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Canonization of Smooth Equivalence Relations on
Infinite-Dimensional E0-Large Products

Vladimir Kanovei and Vassily Lyubetsky

Abstract We propose a canonization scheme for smooth equivalence relations
on R! modulo restriction to E0-large infinite products. It shows that, given
a pair of Borel smooth equivalence relations E, F on R! , there is an infinite
E0-large perfect product P � R! such that either F � E on P , or, for some
` < !, the following is true for all x; y 2 P : x E y implies x.`/ D y.`/, and
x � .! X ¹`º/ D y � .! X ¹`º/ implies x F y.

1 Introduction

The canonization problem can be broadly formulated as follows. Given a class E

of mathematical structures E , and a collection P of sets P considered as large,
or essential, find a smaller and better structured subcollection E 0 � E such that for
any structure E 2 E with the domain P there is a smaller set P 0 2 P , P 0 �

P , such that the restricted substructure E�P 0 belongs to E 0 . For instance, the
theorem saying that every Borel real map is either a bijection or a constant on a
perfect set, can be viewed as a canonization theorem, with E D ¹Borel mapsº ,
E 0 D ¹bijections and constantsº , and P D ¹perfect setsº . We refer to Kanovei,
Sabok, and Zapletal [7] as the background of the general canonization problem for
Borel and analytic equivalence relations in descriptive set theory.

Among other results, it is established in [7, Section 9.3, Theorems 9.26 and 9.27]
that if E belongs to one of two large families of analytic equivalence relations1 on
.2!/! , then there is an infinite perfect product P � .2!/! such that E�P is smooth,
that is, there simply exists a Borel map f W P ! 2! satisfying x E y ” f .x/ D

f .y/ for all x; y 2 P . The canonization problem for smooth equivalence relations
themselves was not considered in [7].2 Theorem 2.1, the main result of this note,
contributes to this problem.
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2 Large Products and the Main Theorem

Recall that the equivalence relation E0 is defined on 2! so that x E0 y if and only
if the equality x.n/ D y.n/ holds for all but finite n . If X � 2! , then we define the
E0 -hull ŒX�E0

D ¹y 2 2! W y E0 xº of X . It is known that E0 is not smooth; that is,
there is no Borel map f W domf D 2! ! 2! satisfying x E y ” f .x/ D f .y/

for all x; y 2 2! . A Borel set X � 2! is E0-large if E0�X is still not smooth. (See
more on this in Zapletal [8], [9], Kanovei [6], [7], or elsewhere.)

An infinite perfect product is any set P � .2!/! such that P D
Q

`<! P.`/ ,
where P.`/ D ¹x.`/ W x 2 P º is the projection on the ` th coordinate, and it is
required that each set P.`/ be a perfect subset of 2! . Let PP be the set of all
perfect products. If every factor P.`/ is an E0-large set, then say that P is an E0-
large perfect product.

To set up a convenient notation, say that an equivalence relation E on .2!/! :
captures ` 2 ! on P 2 PP : if x E y implies x.`/ D y.`/ for all x; y 2 P ;
is reduced to U � ! on P 2 PP : if x�U D y�U implies x E y for all

x; y 2 P .

Theorem 2.1 If E , F are smooth Borel equivalence relations on .2!/! , then
there is an E0-large perfect product P � .2!/! such that either F � E on P , or,
for some ` < ! , E captures ` on P and F is reduced to ! X ¹`º on P .

The two options of the theorem are incompatible with perfect products. The result
can be compared to canonization results related to finite products and equivalence
relations defined on spaces .2!/m , m < ! . Theorem 9.3 in [7, Section 9.1]
implies that every analytic equivalence relation on .2!/m coincides with one of
the multiequalities DU , U � ¹0; 1; : : : ; m � 1º , on some E0-large perfect prod-
uct P � .2!/m , where x DU y if and only if x�U D y�U . One may ask whether
such a result holds for equivalence relations on .2!/! and, accordingly, for infinite
perfect products. This gives a negative answer, even for smooth equivalences.

Example 2.2 Let E be defined on .2!/! so that x E y if and only if x.0/ D

y.0/ , and also x.` C 1/ D y.` C 1/ for all numbers ` such that x.0/.`/ D 0 . That
E is smooth can be witnessed by the map sending each x 2 .2!/! to a D #.x/ 2

.2!/! defined so that a.k/ D x.k/ whenever k D 0 or k D `C1 and x.0/.`/ D 0 ,
and a.k/.n/ D 0 for all other k and all n < ! . That E is not equal (and even not
Borel bireducible) to any DU on any perfect product P � .2!/! , is easy.

The proof of Theorem 2.1 is based on a splitting/fusion technique known in the
theory of iterations and products of the perfect-set forcing (see, e.g., Baumgartner
[1] and Kanovei [4], [5]), although the splitting construction for infinite E0-large
products is different and way more complex than in the case of perfect-set products.

