V. G. Kanovei UDC 517.11 Let \mathfrak{M} be a fixed countable standard transitive model of ZF+V=L. We consider the structure Mod of degrees of constructibility of real numbers x with respect to \mathfrak{M} such that $\mathfrak{M}(x)$ is a model. An initial segment $Q\subseteq M$ od is called realizable if some extension of \mathfrak{M} with the same ordinals contains exclusively the degrees of constructibility of real numbers from Q (and is a model of ZFC). We prove the following: if Q is a realizable initial segment, then $$[y \in Q \rightarrow y < x]] \& \forall z \exists y [z < x \rightarrow y \in Q \& \sim [y < z]]].$$ Introduction. Let L be a countable standard transitive (c.s.t.) model of ZFC, $\mathfrak{M} \models V = L$. For $x \subseteq \omega_0$ we define L(x) as the constructive closure of L $\bigcup \{x\}$ with respect to the ordinals of L (see [1]). Let $\operatorname{Mod}^0 = \{x \mid L(x) \text{ be a model of } ZFC \& x \subseteq \omega_0\}$. Let us introduce a partial order on Mod^0 by $x \leq y \equiv x \in L(y)$, and an equivalence: $$x \approx y \equiv x \leqslant y \& y \leqslant x$$. Let Mod be the factorization; $[x] = \{y \mid y \approx x\}$; $[x] \leqslant [y] \equiv x \leqslant y$; $\text{Mod} = \{[x] \mid x \in \text{Mod}^0\}$. Let Q be an initial segment of Mod. We call Q a realizable segment if $\exists \mathfrak{M} \ [L \subseteq \mathfrak{M} \& \mathfrak{M} \ \text{is a c.s.t.}$ model of $ZFC \& On^{\mathfrak{M}} = On^L \& Vx \ [x \in \mathfrak{M} \& x \subseteq \omega_0 \rightarrow [x] \in Q] \& Vx \ [\{x\} \in Q \rightarrow x \in \mathfrak{M}\}].$ It is trivial to prove that if Q is a realizable initial segment of Mod, then it is bound by a $[x] \in Mod$. In this paper we investigate the question of the existence of the smallest bound and in particular prove the following theorem. THEOREM A. Let Q be a realizable initial segment of Mod. Then there exists [x] \in Mod such that $$\begin{array}{c} \operatorname{V}_y[[y] \oplus Q \to [y] \leqslant [x]] \& \operatorname{V}_z \exists y[[z] \leqslant [x] \& [z] \neq [x] \to \\ \to [y] \oplus Q \& \sim [[y] \leqslant [z]]]. \end{array}$$ To prove this theorem we prove the following auxiliary theorem. THEOREM B. Let \mathfrak{M} be a c.s.t. model of ZFC of the form L(X), where $X \subseteq \mathfrak{M}$, $X \subseteq \omega_1^{\mathfrak{M}}$. Then we find $\mathbf{x} \subseteq \omega_0$ such that $\mathfrak{M}(x)$ is a model of ZFC, $$L(x) = \mathfrak{M}(x)$$ and $\forall y [y \in (\mathfrak{M}(x) - \mathfrak{M}) \& y \subseteq \omega_0 \rightarrow x \in \mathfrak{M}(y)]$. The last theorem is obviously an extension of a result of Sacks [2] on minimal degrees (the extension concerns $L(x) = \mathfrak{M}(x)$). We outline how Theorem B implies Theorem A. Let Q be a realizable initial segment of Mod. This me ans that there is a model \mathfrak{N}° . $$\mathfrak{N}^{0} \models ZFC, \text{ On}^{L} = \text{On}^{\mathfrak{N}^{0}}, \text{ V}x [x \in \mathfrak{N}^{0} \& x \subseteq \omega_{0} \to [x] \in Q],$$ $$\text{V}x [[x] \in Q \to x \in \mathfrak{N}^{0}].