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Canonization of Smooth Equivalence Relations on
Infinite-Dimensional Ey-Large Products

Vladimir Kanovei and Vassily Lyubetsky

Abstract  We propose a canonization scheme for smooth equivalence relations
on R® modulo restriction to Eg-large infinite products. It shows that, given
a pair of Borel smooth equivalence relations E, F on R®, there is an infinite
Eo-large perfect product P € R such that either F € E on P, or, for some
{ < w, the following is true for all x,y € P: x E y implies x({) = y({), and
x Plo~{€) =y | (o ~{}) implies x F y.

1 Introduction

The canonization problem can be broadly formulated as follows. Given a class &
of mathematical structures E, and a collection & of sets P considered as large,
or essential, find a smaller and better structured subcollection & C & such that for
any structure £ € & with the domain P there is a smaller set P’ € &, P’ C
P, such that the restricted substructure E } P’ belongs to &’. For instance, the
theorem saying that every Borel real map is either a bijection or a constant on a
perfect set, can be viewed as a canonization theorem, with & = {Borel maps},
&' = {bijections and constants}, and & = {perfect sets}. We refer to Kanovei,
Sabok, and Zapletal [7] as the background of the general canonization problem for
Borel and analytic equivalence relations in descriptive set theory.

Among other results, it is established in [7, Section 9.3, Theorems 9.26 and 9.27]
that if E belongs to one of two large families of analytic equivalence relations' on
(2%)®, then there is an infinite perfect product P € (2®)® suchthat E | P is smooth,
that is, there simply exists a Borel map f : P — 2% satisfying x E y <— f(x) =
f(y) forall x,y € P. The canonization problem for smooth equivalence relations
themselves was not considered in [7].> Theorem 2.1, the main result of this note,
contributes to this problem.
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2 Llarge Products and the Main Theorem

Recall that the equivalence relation Eq is defined on 2 so that x Eq y if and only
if the equality x(n) = y(n) holds for all but finite . If X C 2%, then we define the
Eo-hull [X]g, = {y €2 1y Ep x} of X. Itis known that Eq is not smooth; that is,
there is no Borel map f : dom f = 2% — 2% satisfying x E y < f(x) = f(»)
forall x,y € 2. ABorel set X C 2% is Eg-large if Eg [ X is still not smooth. (See
more on this in Zapletal [8], [9], Kanovei [6], [7], or elsewhere.)

An infinite perfect product is any set P € (2°)® such that P = [[,_, P({),
where P({) = {x({):x € P} is the projection on the £th coordinate, and it is
required that each set P({) be a perfect subset of 2¢. Let PP be the set of all
perfect products. If every factor P({) is an Eg-large set, then say that P is an E,-
large perfect product.

To set up a convenient notation, say that an equivalence relation E on (2¢)®:

captures £ €  on P € PP: if x E y implies x({) = y({) forall x,y € P;

is reducedto U Cw on P ePP: if x U = y|U implies x E y for all
x,yeP.

Theorem 2.1 If E, F are smooth Borel equivalence relations on (2°)%, then
there is an Eg-large perfect product P C (2°)® such that either F C E on P, or,
for some £ < w, E captures £ on P and F is reducedto w ~{L} on P.

The two options of the theorem are incompatible with perfect products. The result
can be compared to canonization results related to finite products and equivalence
relations defined on spaces (2°)™, m < w. Theorem 9.3 in [7, Section 9.1]
implies that every analytic equivalence relation on (2%)™ coincides with one of
the multiequalities Dy, U < {0,1,...,m — 1}, on some Ey-large perfect prod-
uct P € (29)", where x Dy y ifand only if x } U = y | U . One may ask whether
such a result holds for equivalence relations on (2®)® and, accordingly, for infinite
perfect products. This gives a negative answer, even for smooth equivalences.

Example 2.2 Let E be defined on (2¢)® so that x E y if and only if x(0) =
v(0), and also x (£ + 1) = y(£ + 1) for all numbers £ such that x(0)(£) = 0. That
E is smooth can be witnessed by the map sending each x € (2®°)® to a = ¥(x) €
(2®)® defined so that a(k) = x (k) whenever k =0 or k = £+ 1 and x(0)({) = 0,
and a(k)(n) = O for all other k and all n < w. That E is not equal (and even not
Borel bireducible) to any Dy on any perfect product P C (2)®, is easy.