See Section 9 on applications of the theorem to the structure of the constructibility
degrees in generic extensions via the forcing by E0-large products.

3 Large Sets

Here and in the next section, we reproduce some definitions and results from Gol-
shani and the authors in [3] related to perfect and large trees; but here we consider
sets rather than trees.
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Strings. The set 2<! contains all strings (finite sequences) of numbers 0 , 1 ,
including the empty string ƒ . If t 2 2<! and i D 0; 1 , then t ai is the extension
of t by i as the rightmost term. If s; t 2 2<! , then s � t means that the string
t extends s (including the case s D t ), while s � t means proper extension. The
length of s is lh.s/ , and 2n D ¹s 2 2<! W lh.s/ D nº (strings of length n).

If u 2 2<! , then let Iu D ¹a 2 2! W u � aº , a Cantor interval in 2! .
Trees and perfect sets. If X � !! , then let tree.X/ D ¹u 2 2<! W X \ Iu ¤

¿º , the tree of X . If u 2 tree.X/ , then define X � u D X \ Iu , the truncated
set. If cardX � 2 , then there is a longest string s D stem.X/ 2 2<! satisfying
X � Is (the stem of T ). A string u 2 tree.X/ is a splitnode if both ua0 and
ua1 belong to tree.X/ . A closed set ¿ ¤ X � 2! is perfect if and only if every
string u 2 tree.X/ can be extended into a splitnode v 2 tree.X/ , u � v .

Action. Every string s 2 2<! acts on 2! in such a way that if x 2 2! , then
.s �x/.k/ D x.k/ C s.k/ .mod 2/ for k < lh.s/ , and .s �x/.k/ D x.k/ otherwise.
If X � 2! and s 2 2<! , then let s �X D ¹s �x W x 2 X º . Similarly if s; t 2 2m ,
then define a string s � t 2 2m so that .s � t /.k/ D t .k/ C s.k/ .mod 2/ for k < m .

This action of strings on 2! induces the relation E0 , so that if x; y 2 2! , then
x E0 y is equivalent to y D s �x for a string s 2 2<! .

Special E0-large perfect sets. Following [8, Definition 2.3.28], a perfect set
X � 2! is called special E0-large if the following holds: for every splitnode u 2

tree.X/ , if u0; u1 2 tree.X/ are the minimal splitnodes in tree.X/ satisfying
ua0 � u0 and ua1 � u1 , then lh.u0/ D lh.u1/ and (the symmetry) X � u1

D

.u1 �u0/ �X � u0
. The symmetry condition is equivalent to u0

aa 2 X ” u1
aa 2

X for all a 2 2! , and we have X � u D X � u0
[ X � u1

D X � u a0 [ X � u a1

anyway.
Let SLS be the collection of all special E0-large (perfect) sets.
Sets in SLS admit a special combinatorial representation. Suppose that r 2 2<! ,

and suppose that hqi
k
ik<!;iD0;1 is a system of strings qi

k
2 2<! such that lh.q0

k
/ D

lh.q1
k
/ � 1 and q0

k
.0/ D 0 , q1

k
.0/ D 1 for all k . Let Œr; ¹qi

k
º� be the perfect set

of all infinite strings of the form a D r aq
i0
0

aq
i1
1

aq
i2
2

a � � � aq
in
n

a � � � 2 2! , where
ik D 0; 1 for all k . One easily proves that every set of this form is special E0-large,
and conversely, every special E0-large set has the form Œr; ¹qi

k
º� for suitable strings

r; qi
k

2 2<! .
See Conley [2], [7, Section 7.1], and [6, Section 10.9] for details on these cate-

gories of sets.

Proposition 3.1 Every set X D Œr; ¹qi
k
º� 2 SLS is E0-large. Conversely, every

E0-large Borel set X � 2! contains a special E0-large subset.

Proof To prove the first claim note that the map sending each a 2 2! to
r aq

a.0/
0

aq
a.1/
1

aq
a.2/
2

a � � � aq
a.n/
n

a � � � 2 2! is an isomorphism between h2! I E0i

and hX I E0i . Regarding the second claim (which we will not use) see [8, Lemma
2.3.29].

We finally define splitting levels of sets X D Œr; ¹qi
k
º� 2 SLS . Then stem.X/ D r ,

and the strings qi
k

D qi
k
ŒX� are unique. If n < ! , then we let

spln.X/ D lh.r/ C lh.q
i0
0 / C lh.q

i1
1 / C � � � C lh.q

in�1

n�1 /
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(independent of the values of ik D 0; 1). In particular, spl0.X/ D lh.r/ . Thus
spl.X/ D ¹spln.X/ W n < !º � ! is the set of all splitting levels of X .