$$ M. V. Lomonosov Moscow State University. Translated from Matematicheskie Zametki, Vol. 17, No. 6, pp. 939-946, June, 1975. Original article submitted January 15, 1974. ^{© 1975} Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00. Since $\mathfrak{N}^0 \models ZFC$, in \mathfrak{N}^0 there exists a total ordering of $S(\omega_0) \cap \mathfrak{N}^0$ of the type $\exp^{\mathfrak{N}^0}(\omega_0)$ (notation: $S(u) = \{x \mid x \subseteq u\}$, $\exp(u) = \operatorname{card}(S(u))$, assuming the axiom of choice). Let $X = \{\langle x_z, \alpha \rangle \mid \alpha \in \exp^{\mathfrak{N}^0}(\omega_0)\}$ be such an ordering. We consider $\mathfrak{N} = L(X)$. It is easy to see that $X \in \mathfrak{N}$, $\mathfrak{N} \models ZFC$. $\forall x \mid x \in \mathfrak{N} \cap S(\omega_0) \to [x] \in Q$, $\forall x \mid [x] \in Q \to x \in \mathfrak{N}$. It is also easy to see that if we take a generic extension \mathfrak{M} of \mathfrak{N} by collapsing $\exp^{\mathfrak{N}}(\omega_0)$ onto $\omega_1^{\mathfrak{N}}$ (taking as forcing conditions the functions $f: D \to \exp^{\mathfrak{N}}(\omega_0)$, where D is an arbitrary countable subset of $\omega_1^{\mathfrak{N}}$ and, naturally, $f \in \mathfrak{N}$) then \mathfrak{M} will have the same properties as \mathfrak{N} , and, moreover, it will satisfy the assumption of Theorem B. Obviously, if $x \in \omega_0$ is as in Theorem B, then [x] satisfies the condition of Theorem A. Let us therefore consider B. If \mathfrak{M} satisfies the conditions of Theorem B, then we can easily find in \mathfrak{M} a set $X = \{\langle \alpha, x_{\alpha}^{x} \rangle \mid \alpha \in \omega_{1}^{\mathfrak{M}} \}$ such that $\nabla \alpha [\alpha \in \omega_{1}^{\mathfrak{M}} \to x_{\alpha} \subseteq \omega_{0}]$, $\mathfrak{M} = L(X)$, $\nabla \alpha [\alpha \in \omega_{1}^{\mathfrak{M}} \to \alpha \text{ is countable in } L(x_{\alpha})]$ and $\nabla \alpha [\alpha \in \omega_{1}^{\mathfrak{M}} \to \alpha \in \mathbb{N}]$ such that $\nabla \alpha [\alpha \in \omega_{1}^{\mathfrak{M}} \to \alpha \in \mathbb{N}]$. We also assume that $\nabla \alpha [\alpha \in \mathfrak{M} \cap S(\omega_{0}) \to \mathfrak{M} \neq L(\alpha)]$, for otherwise the theorem could be proved using the method of [2] by choosing a generic $\alpha \subseteq \omega_{0}$ (with respect to the perfect forcing of $\mathfrak{M} = L(\alpha)$) such that $\nabla \alpha [\alpha \in \mathbb{N}]$. In this case we can obviously assume that $$\forall \alpha \ [\alpha \in \omega_1^{\mathfrak{M}} \to x_\alpha \notin L \ (\{\langle \beta, x_3 \rangle \mid \beta \in \alpha\})].$$ Throughout §§ 1-5 it is supposed that $\mathfrak{M} = L(X)$ satisfies the above mentioned conditions # § 1. Basic Notation - 1.1. Let for $\lambda \equiv \omega_1^{\mathfrak{M}} \ \mathfrak{M}_{\lambda} = \mathfrak{M} \left(\left\{ \left\langle \alpha, x_{\alpha} \right\rangle \middle| \alpha \equiv \lambda \right\} \right)$, and let $\leq (\lambda)$ be a canonical total order on \mathfrak{M}_{λ} . The collection $\left\{ \leqslant (\lambda) \middle| \lambda \equiv \omega_1^{\mathfrak{M}} \right\}$ can be chosen in such a way that $\lambda \leqslant \mu \to \leqslant (\lambda)$ agrees on \mathfrak{M}_{λ} with the induced $\leq (\mu)$. Let $\theta_{\lambda} = \exp^{\mathfrak{M}_{\lambda}} (\omega_0)$. We assume that $\leq (\lambda)$ orders $\mathfrak{M}_{\lambda} \cap S (\omega_0)$ into