [T, d] = [T, d,Λ].

If 〈T, d〉 ∈ K and supT < ω1 then [T, d] is a Borel set in Π0
1+|T | . We stress that only constructible codes are

considered.

Definition 11.2 If ρ < ω1 then let Kρ ∈ L be the set of all codes 〈T, d〉 ∈ K such that |T | ≤ ρ and
supT ≤ ωL

ρ . (Not necessarily supT < ω1 .) Accordingly let [Kρ ] = {[T, d] : 〈T, d〉 ∈ Kρ}.

Any essential (Δ1
1/Δ1

2)(ξ) set is essential Δ1
2(ξ), and hence ΔHC

1 (ξ). (Recall that HC is the set of all hered-
itarily countable sets.) This simple fact will allow us to make use of the following result, explicitly proved in [4,
Lemma 4] on the base of ideas and technique developed in [21, 22].

Proposition 11.3 Let X,Y ⊆ N are two disjoint sets in ΣHC
1 (ω1), i.e., ΣHC

1 with any finite number of
parameters in ω1 . Suppose that ρ < ωL

1 and X is Π0
1+ρ -separable from Y . Then there is a separating set in

[Kρ ]. In particular if X ⊆ N is a set in ΔHC
1 ∩ Π0

1+ρ then X ∈ [Kρ ].

For instance, if ρ = 0, so that Π0
1+ρ = closed sets, then the result takes the form: any closed ΔHC

1 set X ⊆ N
has a code in

K0 = {〈T, d〉 ∈ K : |T | = 0 (hence just T = {Λ}) ∧ supT ≤ ω},

but this can be easily established directly.
Thus sets essential

(
Δ1

1/Δ1
2
)
(ξ), ξ < ω1 , even those essential Δ1

2(ξ), admit a straight Borel coding by (not
necessarily countable) codes in L. We’ll show now that such a coding can be chosen in a certain absolute way.

Remark 11.4 Suppose that ξ < ω1 and a set X ⊆ N is essential
(
Δ1

1/Δ1
2
)
(ξ), via an absolutely total Σ1

2
map h and formulas χ, χ′ as in Definition 9.4(2). Then the following is true in the ground universe V:

(a) if v, w ∈ WOξ and x ∈ N then

χ(x, h(v)) ⇐⇒ χ(x, h(w)) ⇐⇒ χ′(x, h(v)) ⇐⇒ χ′(x, h(w)).

If we eliminate h by a formula σ as in Definition 9.3 then (a) becomes a Π1
2 sentence. Therefore (a) is true in

any generic extension V[G] of V by Shoenfield, and moreover, in any generic extension L[G] of L such that
ξ < ω

L[G ]
1 . This allows us to unambiguously define extensions hV [G ] of h (a total map) and XV [G ] of X to

V[G], using the same formulas, so that XV [G ] is an essential
(
Δ1

1/Δ1
2
)
(ξ) set in V[G] still via hV [G ] , χ, χ′ .

Then, assuming ξ < ω
L[G ]
1 , we define associated restrictions hL[G ] = hV [G ] ∩L[G] and XL[G ] = XV [G ] ∩L[G]

to L[G], so that XL[G ] is an essential
(
Δ1

1/Δ1
2
)
(ξ) set in L[G] via hL[G ] , χ, χ′ as well.
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And if E is a Δ1
1 equivalence relation in V , then, even easier, we define an extension EV [G ] of E to V[G],

using the same formulas which define E, so that EV [G ] is a Δ1
1 equivalence relation in V[G] by Shoenfield, and

then define EL[G ]=EV [G ] ∩L[G] (a Δ1
1 equivalence relation in L[G] ).

Definition 11.5 Let ξ, ρ < ω1 . An essential
(
Δ1

1/Δ1
2
)
(ξ) set X ⊆ N absolutely belongs to [Kρ ] if there

is a code 〈T, d〉 ∈ Kρ such that we have XV [G ] = [T, d] in any set generic extension V[G] of the universe V .
Note that then by Shoenfield the equality XL[G ] = [T, d] also holds in any generic extension L[G] of L such
that ξ < ω

L[G ]
1 .

Lemma 11.6 Suppose that ξ < ω1 , ρ < ωL
1 , and a set X ⊆ N is essential

(
Δ1

1/Δ1
2
)
(ξ). Then X absolutely

belongs to [Kρ ].