The proof of Theorem 2.1 is based on a splitting/fusion technique known in the
theory of iterations and products of the perfect-set forcing (see, e.g., Baumgartner
[1] and Kanovei [4], [5]), although the splitting construction for infinite Eq-large
products is different and way more complex than in the case of perfect-set products.

See Section 9 on applications of the theorem to the structure of the constructibility
degrees in generic extensions via the forcing by Eg-large products.

3 Llarge Sets

Here and in the next section, we reproduce some definitions and results from Gol-
shani and the authors in [3] related to perfect and large trees; but here we consider
sets rather than trees.
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Strings. The set 2<% contains all strings (finite sequences) of numbers 0, 1,
including the empty string A. If t € 2<® and i = 0, 1, then ¢ " is the extension
of ¢t by i as the rightmost term. If 5,7 € 2=%, then s C ¢ means that the string
¢t extends s (including the case s = ¢), while s C ¢ means proper extension. The
length of s is 1h(s), and 2" = {s € 2= : 1h(s) = n} (strings of length n).

If u e 2%, thenlet I, = {a € 2 :u C a}, a Cantor interval in 2% .

Trees and perfect sets. If X C w®,thenlet tree(X) ={ue2~?: X NI, #
J}, the tree of X. If u € tree(X), then define X ', = X N I, the truncated
set. If card X > 2, then there is a longest string s = stem(X) € 2<% satisfying
X C I (the stem of T). A string u € tree(X) is a splitnode if both ¥ "0 and
u "1 belong to tree(X). A closed set @ # X C 2 is perfect if and only if every
string u € tree(X) can be extended into a splitnode v € tree(X), u C v.

Action. Every string s € 2= acts on 2% in such a way that if x € 2%, then
(s-x)(k) = x(k) + s(k) (mod 2) for k < 1h(s), and (s-x)(k) = x(k) otherwise.
If X C2% and s € 2=?, then let s-X = {s-x:x € X}. Similarly if 5,z € 2™,
then define a string s+t € 2" so that (s-t)(k) = t(k) + s(k) (mod 2) for k < m.

This action of strings on 2 induces the relation Eg, so that if x,y € 2%, then
x Ep y isequivalentto y = s-x for a string s € 2=¢.

Special Ej-large perfect sets. Following [8, Definition 2.3.28], a perfect set
X C 2% is called special Eq-large if the following holds: for every splitnode u €
tree(X),if ug,u; € tree(X) are the minimal splitnodes in tree(X) satisfying
u”~0 C up and u”1 C uy, then 1h(ug) = 1h(uy) and (the symmetry) X |, =
(u1-u0)+ X I, - The symmetry condition is equivalent to uo"a € X <= u;"a €
X forall @ € 2%, and we have X [, = X[, UX [, = X1,u~oUX[,~
anyway.

Let SLS be the collection of all special Eq-large (perfect) sets.

Sets in SLS admit a special combinatorial representation. Suppose that r € 2<%,
and suppose that (q,i)k<w,i=0,1 is a system of strings qfc € 2=? such that lh(qg) =
lh(q]i) > 1 and q]?(O) =0, q,i(O) = 1 for all k. Let [r, {q;c }] be the perfect set
of all infinite strings of the form a = r~g{* ¢! ~q2 "~ ---"qly ~--- € 2%, where
ir = 0,1 forall k. One easily proves that every set of this form is special Egy-large,
and conversely, every special Eg-large set has the form |r, {q}'c } for suitable strings
r, q]i € 2%,

See Conley [2], [7, Section 7.1], and [6, Section 10.9] for details on these cate-
gories of sets.

Proposition 3.1 Every set X = [r, {q,ic }] € SLS is Eg-large. Conversely, every
Eg-large Borel set X C 2% contains a special Egy-large subset.

Proof To prove the first claim note that the map sending each a € 2% to
r“qg(o)’\q;’(l)"q;(z)“ . gdM~ . € 29 is an isomorphism between (2 Eq)
and (X ; Ep). Regarding the second claim (which we will not use) see [8, Lemma

2.3.29]. O

We finally define splitting levels of sets X = [r, {q,’C }] € SLS. Then stem(X) = r,
and the strings ¢} = ¢} [X] are unique. If n < w, then we let

spl,(X) = 1h(r) + 1h(g?) + 1h(g}") + -+ + 1h(g""}
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(independent of the values of iy = 0,1). In particular, splo(X) = 1h(r). Thus
spl(X) ={spl,(X):n < w} C w is the set of all splitting levels of X .