the type θ_{λ} . For $x \in \mathfrak{M}_{\lambda}$, we denote by $N_{\lambda}(x)$ the index of x in the sense $\leq (\lambda)$ and for $x \in \mathfrak{M}_{\omega_1} \setminus \lambda(x) = \inf \left\{ \lambda \middle| x \in \mathfrak{M}_{\lambda} \right\}$. - 1.2. Let F_X be some effective coding of closed subsets $S(\omega_0)$ by real numbers so that ϕ is the code of ϕ and ω_0 is the code of $S(\omega_0)$. We will write $x \leqslant_{Fy} \equiv F_y \subseteq F_x$, $x \leqslant_{Fy} y \equiv F_y \subseteq F_x & F_y$ is nowhere dense in F_X ; $x \land y$ is the code of $F_X \cap F_y$; $x \lor y$ is the code of $F_X \vee F_y$; $\ell(x)$ is the length of the smallest segment in $S(\omega_0)$ which completely contains F_X . - If $f: K \to S(\omega_0)$, then $\bigwedge_{i \in K} f(i)$ will denote the code of $\bigcap_{i \in K} F_{f(i)}$ and $\bigvee_{i \in K} f(i)$ will denote the code of $\bigcup_{i \in K} F_{f(i)}$ (provided the set is closed). - 1.3. Let $Z \subseteq S$ $(\omega_0) \cap \mathfrak{M}$. Z will be called λ -weakly homogeneous if $\forall x \lor \mu \exists y \ [x \in Z \& \mu \in \lambda \to \lambda \ (y) \geqslant \mu \& y \geqslant_{FBX} \& y \in Z \& F_x$ is perfect. Let $Y \subseteq S(\omega_0) \cap \mathfrak{M}_{\lambda}$ be λ -weakly homogeneous. The collection $S = \{\langle i, m, S_m^i \rangle \mid m \in \omega_0 \& i \in 2\}$ is called λ Y-collection if - (i) $\nabla m \nabla i [S_m^i \subseteq Y]$: - (ii) $\forall m \forall i \forall x \forall y \ [x \in S_m^i \& y \in Y \& y \geqslant_F x \rightarrow y \in S_m^i];$ - (iii) $\forall m \forall x \forall i \forall y \ [x \in S_m^i \& y \in S_m^i \to x \setminus y \in S_m^i];$ - (iv) $\forall m \forall x \exists i \exists y \ [x \in Y \rightarrow y \Rightarrow_{FB} x \& y \in S_m^i];$ - (v) $Vm [S_m^0 \cap S_m^1 = \phi]$: - (vi) $\forall x \forall y \exists n \exists u \exists x [x \in Y \& y \in Y \rightarrow u \geqslant_{FB} x \& x \geqslant_{FB} y \& u \in S_m^0 \& v \in S_m^1]$. #### § 2. The Successor Case - 2.1. Let $Y \subseteq S(\omega_0) \cap \mathfrak{M}_{\lambda+1}$ be $(\lambda+1)$ -weakly homogeneous, $S \in \mathfrak{M}_{\lambda+1}$ be a $(\lambda+1)$ Z-collection, and $z \in Y$. We define on $S(\omega_0)$ a function $H_{\lambda+1,S,Z}(x) = y$ as follows: - (i) if $x \notin F_z$, we consider y undefined, otherwise we put $z = z_0$; - (ii) we put $\langle \overline{t}, \overline{u} \rangle = \min_{\leqslant (l+1)} \{ \langle t, u \rangle \mid t \wedge u = \phi \& t \wedge u \geqslant_{FB} z_0 \& l (u) + l (t) \leqslant (l/2) l (z_0) \& \exists m \ [t \in S_m^0 \& u \in S_m^1] \}.$ $$\langle \overline{t}, \overline{u} \rangle = \min_{\leqslant (t+1)} \left\{ \langle t, u \rangle \mid t \wedge u = \phi \& t \vee u \geqslant_{FB} z_0 \& l (u) + l (t) \leqslant \right.$$ $$\leqslant (l/2) l (z_0) \& \exists m [t \in S_m^0 \& u \in S_m^1] \& x \in F_u \cup F_l \};$$ - (iii) if $\langle \overline{t}, \overline{u} \rangle$ or $\langle \overline{t}, \overline{u} \rangle$ is undefined, we consider y undefined. Otherwise, if $\langle \overline{t}, \overline{u} \rangle = \langle \overline{t}, \overline{u} \rangle$ it is assumed that $0 \in y$; but if $\langle \overline{t}, \overline{u} \rangle \neq \langle \overline{t}, \overline{u} \rangle$, then $0 \notin y$. We put $z_1 = \overline{u}$ or $z_1 = \overline{t}$ depending on whether $x \in F_{\overline{u}}$ or x∈F;. - (iv) is the same as (ii) but for the substitution of z_0 by z_1 , and we recognize $1 \in y$, etc. <u>LEMMA 2.2.