ON INITIAL SEGMENTS OF DEGREES OF CONSTRUCTIBILITY

V. G. Kanovei UDC 517.11

Let » be a fixed countable standard transitive model of ZF+ V = L. We consider the struc-
ture Mod of degrees of constructibility of real numbers x with respect to % such that »
is a model. An initial segment Q@ < Mod is called realizable if some extension of = with the
same ordinals contains exclusively the degrees of constructibility of real numbers from Q
(and is a model of ZFC). We prove the following: if Q is a realizable initial segment, then

WEQ—y<allévrgulz <=y Q& ~ [y <<=l

Introduction. Let L be a countable standard transitive (c.s.t.) model of ZFC, M=V =L. For xc
wy we define L(x) as the constructive closure of L {j {x} with respect to the ordinals of L (see [1]). Let
Mod® = {x| L(x) be a model of ZFC & 2 < w,).

Let us introduce a partial order on Mod® by <Xy = x & L (y), and an equivalence:
r=y=axXy&y=<r

Let Mod be the factorization; lu] =~ {y |y = z}; [z} Lyl =2 <y Mod = {lr]]r = Mod®}.

Let Q be an injtial segment of Mod. We call Q a realizable segment if dM [L <= M &M is a c.s.t.
model of ZFC& On® = Ont &Vrlr = M& 2 < 0, t] = Q1 & Vz [lz] & @ — 2 = M.

It is trivial to prove that if Q is a realizable initial segment of Mod, then it is bound by a [x] € Mod.
In this paper we investigate the question of the existence of the smallest bound and in particular prove the
following theorem.

THEOREM A. Let Q be a realizable initial segment of Mod. Then there exists [x] € Mod such that

Yy llyl = @ -~ y) = Tol) & Valy Uzl < 1) & [z2] 5= [e] —
— [yl ez Q0 & ~ Iyl < (=],

To prove this theorem we prove the following auxiliary theorem.
THEOREM B. Let # be a c.s.t. model of ZFC of the form L(X), where X = M, X € o). Then we
find x < wy such that M (+) is a model of ZFC,
L&) =M(x) and Yy |y =M@ — M) &y S wp— o =M ()]

The last theorem is obviously an extension of a result of Sacks [2] on minimal degrees (the extension
concerns L (&) == M (x)).

We outline how Theorem B implies Theorem A. Let Q be a realizable initial segment of Mod. This
me ans that there is a model M°,

WEZFC, Ont = 00, Vo e & N & 2 & @ — (2] = 0},
Yz llzl = Q — z &= M},
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Since R - ZFC , in R° there exists a total ordering of S (w,) [ N° of the type exp¥(w,) (notation:
S(u) = {z|x S u). exp(u) = card (S (1)) , assuming the axiom of choice). Let X = {(7.. )| a=exp¥(w,)}
be such an ordering. We congider % = L (X). Itiseasy foseethat X =R, R= ZFC. Valz & RN
S (wg) >zl =Q], Vallzl = 02 =R]. 1Itis also easy to see that if we take a generic extension M of N
by collapsing exp? (w,) onto oy (taking as forcing conditions the functions f: D — exp® (w,), where D is an
arbitrary countable subset of o) and, naturally, ; = ®) then M will have the same properties as ®,and,
moreover, it will satisfy the assumption of Theorem B. Obviously, if x ¢ w; is as in Theorem B, then [x]
satisfies the condition of Theorem A. Let us therefore consider B.

I 9 satisfies the conditions of Theorem B, then we can easily find in M a set X = {(a, 23> [a &
@¥} such that Volo = off — 2, & o], M = L (X), Va [a = o) — « is countable in L(x,)] and Vo [0 = of—
(B, 730 | B = a} = L (z)]. © We also assume that Ve [z =M ) S (0,) - M 5= L ()], for otherwise the theo-
rem could be proved using the method of [2] by choosing a generic ¢ < w; (with respect to the perfect fore-
ing of M = L (2) ) such that Vr [n & 2 = 2n < al. In this case we can obviously assume that

Valz = of -z, & L ({KB. @) | B = a))l.

Throughout §§ 1-5 it is supposed that M = [ (X} satisfies the above mentioned conditions

§ 1. Basic Notation

1.1. Let for A=o}" %5 =% ({(a.v23ja=%}). and let <(A) be a canonical total order on M;. The collec-
tion {< (A) | 2~ = o} can be chosen in such a way that 4 < p — <{ (A) agrees on &, with the induced = (u).
Let 8 = exp ™. (0,). We assume that < (3) orders M, (] S (w,) into the type 6. For z == %, , we denote
by N, (x) the index of x in the sense <(A) and for z ¢= M, A (v) =inf {L|r & M}

1.2. Let Fx be some effective coding of closed subsets S(wy) by real numbers so that ¢ is the code

of ¢ and wq is the code of S{wy). We will write » < py=F, < F,, ¢ <{rpy=T,= F,&F, is nowhere
dense in F; X Ay is the code of Fx N Fy; x vy is the code of Fy v Fy; {(x) is the length of the smallest seg-
ment in S(wy) which completely contains Fy.