P r o o f. Let a map f : ω
onto−→ ωL

ρ+1 be collapse generic over V , the ground set universe. Let XV [f ] ∈
V[f ] be the extension of X to V[f ], as above. Then XV [f ] is essential

(
Δ1

1/Δ1
2
)
(ξ) in V[f ], and hence by

Proposition 11.3 there is a code 〈T, d〉 ∈ Kρ such that XV [f ] = [T, d] in V[f ]. To prove, that this code witnesses
that X absolutely belongs to [Kρ ], consider any generic extension V[G]. It can be assumed that G is generic
even over V[f ].

Let XV [G ] , XV [f ,G ] be the extensions of X (a set in V ) to resp. V[G] , V[f,G] (cf. Remark 11.4). Then
〈T, d〉 is a countable Borel code in V[f ] and in V[f,G] by the choice of f . Therefore the equality XV [f ] = [T, d]
can be expressed by a Shoenfield-absolute formula. We conclude that XV [f ,G ] = [T, d] holds in V[f,G], too,
and then XV [G ] = [T, d] is true in V[G] as well since easily XV [G ] = XV [f ,G ] ∩ V[G] and [T, d]V [G ] =
[T, d]V [f ,G ] ∩ V[G].

12 The case of Σ1
2 sets: resolution of σ-classes

Here our goal will be to resolve σ-classes, as in the “or” option of (I) of Theorem 10.1, into countable unions of
single “L-definable” equivalence classes. We are going to prove the next theorem in this section.

Theorem 12.1 Assume that, in the ground set universe V ,

(A) ρ < ωL
1 , ξ < ω1 , E is an equivalence relation on N in Δ1

1 ∩ Π0
1+ρ , ∅ �= C ⊆ N is a σ-E-class and a

set essential
(
Δ1

1/Δ1
2
)
(ξ).

Then each E-class X ⊆ C is a set in [Kρ ].

Corollary 12.2 Suppose that, in Theorem 10.1, additionally, ρ < ωL
1 and each relation Fj belongs to Π0

1+ρ .
Then (I) of Theorem 10.1 can be reformulated as follows:

(I) A is L-{F1 , . . . ,Fn}-σ -bounded, in the sense that for each x ∈ A:

– either there is y ∈ N ∩ L such that x ≤∗ y ,

– or there is an index j = 1, . . . , n and a Fj -class X which contains x and belongs to [Kρ ].

The ordinal ωL
ρ as the measure of borelness in Definition 11.2 and subsequently in (I) of Corollary 12.2, is a

point of certain dissatisfaction. Can it be reduced to considerably narrower trees (of the same height)? Examples
given in [17] and more recently in [1] allow to conjecture that the value ωL

ρ cannot be reduced in any essential
way.

A similar question can be addressed to the inequality ωL
ρ+1 < ω1 in the next remark.

Remark 12.3 If ωL
ρ+1 < ω1 then both N ∩ L and Kρ are countable sets, and hence the number of points

y involved in (I) of Corollary 12.2 via the “either” option, and the number of classes X involved in (I) of
Corollary 12.2 via the “or” option is countable, too—so that condition (I) of Theorem 10.1 can be replaced by
just the {F1 , . . . ,Fn}-σ -boundedness of the set A.

We now move to the proof of Theorem 12.1.

P r o o f. Assume that ρ, ξ , E , C are as in (A) above. Then C is Σ0
1+ρ+1 , therefore by Lemma 11.6, we

conclude that that
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(B) there is a code 〈T0 , d0〉 ∈ Kρ+2 in V such that, in any set generic extension V[G] of V , [T0 , d0 ] =
CV [G ] , and hence by Shoenfield [T0 , d0 ] is a σ-EV [G ]-class in V[G] containing only those EV [G ]-classes
already presented in [T0 , d0 ]∩.

We begin the proof with a few definitions. If 〈T, d〉 and 〈T ′, d′〉 are codes in K then let 〈T, d〉 � 〈T ′, d′〉 mean
that [T, d] ⊆ [T ′, d′] holds in any set generic extension L[G] of L. Then, using appropriate collapse extensions,
we conclude by Shoenfield, that [T, d] ⊆ [T ′, d′] also holds in any set generic extension V[G] of the ground
universe V , including V itself. A code 〈T, d〉 ∈ K is “essentially non-empty” if [T, d] �= ∅ in at least one
set-generic extension of L. By Shoenfield, this is equivalent to [T, d] �= ∅ in some/any extension L[G] with
supT < ω

L[G ]
1 .