</u> Let λ , Z, Y, and S be as in 2.1. Then $\mathfrak{M}_{\lambda+2} \models \exists x \forall y \ [x \subseteq \omega_0 \& F_x \text{ is perfect } \& [y \in F_x \rightarrow$ $\rightarrow H_{\lambda+1, S, z}(y) = x_{\lambda+1}$]. The proof is accomplished in $\mathfrak{M}_{\lambda+2}$. Let $E=2^{\langle\omega_0\rangle}$, and for $t\in E$ let h(t)=D(t) be the domain of definition of t; $h(t) \in \omega_0$. Let $\phi \in E$, $$h(\phi) = 0; \langle 0 \rangle \in E, \langle 1 \rangle \in E, h(\langle 0 \rangle) = h(\langle 1 \rangle) = 1.$$ For $u, t \in E$, we let $ut \in E$ be such that $$h(ut) = h(u) + h(t);$$ $k < h(u) \rightarrow ut(k) = u(k);$ $k < h(t) \rightarrow ut(h(u) + k) = t(k).$ We define $u \le t$ if $\exists v [v \in E \& uv = t]$. Let $f: E \rightarrow Y$ be a function such that - (i) $s \leqslant t \rightarrow f(s) \leqslant_{FB} f(t)$, $l(f(s)) \leqslant 1/2^{h(s)}$, $f(\phi) = z$; - (ii) $f(s\langle 0\rangle) \wedge f(s\langle 1\rangle) = \phi$; - (iii) if $h(s) \in x_{t+1}$, then $\langle f(s\langle 0\rangle), f(s\langle 1\rangle) \rangle = \min_{\leq (\lambda+1)} \{\langle t, u \rangle \mid F_t \text{ and } F_u'\text{ is are perfect & } (t \vee u) \geqslant_{FB} f(s) & \text{ is } f(s) = \sum_{t=1}^{n} f(s)$ - $\exists m \mid t \in S_m^0 \& u \in S_m^1 \mid \& l(u) + l(t) \leqslant (\frac{1}{2})l(f(s)) \rbrace = \langle \overline{t}, \overline{u} \rangle;$ $\text{(iv) if } h(s) \notin x_{k+1}, \text{ then } \langle f(s \langle 0 \rangle), f(s \langle 1 \rangle) \rangle = \min_{\leqslant (\lambda+1)} \{ \langle t, u \rangle \mid t \bigvee u \geqslant_{FB} f(s) \& \exists m \mid t \in S_m^0 \& u \in S_m^1 \mid \& F_t \text{ and } F_u\text{'s are perfect } \& (t \bigvee u) \land (\overline{t} \bigvee \overline{u}) = \phi \& l(u) + l(t) \leqslant (\frac{1}{2}) l(f(s)) \}.$ We consider $x = \bigwedge_{y \in a, h(s) = n} f(s)$. It is easy to see that F_X is perfect (the proof is analogous to [3]) and the equality $H_{\lambda+1, S, z}(y) = x_{\lambda+1}$ for every $y \in F_X$ follows from the definitions of F_X and the function H. A function f of such a kind can be easily constructed by taking into account the weak homogeneity of Y and the properties of S. The lemma is proved. We note that because of the properties of $X = \{\langle \alpha, x_{\alpha} \rangle \mid \alpha \in \omega_1^{\mathbb{R}} \}$ the constructed x may not be in $\mathfrak{M}_{\lambda+1}$, for if we took in $\mathfrak{M}_{\lambda+1}$ a $y \in F_X$, then we could construct $x_{\lambda+1} = H_{\lambda+1, S, z}$ (y) in $\mathfrak{M}_{\lambda+1}$, and that is not possible since $x_{\lambda+1} \not \subset \mathfrak{M}_{\lambda+1}$. The smallest x, in the sense $\leq (\lambda + 2)$, constructed as in 2.2, will be denoted by $x = W(\lambda + 1, S, z)$. ### § 3. The Limit Case 3.1. Let λ be a limit, $Y \subseteq S(\omega_0) \cap \mathfrak{M}_{\lambda}$ be λ -weakly homogeneous, $S \subseteq \mathfrak{M}_{\lambda}$ be a λ Y-collection, and z € Y. We define $H_{\lambda, S, Z}(x)$ analogously to 2.1 (except that $\min_{s(\lambda+1)}$ changes to $\min_{s(\lambda)}$). <u>LEMMA 3.2.