Example 3.2 If s 2 2<! , then Is D ¹a 2 2! W s � aº is special E0-large; in fact,
Is D Œs; ¹qi

k
º� , where qi

k
D qi

k
.Is/ D hii for all k .

4 Splitting E0-Large Sets

The simple splitting of a perfect set X � 2! consists of subsets X.!i/ D ¹x 2 X W

x.n/ D i º , i D 0; 1 , where n D lh.r/ (the length of a string r 2 2<! ), and
r D stem.X/ is the largest string in 2<! satisfying r � x for all x 2 X . Then
X D X.!0/ [ X.!1/ is a disjoint partition of a perfect set X � 2! onto two
perfect subsets. Splittings can be iterated. We let X.!ƒ/ D X for the empty string
ƒ , and if s 2 2n , s ¤ ƒ , then we define

X.!s/ D X
�
! s.0/

��
! s.1/

��
! s.2/

�
� � �

�
! s.n � 1/

�
:

Lemma 4.1 If X � 2! is a special E0-large set, u 2 tree.X/ , and s 2 2n ,
then the sets X.!s/ and X � u belong to SLS , too.

Lemma 4.2 Let X D Œr; ¹qi
k
º� 2 SLS , and let s 2 2<! . Then X.!s/ D

X � uŒs� , where uŒs� D uŒs; X� D r aq
s.0/
0

aq
s.1/
1

a � � � aq
s.n�1/
n�1 2 T D tree.X/ .

Conversely, if u 2 T , then there is a string s D sŒu� 2 2<! such that X � u D

X.!s/ .

Proof To prove the converse, we put s.k/ D u.splk.X// for all k such that
splk.X/ < lh.u/ .

Lemma 4.3 Let X 2 SLS , let n < ! , and let h D spln.X/ . Then
(i) if u; v 2 tree.X/ \ 2h , then X � u D .u �v/ �.X � v/;
(ii) if s; t 2 2n , then X.!s/ D � �.X.!t // , where � D uŒs; X� �uŒt; X�;
(iii) if u; v 2 tree.X/\2j , j < ! , then X � u D � �.X � v/ for some � 2 2<! .

Proof To prove (ii) use Lemma 4.2. To prove (iii) take the least number h 2

spl.X/ with j � h . There is a unique pair of strings u0; v0 2 2h satisfying u � u0 ,
v � v0 . Then X � u D X � u0 , X � v D X � v0 , and X � u0 D .u0 �v0/ �.X � v0/ .

Definition 4.4 (Refinement) If X; Y � 2! are perfect sets and n < ! , then
define X �n Y if X.!s/ � Y .!s/ for all s 2 2n ; X �0 Y is equivalent to
X � Y . Clearly, X �nC1 Y implies X �n Y (and X � Y ).

If X , Y are special E0-large sets and n � 1 , then the relation X �n Y is equivalent
to stem.X/ D stem.Y / , qi

k
ŒX� D qi

k
ŒY � for all i D 0; 1 and k < n � 1 , and

qi
n�1ŒX� � qi

n�1ŒY � for all i D 0; 1 .

Lemma 4.5 Assume that X , U are perfect sets, that s0 2 2n , and that U �

X.!s0/ . Then the set Y D A [
S

u22n;u¤s X.!u/ is perfect, Y �n X , and
Y .!s0/ D A .

Lemma 4.6 If X; U 2 SLS , s0 2 2n , and U � X.!s0/ , then there is a unique
special E0-large set X 0 satisfying X 0 �n X and X 0.!s0/ D U . We have then

(i) X 0.!s/ D uŒs0; X� �uŒs; X� �X 0.!s0/ for all s 2 2n ;
(ii) if U is clopen in X.!s0/ , then X 0 is clopen in X .
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Proof If s 2 2n , then X.!s/ D uŒs0; X� �uŒs; X� �X.!s0/ by Lemma 4.3. Put
Us D uŒs0; X� �uŒs; X� �U for all s 2 2n , in particular, Us0

D U . The set X 0 DS
u22n Us is as required.

The next lemma is a more complex version of �n-refinement. For the proof (in terms
of trees) see [3, Lemma 4.1(iv)].
Lemma 4.7 If X; U; V 2 SLS , s0; s1 2 2n , U � X.!s0

a0/ , V �

X.!s1
a1/ , and ŒU �E0

D ŒV �E0
, then there is a special E0-large set X 0 sat-

isfying X 0 �nC1 X and X 0.!s0
a0/ � U , X 0.!s1

a1/ � V .
Lemma 4.8 Let � � � �4 X3 �3 X2 �2 X1 �1 X0 be an infinite sequence of sets
in SLS . Then X D

T
n Xn is a special E0-large set and X �nC1 Xn , for all n .

Proof Note that spl.X/ D ¹spln.Xn/ W n < !º ; this implies both claims.