Definition 12.4 Let P ∈ L be the forcing notion which consists of all “essentially non-empty” codes 〈T, d〉 ∈
K such that 〈T, d〉 � 〈T0 , d0〉 and supT ≤ ωL

ρ+2 . We order P by �, and 〈T, d〉 � 〈T ′, d′〉 is understood as
〈T, d〉 being a stronger forcing condition.

In particular condition 〈T0 , d0〉 itself (cf. (A)) belongs to P.

Lemma 12.5 P forces a real over L, so that if a set G ⊆ P is generic over L then the intersection⋂
〈T ,d〉∈G [T, d] contains a single real in L[G].

P r o o f. If u ∈ ω<ω is a string of length n = lhu then let Tu =
{
Λ

}
and let du consist of all pairs 〈Λ, v〉

such that v ∈ ω<ω , v �= u, lh v = n. Then 〈Tu , du 〉 ∈ P and [Tu , du ] = Nu = {a ∈ N : u ⊂ a}. By the
genericity, for any n there is a inuque u = u[n] ∈ ω<ω such that lh u[n] = n and

〈
Tu [n ], du [n ]

〉
∈ G, and

in addition u[n] ⊂ u[m] whenever n < m. It follows that there is a real xG =
⋃

n u[n] ∈ L[G] such that
xG�n = u[n], and hence xG ∈

[
Tu [n ], du [n ]

]
, ∀n. We claim that if 〈T, d〉 ∈ P then 〈T, d〉 ∈ G iff xG ∈ [T, d]

in L[G]; this obviously proves the lemma.
We prove the claim by induction on the rank |T |. Suppose that |T | = 0, so that T =

{
Λ

}
, d ⊆

{
Λ

}
× ω<ω ,

and [T, d] = N \
⋃

v∈U Nv , where U =
{
v ∈ ω<ω : 〈Λ, v〉 ∈ d

}
. We assert that

(1) any 〈T ′, d′〉 ∈ P is compatible, in P, either with 〈T, d〉 or with one of the codes 〈T v , dv 〉, where v ∈ U —
therefore either 〈T, d〉 or one of the codes 〈T v , dv 〉, v ∈ U , belongs to G.

Indeed we have [T, d] = N \
⋃

v∈U [T v , dv ] in any universe.
With (1) in hands, if v ∈ U and 〈T v , dv 〉 ∈ G then on the one hand 〈T, d〉 �∈ G by (1), and on the other hand,

obviously v = u[n], where n = lh v , so that xG ∈ [T v , dv ] and xG �∈ [T, d]. Conversely, if there is no v ∈ U
with 〈T v , dv 〉 ∈ G then on the one hand 〈T, d〉 ∈ G by (1), and on the other hand, xG �∈

⋃
v∈U [T v , dv ], so that

xG ∈ [T, d].
To carry out the step, suppose that |T | > 0. Let Ξ = {ξ : 〈ξ〉 ∈ T} (where 〈ξ〉 is a one-term string). If ξ ∈ Ξ

then let

T ξ =
{
s ∈ Ord<ω : ξ�s ∈ T

}
and dξ = {〈s, v〉〈ξ�s, v〉 ∈ d}.

Thus each 〈T ξ , dξ 〉 is a code in P, |T ξ | < |T |, and [T, d] = N \
⋃

ξ∈Ξ[T ξ , dξ ] in any universe containing
〈T, d〉. Similarly to (1) above, we have

(2) any 〈T ′, d′〉 ∈ P is compatible, in P, either with 〈T, d〉 or with one of the codes 〈T ξ , dξ 〉, where ξ ∈ Ξ—
therefore either 〈T, d〉 or one of the codes 〈T ξ , dξ 〉, ξ ∈ Ξ, belongs to G.

Now, if ξ ∈ Ξ and 〈T ξ , dξ 〉 ∈ G then on the one hand 〈T, d〉 �∈ G by (2), and on the other hand, xG ∈ [T ξ , dξ ]
by the inductive hypothesis, and hence xG �∈ [T, d]. Conversely, if there is no ξ ∈ Ξ with 〈T ξ , dξ 〉 ∈ G then on
the one hand 〈T, d〉 ∈ G by (2), and on the other hand, xG �∈

⋃
ξ∈Ξ[T ξ , dξ ], by the inductive hypothesis, so that

xG ∈ [T, d].