</u> Let $\lambda \in \omega_1^{\mathfrak{M}}$ be a limit, and Z, Y, and S be as in 3.1. Then $\mathfrak{M}_{\lambda+1} \models \exists x \ \forall y \ \forall \mu \ [x \subseteq \omega_0 \& F_x \text{ is perfect } \& [y \in F_x \to H_{\lambda, S, z} \ (y) = x_{\lambda}] \& [\mu < \lambda \to \exists x' \ [x' \in \mathfrak{M}_{\lambda} \& \lambda \ (x') \geqslant \mu \& x \geqslant_{FBX'}]]].$ <u>Proof (in $\mathfrak{R}_{\lambda+1}$).</u> For the proof it is enough to construct a function $f: E \to Y$ satisfying 2.2, (i) to (iv) (changing $\min_{\leqslant (\lambda+1)}$ to $\min_{\leqslant (\lambda)}$), and adding one more condition as follows: (v) There is an increasing function $\mu: \omega_0 \to \lambda$ such that $\sup_{s \to 0} \mu(n) = \lambda$ and $\forall s [s \in E \to \lambda (f(s)) \geqslant 0]$ μ (h (s))]. The condition (v) is needed to secure the additional conditions on x. We finish the proof as in 2.2. Let $x = W(\lambda, S, z)$ be the smallest $x \in \mathfrak{M}_{\lambda+1}$ in the sense $\leq (\lambda+1)$ which can be constructed as in Lemma 3.2. Again we note $x \not\equiv \mathfrak{M}_{\lambda+1}$. 3.3. We assume that if $S_1 \neq S_2$, $z_1 \neq z_2$, then $F_{W(\lambda,S_1,z_1)} \cap F_{W(\lambda,S_2,z_2)} = \emptyset$ (for an arbitrary $\lambda \in \omega_1$). ### § 4. Proof of Theorem B In \mathfrak{M} we construct a collection of sets $\{Z_{\alpha} \mid \alpha \in \mathfrak{O}_{1}^{\mathfrak{M}}\}$, satisfying the following conditions: - (i) $Z_x \subseteq S(\omega_0)$, $Z_x \in \mathfrak{M}_x$ α -weakly homogeneous; - (ii) $Z_{\alpha} \subseteq Z_{\alpha+1}, Z_{\alpha+1} Z_{\alpha} \neq \phi;$ - (iii) $\alpha < \beta \& x \in Z_{\beta} \& \lambda(x) = \beta \rightarrow \exists y \ [y \in Z_{\alpha} \& x \geqslant_{FB} y \& \lambda(y) = \alpha];$ - (iv) if Z_{λ} is defined, we put $\overline{Z}_{\lambda} = \{W(\lambda, S, z) \mid \exists Y[Y \equiv Z_{\lambda}^{*} \mid \lambda\text{-weakly homogeneous, } \& Y \equiv \mathfrak{M}_{\lambda} \& S \text{ is } \lambda Y\text{-collection } \& z \equiv Y_{\lambda}^{*}, \text{ and } Z_{\lambda-1} = Z_{\lambda} \cup \{y \mid F_{y} \text{ is perfect } \& \exists x \mid x \in \overline{Z}_{\lambda} \& y \geqslant_{F}x \mid \& y \equiv \mathfrak{M}_{\lambda+1} \}$, where $Z_{\lambda}^{*} = Z_{\lambda}$ if λ is a limit and $Z_{\lambda}^{*} = Z_{\lambda} Z_{\beta}$ for $\lambda = \beta + 1$. - (v) $\alpha < \beta < \omega_1^{\mathfrak{M}} \otimes x \in Z_{\alpha} \to \exists y \ [y \in Z_3 \& \lambda(y) = \beta \& y \geqslant_{FB}x];$ - (vi) for limit λ 's, $Z_{\lambda} = \bigcup_{\alpha \in \lambda} Z_{\alpha}$; - (vii) $Z_0 = \mathfrak{M}_0 \cap S(\omega_0) = L \cap S(\omega_0)$. It is easy to see that the points (vii), (vi), and (iv) define the construction of Z_{α} while all the other points will be preserved (this follows from Lemmas 2.2, 3.2, and the definition of $W(\lambda, S, z)$). It is also obvious that $\{\langle Z_x,\alpha\rangle\mid\alpha\in\lambda\}$ $\in\mathfrak{M}_\lambda$. We put $P=\bigcup\limits_{\alpha\in\omega_1}Z_\alpha$. # § 5. Properties of the Forcing Conditions 5.1. Let $G \subseteq P$ be a \mathfrak{M} -generic filter on P. Obviously G defines a unique real number $a = a_G = \bigcap_{x \in G} F_x$ and is determined by it: $G = G_a = \{x \mid x \in P \ \& \ a \in F_x\}$. Let $G \subseteq P$ be an \mathfrak{M} -generic filter on P. #### LEMMA 5.2. $$\{\langle \alpha, x_{\alpha} \rangle \mid \alpha \in \omega_1^{\mathfrak{M}}\} \in L(a_G).