5 Splitting Perfect and Special E0-Large Products

A perfect product P is a special E0-large product, P 2 SLP for brevity, if each
factor P.`/ , ` < ! , belongs to SLS . Thus SLP D SLS! .

Now we extend the splitting technique to special E0-large products.

Definition 5.1 Fix once and for all a function � W !
onto
�! ! taking each value

infinitely many times, so that if ` < ! , then the following set is infinite:
��1.`/ D

®
k W �.k/ D `

¯
D ¹k0` < k1` < k2` < � � � < kl` < � � �º:

If m < ! , then let �m` be the number of indices k < m , k 2 ��1.`/ .
Let m < ! , and let � 2 2m (a string of length m). If ` 2 � ”m D ¹�.k/ W k < mº ,
then the set ��1.`/ cuts in � a substring �Œ`� 2 2�m` , of length lh.�Œ`�/ D �m` ,
defined by .�Œ`�/.j / D �.kj`/ for all j < �m` . Thus the string � 2 2m splits into
an array of strings �Œ`� 2 2�m` (` 2 � ”m) of total length

P
`2� ”m �m` D m .

Let P be a special E0-large product. If � 2 2m , then define P .)�/ 2 SLP
so that P .)�/.`/ D P.`/.!�Œ`�/ for all ` . In particular, if ` … � ”m , then
P .)�/.`/ D P.`/ , because lh.�Œ`�/ D �m` D 0 holds provided ` … � ”m .

Let P; Q 2 SLP . Define P �m Q if P.`/ ��m`
Q.`/ for all ` . This is

equivalent to P .)�/ � Q.)�/ for all � 2 2m .
If �; � 2 2m , then let �Œ�; �� D ! X ¹�.i/ W i < m ^ �.i/ ¤ �.i/º .

Lemma 5.2 Under the conditions of Definition 5.1, let P 2 SLP . Then
(i) if � 2 2<! , then P .)�/ 2 SLP and the set P .)�/ is clopen in P ;
(ii) if m < ! and �; � 2 2m , then P .)�/��Œ�; �� D P .)�/��Œ�; ��;
(iii) if x 2 P , and U is an open neighborhood of x , then there exists a string

� 2 2m satisfying x 2 P .)�/ � U ;
(iv) if m < ! , � 2 2m , and U 2 SLP , U � P .)�/ , then there exists a unique

set Q 2 SLP such that Q �m P and Q.)�/ D U , and then if U is
clopen in P .)�/ , then Q is clopen in P .

Proof (i) and (ii). These are clear. (iii) We have ¹xº D
T

mŒP .)a�m/� for a
suitable sequence a 2 2! . By compactness, there is m such that P .)a�m/ � U .

(iv) If ` < ! , then U.`/ � P .)�/.`/ D P.`/.!s/ , where s D �Œ`� . By
Lemma 4.6, there is a set S` 2 SLS satisfying S` �n P.`/ , where n D �m` D

lh.s/ , and S`.!s/ D U.`/ . Let Q.`/ D S` for all ` .
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A version of Lemma 4.8 for special E0-large products is as follows.

Lemma 5.3 Let � � � �5 P4 �4 P3 �3 P2 �2 P1 �1 P0 be a sequence of special
E0-large products. Then Q D

T
n Pn 2 SLP , Q.`/ D

T
m Pm.`/ for all ` < ! ,

and Q �mC1 Pm for all m .

Proof Apply Lemma 4.8 componentwise.

Corollary 5.4 (see [7, Section 9.3, Proposition 9.31]) If P � .2!/! is a special
E0-large product and B � P is a Borel set, then there is a special E0-large product
Q � P such that Q � B or Q \ B D ¿ .

Corollary 5.5 If P 2 SLP and f W P ! 2! is a Borel map, then there is a
special E0-large product Q 2 SLP such that Q � P and f �Q is continuous.

Proof If n < ! and i D 0; 1 , then let Bni D ¹x 2 P W f .x/.n/ D i º . Using
Corollary 5.4 and Lemma 5.2(iv), we get a sequence � � � �3 P2 �2 P1 �1 P0 � P

of special E0-large products as in Lemma 5.3 such that if m < ! and � 2 2m , then
Pm.)�/ � Bm0 or Pm.)�/ � Bm1 . Then Q D

T
m Pm is as required.

6 Proof of the Main Theorem: Beginning

Beginning the proof of Theorem 2.1, we let Borel maps e; f W 2! ! 2! witness the
smoothness of the equivalence relations E , F , respectively, so that

x E y ” e.x/ D e.y/ and x F y ” f .x/ D f .y/:

In fact, by Corollary 5.5, we can assume that e , f are continuous.