Reals of the form xG = the only element of
⋂

〈T ,d〉∈G [T, d] in L[G], where G ⊆ P is P-generic, e.g., over
V , will be called P-generic over V , too. Let x be a canonical P-name for xG . Let xleft , xright be canonical
(P× P)-names for the left and the right copies of xG .

Let E be a canonical P-name for the extension EV [G ] or EL[G ] of E to any class like L[G] or V[G], G being
generic.

www.mlq-journal.org c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



164 Vladimir Kanovei and Vassily Lyubetsky: On effective σ -boundedness and σ -compactness

Definition 12.6 A code 〈T, d〉 ∈ P is stable if condition (〈T, d〉 ; 〈T, d〉) (P× P)-forces, over L, that xleft E
xright .

Lemma 12.7 If 〈T, d〉 ∈ P is stable then, in V , there is an element y ∈ C such that 〈T, d〉 P-forces, over
V , that x E y .

P r o o f. Recall that C contains countably many single E-classes in V . It easily follows by Shoenfield that the
extended set CV [G ] has no new EV [G ]-classes in any extension V[G] of V . Thus the contrary assumption leads
to a pair of conditions 〈T ′, d′〉 � 〈T, d〉 and 〈T ′′, d′′〉 � 〈T, d〉 in P and elements y′, y′′ ∈ C in V such that

〈T ′, d′〉 P-forces x E y′, and 〈T ′′, d′′〉 P-forces x E y′′ — over V,

and y′ �E y′′ . To get a contradiction consider a set G′ × G′′ , (P× P)-generic over V , and containing condition
(〈T ′, d′〉 ; 〈T ′′, d′′〉). Then, on the one hand, the generic reals xG ′ and xG ′′ satisfy xG ′ EV [G ′] y′ and xG ′′ EV [G ′]

y′′ , but on the other hand, xG ′ EV [G ′,G ′′] xG ′′ holds by stability. Therefore y′ E y′′ , which contradicts to the
choice of these reals.

Lemma 12.8 The set of all stable conditions 〈T, d〉 ∈ P is dense in P.

P r o o f. By definition cardP = ωL
ρ+3 and cardP(P) = ωL

ρ+4 in L. Consider an extension V[g] by a

collapse-generic map g : ω
onto−→ ωL

ρ+4 . Then, in V[g], there is an enumeration {Dn}n<ω of all dense sets
D ⊆ P× P , D ∈ L.

Now suppose towards the contrary that 〈T ∗, d∗〉 ∈ P and there is no stable 〈T, d〉 � 〈T ∗, d∗〉 in P. Then
for any condition 〈T, d〉 � 〈T ∗, d∗〉 there are stronger conditions 〈T ′, d′〉 � 〈T, d〉 and 〈T ′′, d′′〉 � 〈T, d〉
such that (〈T ′, d′〉 ; 〈T ′′, d′′〉) (P× P)-forces ¬ xleft E xright over L. This allows to define, in V[g], a family
{〈Tu , du 〉}u∈2< ω of conditions in P satisfying

(i) 〈Tu , du 〉 = 〈T ∗, d∗〉,
(ii) 〈Tu�i , du�i〉 � 〈Tu , du 〉 for each i = 0, 1 and u ∈ ω<ω ,

(iii) if u �= v in 2<ω are of length n + 1 then (〈Tu , du 〉 ; 〈Tv , dv 〉) ∈ Dn ,
(iv) if u ∈ 2<ω then condition (〈Tu�0 , du�0〉 ; Tu�1 , du�1) (P× P)-forces ¬ xleft E xright over L.

Then, in V[g], if a ∈ 2ω then the intersection
⋂

n [Ta�n , da�n ] contains a single point xa ∈ [T ∗, d∗] by
Lemma 12.5, and we have ¬ (xa EV [g ] xb) for all a �= b. But by construction [T ∗, d∗]V [g ] ⊆ [T0 , d0 ]V [g ] =
CV [g ] , so that CV [g ] contains uncountably many EV [g ]-classes in V[g]. Yet this contradicts the assumption that
C contains countably many E-classes in V (cf. the list of our blanket assumptions (A) above), since by Shoenfield
the property of being a σ-E-class is preserved under extensions.