Example 3.2 If s € 2¥¢,then Iy = {a € 2“ : s C a} is special Eg-large; in fact,
I = [s,{q; }], where q; = q; (Is) = (i) forall k.

4 Splitting Eg-Large Sets

The simple splitting of a perfect set X C 2% consists of subsets X (—i) = {x € X :
x(n) =i}, i = 0,1, where n = 1h(r) (the length of a string r € 2=%), and
r = stem(X) is the largest string in 2<% satisfying » C x for all x € X. Then
X = X(—0) U X(—1) is a disjoint partition of a perfect set X C 2% onto two
perfect subsets. Splittings can be iterated. We let X (— A) = X for the empty string
A, andif s € 2", s # A, then we define

X(—=s) = X(— s(0))(— s(D)(— 5(2)) - (= s(n — 1)).

Lemma 4.1 If X C 2% is a special Egy-large set, u € tree(X), and s € 2",
then the sets X (—s) and X |,, belong to SLS, too.

Lemma 4.2 Let X = [r,{q,i}] € SLS, and let s € 2=%. Then X(—s) =
X Pygeys where uls] = uls, X] = rogg® g 2q 070 € T = eree(X).
Conversely, if u € T, then there is a string s = s[u] € 2= such that X |, =
X(—s).

Proof To prove the converse, we put s(k) = u(splg(X)) for all k such that
splr(X) < 1h(u). O
Lemma 4.3 Let X € SLS, let n < w, and let h = spl,(X). Then

() if u,vetree(X)N2", then X}, = (u-v)-(X },);

(ii) if s,t € 2", then X (—s) = 0-(X(—1)), where 0 = u[s, X]-u[t, X];

(iii) if u,v € tree(X)N2/, j <w,then X }',, = o+(X |,) for some o € 2=°.
Proof To prove (ii) use Lemma 4.2. To prove (iii) take the least number 2 €
spl(X) with j < h. There is a unique pair of strings u’, v’ € 2" satisfying u C u’,
vCv . Then X}, =X, X y=Xlyp,and X}, = @) (X },). O
Definition 4.4 (Refinement) If X,Y C 2% are perfect sets and n < w, then

define X €, Y if X(—s) C Y(—s) forall s € 2"; X Cp Y is equivalent to
X CY.Clearly, X C,,+1 Y implies X C,, Y (and X C Y).

If X, Y are special Ey-large sets and n > 1, then the relation X C, Y is equivalent
to stem(X) = stem(Y), gi[X] = ¢i[V] forall i = 0,1 and k < n — 1, and
qn_11X] S q,_{[Y] foralli =0,1.
Lemma 4.5 Assume that X, U are perfect sets, that so € 2", and that U C
X(—s9). Then the set Y = AU UueZn,u# X (—u) is perfect, Y <, X, and
Y(—s0) = A.
Lemmad4.6 If X,U € SLS, 59 € 2", and U C X (—sy¢), then there is a unique
special Eg-large set X' satisfying X' C, X and X'(—s¢) = U. We have then

(i) X'(—s) = u[so, X]-u[s, X]- X' (—s¢) forall s € 2";

(ii) if U is clopen in X (—sq), then X' is clopen in X .
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Proof If s € 2", then X (—s) = u[so, X]-u[s, X]- X (—so) by Lemma 4.3. Put
Us = ulso, X]-uls, X]-U for all s € 2", in particular, Ug, = U. The set X' =
Unean Us is as required. O

The next lemma is a more complex version of C,,-refinement. For the proof (in terms
of trees) see [3, Lemma 4.1(iv)].

Lemma 4.7 If X, UV e SLS, so,51 € 2", U C X(—s070), V C
X(—s171), and [Ulg, = [Vlg,, then there is a special Ey-large set X' sat-
isfying X' Cpp1 X and X'(—s5070) C U, X'(—s;71) C V.

Lemma 4.8 Let --- C4 X3 C3 X2 S5 X1 S1 Xo be an infinite sequence of sets
in SLS. Then X = (), Xn is a special Ey-large set and X Tp41 Xp, forall n.