Lemma 6.1 If P is a special E0-large product, U0; U1; : : : � ! , and E is
reduced to each Uk on P , then E is reduced to U D

T
k Uk on P . The same

for F .

Proof For just two sets, if U D U0 \ U1 and x; y 2 P , x�U D y�U , then,
using the product structure, find a point z 2 P with z�U0 D x�U0 and z�U1 D

y�U1 . Then e.x/ D e.z/ D e.y/ , and hence x E y . The case of finitely many
sets follows by induction. Therefore, we can assume that U0 � U1 � U2 � � � � in
the general case. Let x; y 2 P , and let x�U D y�U . There exist points xk 2 P

satisfying xk �Uk D x�Uk and xk � .B X Uk/ D y� .B X Uk/ . Then immediately
e.xk/ D e.x/ for all k . On the other hand, clearly xk ! y ; hence, e.xk/ ! e.y/

as e is continuous. Thus e.x/ D e.y/ , and hence x E y .

We argue in terms of Definition 5.1. The plan is to define a sequence of special E0-
large products as in Lemma 5.3, with some extra properties. Let m < ! . A special
E0-large product R 2 SLP is m-good if the following hold (see the definitions in
Section 2):
(1)E : if � 2 2m , then either (i) E is reduced to !X¹�.m/º on R.)�/ , or (ii) there

is no set R0 2 SLP , R0 � R.)�/ on which E is reduced to ! X ¹�.m/º ;
(1)F : the same for F ;
(2)E : if �; � 2 2m , then either (i) E is reduced on R.)�/ [ R.)�/ to

�Œ�; �� D ! X
®
�.i/ W i < m ^ �.i/ ¤ �.i/

¯
;



Canonizing Smooth Equivalence Relations on Infinite E0 -Large Products 123

or (ii) eŒR.)�/� \ eŒR.)�/� D ¿3—equivalently, the sets R.)�/ and
R.)�/ do not contain E-related points;

(2)F : the same for F .

7 The Key Lemma

Lemma 7.1 If m < ! and a special E0-large product R is m-good, then there
is an .m C 1/-good special E0-large product Q �mC1 R .

Proof Consider a string � 0 2 2mC1 , and first define a special E0-large product
Q �mC1 R , satisfying (1)E relative to this string only. Let `0 D �.m C 1/ . If there
exists R0 2 SLP , R0 � R.)� 0/ on which E is reduced to ! X ¹`0º , then let S0

be such R0 . If there is no such R0 , then put S0 D R.)� 0/ . By Lemma 5.2(iv),
there is a special E0-large product Q �mC1 R such that Q.)� 0/ D S0 . Thus the
set Q satisfies (1)E with respect to � 0 . Now take Q as the “new” special E0-large
product R , consider another string � 0 2 2mC1 , and do the same as above. Consider
all strings in 2mC1 consecutively the same way. This ends with a special E0-large
product Q �mC1 R , satisfying (1)E for all � 0 2 2mC1 .

Now take care of (2)E . Let ` D �.m/ , and let B D ! X ¹`º .
Step 1. We fulfill (2)E for one particular pair � 0 D � a0 , � 0 D � a1 , where

� 2 2m . Then �Œ� 0; � 0� D B . The goal is to define P 2 SLP , P �mC1 Q ,
satisfying (2)E relative to this pair � 0 , � 0 .

If the relation E is reduced to B on Q.)�/ , then E is reduced to B on the set
Q.)� 0/ [ Q.)� 0/ D Q.)�/ , and we are done. Thus, by (1)E for Q.)�/ , we
assume that there is no set Q0 2 SLP , Q0 � Q.)�/ on which E is reduced to B .

In particular, E is not reduced to B on Q.)� 0/ . But Q.)� 0/�B D

Q.)� 0/�B , since B D �Œ� 0; � 0� D ! X ¹`º . It follows that there are points
x0 2 Q.)� 0/ and y0 2 Q.)� 0/ such that x0�B D y0�B and e.x0/ ¤ e.y0/ ;
that is, we have e.x0/.k/ D p ¤ q D e.y0/.k/ for some k and p; q D 0; 1 , p ¤ q .

As e is continuous, there are strings u; v 2 2<! of equal length lh.u/ D lh.v/

such that � 0 � u , � 0 � v , x0 2 X D Q.)u/ , y0 2 Y D Q.)v/ , and e.x/.k/ D

p , e.y/.k/ D q for all x 2 X , y 2 Y . We are going to define a special E0-large
product P �nC1 Q such that P .)� 0/ � X and P .)� 0/ � Y . In this case we
shall have eŒP .)� 0/� \ eŒP .)� 0/� D ¿ by construction, as required.

To carry out the construction of P , let rj D �Œj � , sj D uŒj � , tj D vŒj � for
all j .