If £:K—S(wy), then A /(i) will denote the code of (1 Fy; and \/ /(i) will denote the code of
=K =K =34 i
(provided the set is closed).

1.3. Let ZZ= S (0,) (1 M. Z will be called A-weakly homogeneous if VaVpdylo = Z&u=A— 24 ) >

n& y> e &y 2 & F, is perfect.

Let ¥ = S (wy) [} ™ be A-weakly homogeneous. The collection § == {(i, m, Sty lm = w&ies 2} i8
called A Y-collection if '

@) VmVilSL =YL
(i) VmViVaVylr s Sh &y Y &y > —y = Shls
Gil) VmVeViVy e = Sh&ye Sh—a\VVye Sh;
iv) Veo¥odidy [z =Y — 5> rezr & y = Shl;
) ¥m {Sh ) SL = &l
(Vi) VoVyImiudr b Y &y =YV > u> & e >my&ue Sh& v SLl.

§ 2. The Successor Case

2.1, Let V = 8 (w,) 1 Many be (A +1)-weakly homogeneous, S = M.y be a (A +1)Z-collection, and
z€Y. We define on S{w,) a function Hy 1 g, 5 (%) =y as follows:

i) if x¢ F,, we consider y undefined, otherwise we put z = zy
(i) we put {7, &) == min {<4, up |t * u = @&\ u> pazg & 1 (u) - 1 (1) <)l (z0) &dm (1285 &u = S},
<(2+1)

(t=, By =min {KLup|t\Nu=0&\ u>rz&l® + 1)<

<R+

\(\.(]/’g)l (30) &Elﬂb {t = S?n & == S}u] &'» € F'zf. !J [[}7
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(iif) if (t, u) or (t u) is undefmed we consider y undefmed Otherwise, if <t u>= <t u> it is as-
sumed that 0 € y; but if <f, u>= <t u>, then 0¢ y. Weputz;=u or z;= t depending on whether x€ F~ or
X€ Ft -

(iv) is the same as (ii) but for the substitution of z, by z,, and we recognize 1€y, etc.

LEMMA 2.2. Let A, Z, Y, and S be as in 2.1. Then M., = HzVy {2 & 0, & F, is perfect & [y = F,—~
=M, s: (W) = Taall.

The proof is accomplished in M).,. Let E = 2« and for t€ E let h(t) = D(t) be the domain of defini-
tion of t; h(t) € wy. Let p € E,

hi(9) =0; KOOEE, > E, h(0) =h (1) =1.
For u, t€ E, we let ut€ E be such that

h(uty =h(uw) +h(@); k<h@)-»ut(k)=uk);
E<h ()= uthu +k =tk).

We defineu <tif Hovlv=E & uv = ¢l

Let f:E—~Y be a function such that
A s<t=1 @O <rsf (1), L6200, f(@)=1
() f <O NS s<D) = o
(iii) if & (s) & manthen ¢(fF (s <0Y), F (s (1) = m{n {<t, u> | Frand F,'s are perfect & (¢ \/ u) > raf (s) &
dmit= Sh &ua SL1 &l (@) + 1@ < ()G 6N = ¢, u),
(Gv) if A (s) £ 1.y, then (F(s<0)), fs<))> = n(u+n Kbwltyuzrmi&ImniieShé&ue SL1&F,

and F's are perfect & (¢ \/ w) A G\ @) = ¢ &1 () + 1(5) < (Vo) 1 ( (f )}
We consider z == A \/ f(s). It is easy to see that Fy is perfect (the proof is analogous to [3]) and

nEwg i(s)=n
the equality ;5. (y) = 2. for every y€ Fy follows from the definitions of Fy and the function H.

A function f of such a kind can be easily constructed by taking into account the weak homogeneity of
Y and the properties of S.

The lemma is proved.

We note that because of the properties of X = {(a, %) | @ & o1 } the constructed x may not be in
D, for if we took in My, a y € Fx, then we could construct zaw = Hiy,s,. (¥) in May, and that is not pos-
sible since aay & Wiy

The smallest x, in the sense < (A + 2), constructed as in 2.2, will be denoted by x = W(A + 1, 8, z).