Proof Note that spl(X) = {spl,(X,) :n < w}; this implies both claims. [

5 Splitting Perfect and Special E(-Large Products

A perfect product P is a special Eg-large product, P € SLP for brevity, if each
factor P({), ¢ < w, belongs to SLS. Thus SLP = SLS®.
Now we extend the splitting technique to special Eg-large products.

Definition 5.1 Fix once and for all a function ¢ : @ M w taking each value
infinitely many times, so that if £ < w, then the following set is infinite:

¢ () = {k:p(k) =€} ={kop <kig <kpg < <k <---}.
If m < w, then let v,y be the number of indices k <m, k € qb_l(ﬁ).

Let m < w, and let 0 € 2™ (a string of length m). If £ € ¢”m = {Pp(k) : k <m},
then the set ¢~ 1({) cuts in o a substring o[€] € 2"7¢, of length 1h(o[{]) = Ve,
defined by (a[£])(j) = o(kj¢) forall j < v, . Thus the string o € 2 splits into
an array of strings o[{] € 2¥m¢ (£ € ¢”m) of total length ZZGq}”m Ve = m.

Let P be a special Eg-large product. If 0 € 2™, then define P(=o0) € SLP
so that P(=0)({) = P({)(—oc[f]) for all £. In particular, if £ ¢ ¢”m, then
P(=0)(f) = P({), because 1h(o[{]) = v,;ue = 0 holds provided £ ¢ ¢”m.

Let P,Q € SLP. Define P <, Q if P({) S,,, Q(f) for all £. This is
equivalentto P(=0) C Q(=o0) forall o € 2.

If o,7 € 2™, thenlet Afo,7] =w ~{¢p(@):i <mAna(i)# 1()}.

Lemma 5.2 Under the conditions of Definition 5.1, let P € SLP. Then

(i) if 0 € 2<%, then P(=0) € SLP and the set P(=0) is clopenin P;

(ii) if m < w and o,T € 2™, then P(=0) ' Afo,t] = P(=71) | Alo, 7];

(iii) if x € P, and U is an open neighborhood of x, then there exists a string

o € 2™ satisfying x € P(=0) CU;

iv) if m <w, 0 €2™, and U € SLP, U C P(=0), then there exists a unique
set Q € SLP such that Q <,, P and Q(=0) = U, and then if U is
clopen in P(=0), then Q is clopenin P.

Proof (i) and (ii). These are clear. (iii) We have {x} = (,,[P(=a |'m)] for a
suitable sequence a € 2% . By compactness, there is m such that P(=a |m) C U.

(iv) If £ < w, then U¥) € P(=0){) = P({)(—s), where s = o[{]. By
Lemma 4.6, there is a set Sy € SLS satisfying Sy C,, P({), where n = v,y =
1h(s), and S¢(—s) = U). Let Q(¥) = Sy forall £. O



122 Kanovei and Lyubetsky

A version of Lemma 4.8 for special Ey-large products is as follows.

Lemma 5.3 Let --- C5 Py C4 P3 S35 Py &5 Py S Py be a sequence of special
Eo-large products. Then Q = (), P, € SLP, Q({) = (,, Pm({) forall { < w,
and Q C41 Py forall m.

Proof  Apply Lemma 4.8 componentwise. O

Corollary 5.4 (see [7, Section 9.3, Proposition 9.31]) If P C (2°)® is a special
Eo-large product and B C P is a Borel set, then there is a special Ey-large product
Q C P suchthat Q CBor QNB=g.

Corollary 5.5 If P € SLP and [ : P — 2% is a Borel map, then there is a
special Egy-large product Q € SLP such that Q C P and f | Q is continuous.

Proof If n < wandi = 0,1, thenlet B,; = {x € P: f(x)(n) = i}. Using
Corollary 5.4 and Lemma 5.2(iv), we get a sequence -+ C3 P &, P1 &) Py C P
of special Eg-large products as in Lemma 5.3 such that if m < @ and o € 2", then
Pu(=0) € B or Pu(=0) S Bpi. Then Q = (), P is as required. O

6 Proof of the Main Theorem: Beginning

Beginning the proof of Theorem 2.1, we let Borel maps e, f : 2 — 2 witness the
smoothness of the equivalence relations E, F, respectively, so that

xEy < e(x) =e(y) and xFy <<= f(x)=f().
In fact, by Corollary 5.5, we can assume that e, f are continuous.