Consider any index j ¤ ` . Then x0.j / D y0.j / (as x0�B D y0�B ), and then
easily rj � sj D tj . It follows that the set Sj D X.j / D Y.j / D Q.j /.!sj /

belongs to SLS and satisfies Sj � Q.j /.!rj / . By Lemma 4.6, there is a set Pj 2

SLS satisfying Pj ��j
Q.j / and Pj .!rj / D Sj , where �j D �mj D lh.rj / .

Now consider the index ` itself. The strings s` and t` are different (of the same
length), but still satisfy r`

a0 D � 0Œ`� � s` , r`
a1 D � 0Œ`� � t` . It follows that

the sets S` D X.`/ , V` D Y.`/ satisfy S` D H.!s`/ � H.!r`
a0/ , V` D

H.! t`/ � H.!r`
a1/ , where H D Q.`/ . And moreover, ŒS`�E0

D ŒV`�E0
holds

by Lemma 4.3(ii). Lemma 4.7 yields a set H 0 2 SLS satisfying H 0 ��C1 H , where
�` D �m` D lh.s/ , and H 0.!s a0/ � S` , H 0.!s a1/ � V` .

We finally define a special E0-large product P such that P.`/ D H 0 and P.j / D

Pj for all j ¤ ` . Then by construction P �mC1 Q , P .)� 0/ � X , and
P .)� 0/ � Y , as required.
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Step 2. Iterating the construction at Step 1, we obtain a special E0-large product
R �mC1 Q which fulfills (2)E for all pairs � 0; � 0 2 2mC1 of the form � 0 D � a0 ,
� 0 D � a1 , where � 2 2m .

Step 3. We claim that R satisfies (2)E for all pairs � 0; � 0 2 2mC1 of any form.
Indeed, let � 0 D � ai , � 0 D � ak be any pair in 2mC1 , where �; � 2 2m and
i; k 2 ¹0; 1º . By (2)E for the pair � , � , either E is reduced to U D �Œ�; ��

on R.)�/ [ R.)�/ , or eŒR.)�/� \ eŒR.)�/� D ¿ . In the second case,
eŒR.)� 0/� \ eŒR.)� 0/� D ¿ . Thus, we can assume without loss of generality
that E is reduced to U on R.)�/ [ R.)�/ . Let U 0 D �Œ� 0; � 0� . If i D k or
` … U , then U D U 0 , so that (2)E relative to � 0 , � 0 follows from (2)E relative to
� , � . Thus, we can assume without loss of generality that � 0 D � a0 , � 0 D � a1 ,
and ` 2 U . Then U 0 D U X ¹`º D U \ B , of course.

Because of the achievement at Step 2, we have two cases.
Case 3.1: E is reduced to B on R.)� 0/ [ R.)� 0

1/ , where � 0
1 D � a1 . Prove

that E is reduced to U 0 on R.)� 0/ [ R.)� 0/ , so that (2)E(i) holds for � 0 , � 0 .
Indeed, assume that x 2 R.)� 0/ , y 2 R.)� 0/ , x�U 0 D y�U 0 . Let x0 2 .2!/!

be defined so that x0�B D x�B but x0.`/ D y.`/ . Thus, if j ¤ ` , then x0.j / D

x.j / 2 R.)� 0/.j / D R.)� 0
1/.j / (because R.)� 0/�B D R.)� 0

1/�B ).
While for ` itself we have x0.`/ D y.`/ 2 R.)� 0/ D R.)� 0

1/ (because now
we have ` 2 U D �Œ� 0; � 0

1�). It follows that x0 2 R.)� 0
1/ . Therefore, by the Case

3.1 hypothesis, we have e.x/ D e.x0/ . On the other hand, x0�U D y�U ; there-
fore, e.y/ D e.x0/ without loss of generality, as assumed above. Thus e.x/ D e.y/ ,
as required.

Case 3.2: eŒR.)� 0/�\eŒR.)� 0
1/� D ¿ . However, E is reduced to U D �Œ�; ��

on R.)�/[R.)�/ without loss of generality as assumed above and, hence, on the
smaller set R.)� 0

1/ [ R.)� 0/ as well, while R.)� 0
1/�U D R.)� 0/�U (since

the equality U D �Œ� 0
1; � 0� D �Œ�; �� holds). We conclude that eŒR.)� 0

1/� D

eŒR.)� 0/� . It follows that eŒR.)� 0/� \ eŒR.)� 0/� D ¿ ; hence, R satisfies
(2)E(ii) for � 0 , � 0 .

Thus, indeed, we have got a special E0-large product R �mC1 Q satisfying (2)E
for all � 0; � 0 2 2mC1 (and still satisfying (1)E).

It remains to repeat the same procedure for F .