$$ <u>Proof.</u> We show that $x_0 \in L(a_G)$. Indeed $Z_0 \in L$ and $a_G \in F_X$ for some $x \in \overline{Z_0}$ [this follows from 4.1 (iii), (iv), (v), and (vii)]. It means that $x_0 = H_{0SZ}(a_G)$ for some $S, z \in \mathfrak{M}_0$, i.e., $S, z \in L$. Therefore, H_{0SZ} is defined in L and $x_0 \in L(a_G)$. Let us assume that $$\{\langle \alpha, x_{\alpha} \rangle \mid \alpha \in \lambda\} \in L(a_G).$$ Then we can similarly construct $x_{\lambda} = H_{\lambda}S_{Z}(a_{G})$, and we have $x_{\lambda} \in L(a_{G})$. It is clear that all the x_{α} 's can be effectively reconstructed from a_G and L (we know that the Z_{α} 's were constructed effectively). The lemma is proved. <u>LEMMA 5.3.</u> For some \mathfrak{M} -generic $G \subseteq P$, a_G is minimal over \mathfrak{M} . Proof. Let (in \mathfrak{M} , $c \in V^{(P)}$ and $p \in P$, where $$d \models \&c \in \check{\omega}_0 \& c \notin \mathfrak{M} \& a_G \notin \mathfrak{M} (c)$$ ». Clearly, we can assume that $p = \omega_0$ (for $S(\omega_0)$). We define $$S_m^0 = \{ p \mid p \in P \& p \mid \vdash \langle \check{m} \notin c \rangle \}$$ and $$S_m^1 = \{ p \mid p \in P \& p \mid \vdash \langle \check{m} \in c \rangle \}.$$ It is easy to see that $S = \{\langle i, m, S_m^i \rangle \mid m \in \omega_0 \& i \in 2\}$ satisfies 1.3 (i) to (vi) by changing Y to P. Because of the condition on $\mathfrak R$, we have $S \in \mathfrak R_{\omega_1} = \mathfrak R$,. Therefore, we can construct by the Skolem-Löwenheim method a limit $\lambda \in \omega_1^{\mathfrak{M}}$ and $Y \subseteq Z_{\lambda}$ such that $Y \in \mathfrak{M}_{\lambda}$, and Y is λ -weakly homogeneous; $S_m^i(\lambda) = \{p \mid p \in S_m^i \cap \mathfrak{M}_{\lambda}\} \in \mathfrak{M}_{\lambda}$; $S(\lambda) = \{\langle i, m, S_m^i(\lambda) \rangle \mid m \in \omega_0 \& i \in z\}$ is a λY -collection. We consider $x = W(\lambda, S(\lambda), \omega_0) \in \mathfrak{M}_{\lambda+1} \cap P$. As in [3] or [2] it is not difficult to prove that $x \models \neg (a_G \in L(c, \check{x}, S(\check{\lambda})))$, "i.e., $x \models \neg (a_G \in \mathfrak{M}(c))$, which contradicts our assumption. The lemma is proved. From Lemmas 5.2 and 5.3 Theorem B follows immediately. Theorem B and similar theorems are given in [4]. ## LITERATURE CITED - 1. R. B. Jensen, "Models of set theory," Lecture Notes in Mathematics, Vol. 37, Springer-Verlag, Berlin (1967). - 2. G. E. Sacks, "Forcing with perfect closed sets," Proceedings Symp. in Pure Math., 13, No. 1, 331-357 (1971). - 3. R. B. Jensen, "Definable set of minimal degree," Mathematical Logic and Foundations of Set Theory, North-Holland, Amsterdam (1968), pp. 122-128. - 4. V. G. Kanovei, "Definability using degrees of Constructibility," Third National Conference on Mathematical Logic, Novosibirsk [in Russian], Izd. Akad. Nauk SSSR (1974), pp. 92-94.