Lemma 6.1 If P is a special Eg-large product, Uy,Uy,... € w, and E is
reduced to each Uy on P, then E is reduced to U = (", Uy on P. The same
for F.

Proof  For just two sets, if U = Uy NU;y and x,y € P, x U = y | U, then,
using the product structure, find a point z € P with z P Uy = x Uy and z | U; =

y | U;. Then e(x) = e(z) = e(y), and hence x E y. The case of finitely many
sets follows by induction. Therefore, we can assume that Uy 2 Uy 2 U, D --- in
the general case. Let x,y € P,andlet x | U = y ) U. There exist points x; € P
satisfying xg M Ur = x | Ug and xi | (B ~ Ug) = y } (B ~ Ug). Then immediately
e(xy) = e(x) for all k. On the other hand, clearly x;z — y; hence, e(xz) — e(y)
as e is continuous. Thus e(x) = e(y), and hence x E y. O

We argue in terms of Definition 5.1. The plan is to define a sequence of special Eq-
large products as in Lemma 5.3, with some extra properties. Let m < w. A special
Eo-large product R € SLP is m-good if the following hold (see the definitions in
Section 2):

(1)E: if 0 € 2", then either (i) E isreducedto w~{¢(m)} on R(= o), or (ii) there
isnoset R’ € SLP, R’ C R(=0) on which E is reduced to w ~ {¢p(m)};

(1)F: the same for F;

(2)E: if 0,7t € 2, then either (i) E is reduced on R(=0) U R(=1) to

Alo, 1] = w ~ {qb(i) ri<mAao(i) # ‘[(i)},
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or (ii) e[R(=0)] N e[R(=1)] = @’—equivalently, the sets R(= o) and
R(= 1) do not contain E-related points;
(2)F: the same for F.

7 The Key Lemma

Lemma 7.1 If m < w and a special Eg-large product R is m-good, then there
is an (m + 1)-good special Eqy-large product Q <,,4+1 R.

Proof Consider a string o’ € 2%, and first define a special Eq-large product
0O St R, satisfying (1)E relative to this string only. Let £/ = ¢(m + 1). If there
exists R' € SLP, R’ € R(=0¢’) on which E is reduced to w ~ {{’}, then let Sy
be such R’. If there is no such R’, then put So = R(=0¢’). By Lemma 5.2(iv),
there is a special Eg-large product Q C,,4+1 R such that Q(=0’) = Sp. Thus the
set Q satisfies (1)E with respect to o’. Now take Q as the “new” special Eq-large
product R, consider another string o’ € 2m+1 and do the same as above. Consider
all strings in 21 consecutively the same way. This ends with a special Eq-large
product Q C,,4; R, satisfying (1)E for all o’ € 2"+1,

Now take care of (2)E. Let £ = ¢p(m), andlet B = w ~ {{}.

Step 1. We fulfill (2)E for one particular pair 6’ = 070, T/ = 0”1, where
o € 2™, Then Afo’,7/] = B. The goal is to define P € SLP, P C,,41 O,
satisfying (2)E relative to this pair o', 7’.

If the relation E is reduced to B on Q(=0), then E is reduced to B on the set
Q(=0d)U Q(=1') = Q(=0), and we are done. Thus, by (1)E for Q(=0), we
assume that there is no set Q' € SLP, Q' € Q(= o) on which E is reduced to B.

In particular, E is not reduced to B on Q(=o¢’). But Q(=0¢)}B =
O(=1)| B, since B = Alo’',7'] = o ~ {£}. Tt follows that there are points
X0 € Q(=0’) and yg € Q(=1') such that xo B = yo | B and e(xg) # e(yo);
that is, we have e(x¢)(k) = p # g = e(yo)(k) forsome k and p,q = 0,1, p #q.

As e is continuous, there are strings u, v € 2= of equal length 1h(u) = 1h(v)
suchthat o’ Cu, v Cv,x0 € X = Q(=u), yo €Y = Q(=v), and e(x)(k) =
p,e(y)k) =gq forall x € X, y € Y. We are going to define a special Eq-large
product P C,41 Q suchthat P(=0’) € X and P(=1’) C Y. In this case we
shall have e[P (= 0¢’)] Ne[P(=1’)] = & by construction, as required.