8 Proof of the Main Theorem: Conclusion

We come back to the proof of Theorem 2.1. Lemma 7.1 yields an infinite sequence
� � � �3 Q2 �2 Q1 �1 Q0 of special E0-large products Qm such that each Qm is
m-good. The limit special E0-large product P D

S
m Qm 2 SLP satisfies P �mC1

Qm for all m by Lemma 5.3. Therefore, P is m-good for every m and, hence, we
can freely use (1)E , F and (2)E , F for P in the following final argument.

Case 1: if m < ! , �; � 2 2m , and eŒP .)�/� \ eŒP .)�/� D ¿ , then we have
f ŒP .)�/�\f ŒP .)�/� D ¿ . Prove that F � F on P in this case, as required by the
“either” option of Theorem 2.1. Let x; y 2 P and x E y fails, that is, e.x/ ¤ e.y/ ;
show that f .x/ ¤ f .y/ . Pick a; b 2 2! satisfying ¹xº D

T
m P .)a�m/ and

¹yº D
T

m P .)b�m/ . As x ¤ y , we have eŒQ.)a�m/� \ eŒQ.)b�m/� D ¿
for some m by continuity and compactness. Then by the Case 1 assumption,
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f ŒP .)a�m/� \ f ŒP .)b�m/� D ¿ holds, hence f .x/ ¤ f .y/ , and x F y

fails.
Case 2 D not Case 1. Then there is a number m < ! and a pair of strings

� 0 D � ai , � 0 D � ak 2 2mC1 such that eŒP .)� 0/� \ eŒP .)� 0/� D ¿ , but
f ŒP .)� 0/� \ f ŒP .)� 0/� ¤ ¿ ; hence, the relation F is reduced to U 0 D �Œ� 0; � 0�

on Z0 D P .)� 0/ [ P .)� 0/ by (2)F . Assume that m is the least possible witness
of this case. We are going to prove that the special E0-large product P .)�/ satisfies
the “or” option of Theorem 2.1, with the number ` D �.m/ ; that is, (*) F is reduced
to ! X ¹`º on P .)�/ , and (**) E captures ` on P .)�/ .

Lemma 8.1 The relation E is
(A) reduced to U D �Œ�; �� on the set Z D P .)�/ [ P .)�/ ,
(B) not reduced to U 0 D �Œ� 0; � 0� on Z0 D P .)� 0/ [ P .)� 0/ ,
(C) not reduced to ! X ¹`º on any special E0-large product P 0 � P .)�/ .

In addition, (D) U ¤ U 0 , hence ` 2 U and U 0 D U X ¹`º .

Proof (A) Otherwise we have eŒP .)�/� \ eŒP .)�/� D ¿ by (2)E , and hence
f ŒP .)�/�\f ŒP .)�/� D ¿ by the choice of m ; then f ŒP .)� 0/�\f ŒP .)� 0/� D

¿ as well, contrary to the fact that F is reduced to U 0 on P .)� 0/ [ P .)� 0/ ,
because P .)� 0/�U 0 D P .)� 0/�U 0 by Lemma 5.2(ii).

(B) The otherwise assumption contradicts eŒP .)� 0/� \ eŒP .)� 0/� D ¿ .
(D) This follows from (A) and (B).
(C) Otherwise E is reduced to ! X ¹`º on P .)�/ by (1)E . Then E is reduced

to U 0 on P .)�/ by Lemma 6.1 since U 0 D U X ¹`º by (D).

Claim 8.2 The relation E is reduced to U 0 on Z .

Proof Let x; y 2 Z D P .)�/ [ P .)�/ , and let x�U 0 D y�U 0 . As the
equality P .)�/�U D P .)�/�U holds by Lemma 5.2(ii), there are x0; y0 2

P .)�/ with x�U D x0�U and y�U D y0�U . We have x E x0 and y E y0 by
(A), and x0 E y0 since E is reduced to U 0 on P .)�/ . We conclude that x E y .

It follows that E is reduced to U 0 on Z0 � Z as well. But this contradicts (B). The
contradiction proves the lemma.

Now, as U 0 D U X ¹`º � ! X ¹`º , the special E0-large product P .)� 0/ witnesses
that F is reduced to ! X ¹`º on P .)�/ by (1)F . Thus we have (*).

To check (**), let x; y 2 P .)�/ , and let x E y ; prove x.`/ D y.`/ . Indeed,
¹xº D

T
n P .)a�n/ and ¹yº D

T
n P .)b�n/ , where a; b 2 2! , � � a ,

� � b . Let U D
T

n �Œa�n; b�n� . Then x�U D y�U , since

P .)a�n/��Œa�n; b�n� D P .)b�n/��Œa�n; b�n�

for all n . Thus it suffices to check ` 2 �Œa�n; b�n� for all n .
Suppose to the contrary that ` D �.m/ … �Œa�n; b�n� for some n . Then n >

m because a�m D b�m D � . However, the relation E is reduced to �Œa�n; b�n�

on P .)a�n/ by (2)E , since x E y . Yet we have ` … �Œa�n; b�n� ; therefore,
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�Œa�n; b�n� � ! X ¹`º . It follows that E is reduced to ! X ¹`º on P .)a�n/ .
But this contradicts Lemma 8.1(C) with P 0 D P .)a�n/ .