Let H be the set of all codes 〈T, d〉 ∈ Kρ such that the ωL
ρ+4-collapse forcing notion Coll

(
ωL

ρ+4
)

=
(
ωL

ρ+4
)
<ω

forces, over L, that

[T, d] ⊆ [T0 , d0 ] and [T, d] is an E - equivalence class,

where g is a canonical name for the Coll
(
ωL

ρ+4
)
-generic map g : ω

onto−→ ωL
ρ+4 .

Lemma 12.9 If 〈T, d〉 ∈ H then it is true in the ground set universe V that [T, d] ⊆ [T0 , d0 ] and [T, d] is a
E-class.

P r o o f. By definition this is true for Coll
(
ωL

ρ+4
)
-generic extensions of L—hence by Shoenfield also for all

generic extensions V[G] in which ωL
ρ+4 is countable, and then, by quite obvious downward absoluteness, for the

universe V itself.

Lemma 12.10 H �= ∅.

P r o o f. By Lemma 12.10 there is a stable condition 〈T ′, d′〉 ∈ P. Using an ωL
ρ+4-enumeration of all dense

sets D ⊆ P in L, we easily get a code 〈T ∗, d∗〉 ∈ K such that supT ∗ ≤ ωL
ρ+4 and the equality

[T ∗, d∗] =
{
x ∈ [T ′, d′] : x is P-generic over L

}
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holds in any class V[G]. Lemma 12.7 implies that all elements x ∈ [T ∗, d∗] in V[G] are EV [G ]-equivalent to
each other and to some y∗ ∈ C (so y∗ ∈ V ).

Let g : ω
onto−→ ωL

ρ+4 be a collapse-generic map.
We argue in V[g]. By a simple cardinality argument, [T ∗, d∗] �= ∅ in V[g], and [T ∗, d∗] consists of pairwise

EV [g ]-equivalent elements by the above. This allows us to define

Z =
{
z : ∃x ∈ [T ∗, d∗] (x EV [g ] z)

}
=

{
z : ∀x ∈ [T ∗, d∗]

(
x EV [g ] z

)}

in the universe V[g], so that it is true in V[g] that Z is an entire EV [g ]-equivalence class, which includes [T ∗, d∗],
hence, has a non-empty intersection with [T ′, d′] ⊆ [T0 , d0 ], therefore Z ⊆ [T0 , d0 ] as [T0 , d0 ] is an σ-EV [g ]-
class in V[g] by (A).

It follows that Z is Π0
1+ρ in V[g]. Moreover, by the choice of g it is true in V[g] that 〈T ∗, d∗〉 ∈ L∩HC, and

hence 〈T ∗, d∗〉 is ΔHC
1 (η) in V[g] for an ordinal η < ω

V [g ]
1 . (Indeed let η be the first ordinal such that 〈T ∗, d∗〉

is the η-th set in the Gödel construction of L.) Then Z is ΔHC
1 (η) in V[g]. Therefore by Proposition 11.3 that

there is a code 〈T, d〉 ∈ Kρ such that Z = [T, d] in V[g]. Let us demonstrate that 〈T, d〉 ∈ H .

Consider a collapse-generic map g′ : ω
onto−→ ωL

ρ+4 ; we can assume that g′ is Coll
(
ωL

ρ+4
)
-generic even over

V[g]. We have to prove that

(A) in L[g′] : [T, d] ⊆ [T0 , d0 ] and [T, d] is an EL[g ′]-equivalence class.

Recall that by construction Z = [T, d] ⊆ [T0 , d0 ] and [T, d] is an EV [g ]-class in V[g]. But the Borel codes
involved are countable in both classes V[g] and L[g′]. This implies (A) by Shoenfield.

Now we have gathered everything necessary to end the proof of the theorem in a few lines. It suffices to prove
that C = [T0 , d0 ] ⊆

⋃
〈T ,d〉∈H [T, d] in V . Suppose tovards the contrary that this is not the case.

The set H ⊆ Kρ belongs to L and card H ≤ ωL
ρ+1 in L, of course. As 〈T0 , d0〉 ∈ Kρ+2 , we cal easily define

a code 〈T1 , d1〉 ∈ Kρ+2 such that absolutely [T1 , d1 ] = [T0 , d0 ] \
⋃

〈T ,d〉∈H [T, d], and hence [T1 , d1 ] �= ∅ in
V , and still [T1 , d1 ] is a σ-E-class in V since so is C = [T0 , d0 ] while each [T, d] , 〈T, d〉 ∈ H , is a E-class by
Lemma 12.9.
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