To carry out the construction of P, let r; = o[j], s; = u[j], t; = v[j] for
all j.

Consider any index j # €. Then xo(j) = yo(j) (as xo } B = yo | B), and then
easily r; C sj = t;. It follows that the set §; = X(j) = Y(j) = Q()(—=s,)
belongs to SLS and satisfies S; € Q(j)(—r;). By Lemma 4.6, there is a set P; €
SLS satistying P; C,,; O(j) and Pj(—r;) = S;, where v; = vy = 1h(r;).

Now consider the index £ itself. The strings s¢ and ¢; are different (of the same
length), but still satisfy 7, ~0 = o'[£] C s¢, r¢”1 = T'[€] C tg. It follows that
the sets Sy = X({), V; = Y() satisfy Sy = H(—sy) € H(—r¢"0), V; =
H(—ty) € H(—r¢"1), where H = Q({). And moreover, [S¢]g, = [V¢]g, holds
by Lemma 4.3(ii). Lemma 4.7 yields a set H' € SLS satisfying H' <,y H, where
Vg = Ve = 1h(s),and H'(—s"0) C S¢, H' (—s"1) C V.

We finally define a special Eg-large product P suchthat P(¢) = H' and P(j) =
P; for all j # {. Then by construction P S, O, P(=0') € X, and
P(=1') €Y, as required.
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Step 2. Iterating the construction at Step 1, we obtain a special Eg-large product
R C,,41 O which fulfills (2)E for all pairs o/, 7’ € 21 of the form ¢’ = 670,
! =071, where 0 € 2.

Step 3. We claim that R satisfies (2)E for all pairs o/, 7’ € 21 of any form.
Indeed, let 6’ = 07i, ©/ = "k be any pair in 21, where 0,7 € 2™ and
i,k € {0,1}. By (2)E for the pair o, 7, either E is reduced to U = Afo, 1]
on R(=0) U R(=71), or e[R(=0)] Ne[R(=71)] = . In the second case,
e[R(=0’)] Ne[R(=1)] = @. Thus, we can assume without loss of generality
that E is reduced to U on R(=0) U R(=71). Let U' = Ao’,7']. If i = k or
¢ ¢ U,then U = U’, so that (2)E relative to o’, 7’ follows from (2)E relative to
o, t. Thus, we can assume without loss of generality that o’ = 670, v/ = 771,
and £ € U.Then U’ = U ~{{} = U N B, of course.

Because of the achievement at Step 2, we have two cases.

Case 3.1: E is reduced to B on R(=0") U R(=07), where o] = 0 "1. Prove
that E is reduced to U’ on R(=0¢’) U R(=1'), so that (2)E(i) holds for ¢’, 7’.
Indeed, assume that x € R(=0c’), y € R(=1'), x U =y U’. Let x' € 2%)®
be defined so that x' } B = x | B but x'(£) = y(£). Thus, if j # £, then x'(j) =
x(j) € R(=0")(j) = R(=0()(j) (because R(=0')| B = R(=o0() | B).
While for £ itself we have x'({) = y({) € R(=1') = R(=0}) (because now
we have £ € U = A[r/, o{]). It follows that x" € R(= o). Therefore, by the Case
3.1 hypothesis, we have e(x) = e(x’). On the other hand, x’ MU = y } U ; there-
fore, e(y) = e(x’) without loss of generality, as assumed above. Thus e(x) = e(y),
as required.

Case 3.2: e[R(=0")|Ne[R(=01])] = @. However, E isreducedto U = Ao, 1]
on R(=0)UR(= t) without loss of generality as assumed above and, hence, on the
smaller set R(=07) U R(=1') as well, while R(=07) U = R(=1) MU (since
the equality U = A[oy,t'] = Ao, 7] holds). We conclude that e[R(=07)] =
e[R(=1')]. It follows that e[R(=0c")] N e[R(=1')] = &; hence, R satisfies
(2)E(i) for o/, ’.

Thus, indeed, we have got a special Eq-large product R <, Q satisfying (2)E
for all o/, 7/ € 2T (and still satisfying (1)E).