To conclude Case 2, we have checked (*) and (**). � (Theorem 2.1)

9 An Application to Degrees of Constructibility

Consider the set SLP D SLS! of all special E0-large products as a forcing notion,
over the background set universe V . Thus SLP adjoins an SLP-generic sequence
Ea D hakik<! 2 .2!/! , of SLS-generic reals, to V .

Lemma 9.1 The forcing SLP preserves @1 and admits continuous reading of
names for reals.4

Proof Arguing in the background set universe V , note that if sets Dn � SLP
.n < !/ are open dense in SLP , then by Lemma 5.2(iv), for any P 2 SLP there is
a sequence � � � �4 P3 �3 P2 �2 P1 �1 P0 as in Lemma 5.3 such that P0 � P and
for all m , if � 2 2m , then Pm.)�/ 2 Dm . This implies both claims of the lemma,
by standard arguments.

Theorem 9.2 Let a sequence Ea D hakik<! 2 .2!/! be SLS-generic over V .
Assume that x; y 2 2! are reals in VŒEa� . Then either x 2 VŒy� or there is an index
` such that a` 2 VŒx� and y 2 VŒhakik¤`� .

Proof By Lemma 9.1, there exist continuous functions e; f W .2!/! ! 2! , coded
in V , such that x D e.Ea/ , y D f .Ea/ . Argue in V . Define Ex E Ey if and only if
e.Ex/ D e. Ey/ , and Ex F Ey if and only if f .Ex/ D f . Ey/ , for Ex; Ey 2 .2!/! . The set D

of all special E0-large products P 2 SLP such that either F � E on P , or, for some
` < ! , E captures ` on P and F is reduced to ! X ¹`º on P , is dense in SLP
by Theorem 2.1. Therefore, Ea belongs to a set P 2 D (or, to be more exact, to the
topological closure of P 2 V in VŒEa�).

Case 1: F � E on P in V . This means that f .Ex/ D f . Ey/ H) e.Ex/ D e. Ey/ for
all Ex , Ey in P , in V , and hence, by Shoenfield, f .Ex/ D f . Ey/ H) e.Ex/ D e. Ey/ for
all Ex , Ey in (the closure of) P , in VŒEa� . It follows that there is an analytic function
h , coded in V , such that e.Ex/ D h.f .Ex// for all Ex , Ey in (the closure of) P , in VŒEa� .
In particular, a D h.b/ , and hence a 2 VŒb� .

Case 2: ` < ! , and it is true in V that E captures ` on P and F is
reduced to ! X ¹`º on P . The first part of this condition ensures us that, in
V , e.Ex/ D e. Ey/ H) Ex.`/ D Ey.`/ for all Ex , Ey in P . Similarly to Case 1, this leads
to an analytic function h , coded in V , such that Ex.`/ D h.e.Ex// for all Ex 2 P , in
VŒEa� , and hence a` D Ea.`/ D h.e.Ea// D h.Ea/ 2 VŒEa� . Similarly using the second
part of the Case 2 hypothesis, we get another analytic function g , coded in V , such
that b D g.hakik¤`/ 2 VŒhakik¤`� , as required.

Corollary 9.3 Let a sequence Ea D hakik<! 2 .2!/! be SLS-generic over V ,
and let X D ¹ak W k < !º . Assume that a; b 2 2! are reals in VŒEa� . Then a 2 VŒb�

if and only if X \ VŒa� � X \ VŒb� .

One may ask whether, under the conditions of Corollary 9.3, it is true in VŒEa� that for
every set U � ! there is a real a 2 2! satisfying X \ VŒa� D ¹ak W k 2 U º . The
answer is positive for sets U 2 V , but generally the answer is negative; for instance,
take U D ¹k C 1 W a0.k/ D 0º (see Example 2.2).
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Notes

1. The first family consists of equivalence relations classifiable by countable structures, the
second of those Borel reducible to an analytic P-ideal.

2. “We avoid any attempt at organizing the very complicated class of smooth equivalence
relations” [7, p. 232].

3. Given a function h and X � dom h , the set hŒX� D ¹h.x/ W x 2 X º is the h-image of
X .

4. As noted by the anonymous referee, the forcing SLP , and basically SLS itself, does
not necessarily preserve cardinals bigger than @1 . This is essentially due to the same
reasons as for the Sacks forcing and its countable-support products, although the splitting
constructions behind the result are different and essentially more complex for SLS than
for the Sacks forcing.
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