§ 3. The Limit Case

3.1. Let A bealimit, Y & § (w,) [ M be A-weakly homogeneous, S & M be a AY-collection, and
z€Y.

We define H; g, ,(x) analogously to 2.1 (except that min changes to min).
<(A+1) <)

LEMMA 3.2. Let % = o be a limit, and Z, Y, and S be as in 3.1. Then My, = Hzx Vy Vp [ 0, &
P, isperfect &lyE Fe—>Hys: () =2l &lp<h—>T'[' = M &A () > p &z > ppr’]ll.

Proof (in M,). For the proof it is enough to construct a function f: E—~Y satisfying 2.2, () to (iv)

(changing min to min) , and adding one more condition as follows:
<A+ <m

(v) There is an increasing function p: w,-» A such that sup p(n) =24 and Vs[s = E — A (f (s)) >
NEWa
& (b (s))). The condition (v) is needed to secure the additional conditions on x.

We finish the proof as in 2.2.
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Let x = W(A, S, z) be the smallest x = My,;, in the sense <(A+ 1) which can be constructed as in
Lemma 3.2.

Again we note = & Ty,
3.3. We assume that if 8;# S,, 2y # 2y, then Fwo.s.:9 1] Fwousea =9 (for an arbitrary x € wy).

§ 4. Proof of Theorem B

In M we construct a collection of sets {Z. |« == ©,'}. satisfying the following conditions:
() Z,. = S (0, Z, &M, a-weakly homogeneous;
(1) Zs = Zuvy, Zasy — Zu #=

(i) a<Péz=Za&krA(@=p—>Hy ly=Za &z > ey A (y) = al;

(iv) if Z, is defined, we put Z, = {W (A, S,2) [gY{Y;ZZ A-weakly homogeneous, & Y= & § is AY-
collection «:z=Y1", and Z,.,=2Z,{ {y|F, is perfect & dx [z =2, Ly > rzl & y &= Dy} , where Z;: =2y if 2
is a limit and Z} = Zy~Zgfor A =g+ 1.

W a<p< o=z, >y ly = Z; & h(y) = p& y > rzh

(vi) for limit A's, = H Zs

Wii) Z, = My N S {wy) = L N S (o).

It is easy to see that the points (vii), (vi), and (iv) define the construction of Z 5 while all the other
points will be preserved (this follows from Lemmas 2.2, 3.2, and the definition of W(a, S, z)).

It is also obvious that {<Z,;,a> |a EA} & M. Weput P = {} Z..

ae,

§ 5. Properties of the Forcing Conditions

5.1. Let G ¢ P be a M-generic filter on P. Obviously G defines a unique real number a = a¢ = (] F,
=G
and is determined by it: G = G, = {z |z =P & a= F,}. Let G P be an M-generic filter on P.
LEMMA 5.2.
(o 2y |2 € o'} & L (a0).
Proof. We show that xo€ L{ag). Indeed Z¢€ L and a;€ Fy for some x€ Zo [this follows from 4.1 (ii),

(iv), (v), and (vii)]. It means that x, = Hgz(ag) for some S, z & W,, i.e., 8, z€ L. Therefore, Hygy is de~
fined in L and x¢€ Liag)-

Let us assume that
{Ka, z2d o = A} = L (ag).
Then we can similarly construct x) = Hjgy(eq), and we have x; € Lieg)-

It is clear that all the x,'s can be effectively reconstructed from ¢ and L (we know that the Z ,'s
were constructed effectively). The lemma is proved.

LEMMA 5.3. For some M -generic G ¢ P, qg is minimal over M.

Proof. Let (in ®, ce V(P) and pe P, where
dj—¢ S ® &eEM&ag & M (c)».
Clearly, we can assume that p = wy for S(wy)). We define
S={p|psP&p|— wr &)}
and

Sw={p|lpESP&p|— e}
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It is easy to see that S = {{i, m, Sty |m e o, & i & 2} satisfies 1.3 (i) to (vi) by changing Y to P.
Because of the condition on M , we have S = M, = M, .

Therefore, we can construct by the Skolem—L&wenheim method a limit A = m‘{’z and Y c Z, such that
Y =M, and Y is A-weakly homogeneous; Si, () = {p|p = SsNMmleMm: SO =i, m S, |me
0y & i & 2z} is a AY-collection. We consider z = W (A, S (&), ©y) & Wiy {) P.As in [3] or [2] it is not diffi-
cult to prove thatz |— e = L (¢, z, S (M), " i.€., 2|~ {ac & M (c)), which contradicts our assumption. The
lemma is proved.

From Lemmas 5.2 and 5.3 Theorem B follows immediately.

Theorem B and similar theorems are given in [4].
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