It remains to repeat the same procedure for F. O

8 Proof of the Main Theorem: Conclusion

We come back to the proof of Theorem 2.1. Lemma 7.1 yields an infinite sequence

- <3 02 <3 Q1 <1 Qp of special Eg-large products Q,, such that each Q,, is
m-good. The limit special Eq-large product P = | J,, Om € SLP satisfies P C,41
Qm for all m by Lemma 5.3. Therefore, P is m-good for every m and, hence, we
can freely use (1)E, F and (2)E, F for P in the following final argument.

Case I: if m < w, 0,7 € 2", and e[P(=0)] Ne[P(=1)] = T, then we have
fIP(=0)]Nf[P(=1)] = @. Prove that F C F on P in this case, as required by the
“either” option of Theorem 2.1. Let x, y € P and x E y fails, that is, e(x) # e(y);
show that f(x) # f(y). Pick a,b € 2 satisfying {x} = (,, P(=a m) and
{(y}=NnP(=blm).As x # y,wehave e[Q(=a | m)|Ne[Q(=b|m)] =0
for some m by continuity and compactness. Then by the Case 1 assumption,
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fIP(=alm)] Nf[P(=blm)] = @ holds, hence f(x) # f(y), and x F y
fails.

Case 2 = not Case 1. Then there is a number m <  and a pair of strings
o/ =07i, v = 17k € 2"F! such that e[P(=0¢')] Ne[P(=71')] = @, but
fIP(=0)]NfIP(=1')] # @; hence, the relation F is reduced to U’ = Afo’, T']
on Z' = P(=0')U P(=1') by (2)F. Assume that m is the least possible witness
of this case. We are going to prove that the special Eq-large product P (= o) satisfies
the “or” option of Theorem 2.1, with the number £ = ¢ (m); that is, (*) F is reduced
to w ~{{} on P(=0),and (**) E captures £ on P(=0).

Lemma 8.1 The relation E is

(A) reduced to U = Alo,t] onthe set Z = P(=0)U P(=1),

(B) not reducedto U’ = Afo’, 7'l on Z' = P(=0’)U P(=1'),

(C) not reduced to w ~ {£} on any special Ey-large product P’ C P(=o0).
In addition, (D) U # U’, hence £ € U and U’ = U ~ {{}.

Proof (A) Otherwise we have e[P(=0)] Ne[P(=1t)] = @ by (2)E, and hence
fIP(=0)]Nf[P(= 1)] = @ by the choice of m; then f[P (= o')|Nf[P(=1)] =
@ as well, contrary to the fact that F is reduced to U’ on P(=0’) U P(=71'),
because P(=o0’) | U’ = P(=1') } U’ by Lemma 5.2(ii).

(B) The otherwise assumption contradicts e[P (= oc’)] Ne[P(=1)] = .

(D) This follows from (A) and (B).

(C) Otherwise E is reduced to w ~ {£} on P(=o0) by (1)E. Then E is reduced
to U’ on P(=0) by Lemma 6.1 since U’ = U ~ {£} by (D).

Claim 8.2 The relation E is reduced to U’ on Z .

Proof Let x,y € Z = P(=0)U P(=71),andlet x U’ = y U’. As the
equality P(=0) U = P(=7)| U holds by Lemma 5.2(ii), there are x’,y’ €
P(=o) with x U =x'MU and y U = y' }U. We have x E x’ and y E y’ by
(A),and x’ E y’ since E isreducedto U’ on P(=0). We conclude that x E y. [

It follows that E is reduced to U’ on Z' C Z as well. But this contradicts (B). The
contradiction proves the lemma. O

Now, as U’ = U ~{{} C w ~ {{}, the special Eg-large product P (= ¢’) witnesses
that F is reduced to @ ~ {£} on P (=) by (1)F. Thus we have (*).

To check (**), let x,y € P(=0),and let x E y; prove x({) = y({). Indeed,
{x} =, P(=aln) and {y} = (), P(=bIn), where a,b € 2, 0 C a,
oCb.LetU =(),Alaln,bln]. Then x fU =y | U, since

P(=atn)Alaln,btn]=P(=bln)Alaln,bn]

for all n. Thus it suffices to check £ € Afa ['n,b ['n] forall n.

Suppose to the contrary that £ = ¢(m) ¢ Ala | n,b | n] for some n. Then n >
m because a | m = b } m = o. However, the relation E is reduced to Afa ['n,b ['n]
on P(=al'n) by 2)E, since x E y. Yet we have £ ¢ Ala |'n,b | n]; therefore,
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Alatn,bn] € w~{{}. It follows that E is reduced to @ ~ {£} on P(=a |'n).
But this contradicts Lemma 8.1(C) with P/ = P(=a |'n).
To conclude Case 2, we have checked (*) and (**). [ (Theorem 2.1)

9 An Application to Degrees of Constructibility

Consider the set SLP = SLS® of all special Eg-large products as a forcing notion,
over the background set universe V. Thus SLP adjoins an SLP-generic sequence
a = (ar)r<w € (29)?, of SLS-generic reals, to V.

Lemma 9.1 The forcing SLP preserves N1 and admits continuous reading of
names for reals.*

Proof  Arguing in the background set universe V, note that if sets D, < SLP
(n < w) are open dense in SLP, then by Lemma 5.2(iv), for any P € SLP there is
asequence --- &4 P3 C3 P, &5 Py € Py asin Lemma 5.3 such that Py € P and
for all m, if o € 2™, then P,,(= o) € D,,. This implies both claims of the lemma,
by standard arguments. O

Theorem 9.2 Let a sequence d = (ay) k<o € (2°)? be SLS-generic over V.
Assume that x,y € 2% are reals in V[a]. Then either x € V[y] or there is an index
L such that ay € V[x] and y € V[{ak)r2e]-

Proof By Lemma 9.1, there exist continuous functions e,f : (2¢)® — 2%, coded
in V, such that x = e(a), y = f(a). Argue in V. Define X E ¥ if and only if
e(X) = e(y), and X F y if and only if f(X) = f(¥), for X,y € (22)?. The set D
of all special Eg-large products P € SLP such that either F C E on P, or, for some
{ < w, E captures £ on P and F is reduced to @ ~ {{} on P, is dense in SLP
by Theorem 2.1. Therefore, a belongs to a set P € D (or, to be more exact, to the
topological closure of P € V in V[a]).

Case I: F C E on P in V. This means that f(X) = f(J) = e(X) = e(y) for
all X, y in P, in V, and hence, by Shoenfield, f(X) = f(¥) = e(X) = e(y) for
all X, y in (the closure of) P, in V[a]. It follows that there is an analytic function
h,coded in V, such that e(X) = h(f (X)) for all X, y in (the closure of) P, in V[a].
In particular, @ = h(b), and hence a € V[b].

Case 2. { < w, and it is true in V that E captures £ on P and F is
reduced to w ~ {€} on P. The first part of this condition ensures us that, in
V., e(X) =e(y) = X(£) = y({) forall X, ¥ in P. Similarly to Case 1, this leads
to an analytic function /, coded in V, such that X(£) = h(e(X)) forall X € P, in
Vld], and hence ay = a({) = h(e(a)) = h(a) € V|a]. Similarly using the second
part of the Case 2 hypothesis, we get another analytic function g, coded in V, such
that b = g({ak)r2e) € V[{ak)k-e], as required. O

Corollary 9.3  Let a sequence @ = (ag)k<w € (2°)® be SLS-generic over V,
andlet X = {ay : k < w}. Assume that a,b € 2% are reals in V[d]. Then a € V[b]
ifand only if X NV][a] € X NV[b].

One may ask whether, under the conditions of Corollary 9.3, it is true in V[a] that for
every set U C w there is areal a € 2% satisfying X N V]a] = {ar :k € U}. The
answer is positive for sets U € V, but generally the answer is negative; for instance,
take U = {k + 1:a¢(k) = 0} (see Example 2.2).
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Notes

. The first family consists of equivalence relations classifiable by countable structures, the

second of those Borel reducible to an analytic P-ideal.

“We avoid any attempt at organizing the very complicated class of smooth equivalence
relations” [7, p. 232].

Given a function & and X C dom#, the set h[X] = {h(x): x € X} is the h-image of
X.

As noted by the anonymous referee, the forcing SLP, and basically SLS itself, does
not necessarily preserve cardinals bigger than R1. This is essentially due to the same
reasons as for the Sacks forcing and its countable-support products, although the splitting
constructions behind the result are different and essentially more complex for SLS than
for the Sacks forcing.
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