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Abstract—In a space of dimension 30 we find a pair of parallel hyperplanes, uniquely deter-
mined by vertices of a unit cube lying on them, such that strictly between the hyperplanes
there are no vertices of the cube, though there are integer points. A similar two-sided example
is constructed in dimension 37. We consider possible locations of empty quadrics with respect
to vertices of the cube, which is a particular case of a discrete optimization problem for a
quadratic polynomial on the set of vertices of the cube. We demonstrate existence of a large
number of pairs of parallel hyperplanes such that each pair contains a large number of points
of a prescribed set.

DOI: 10.1134/50032946012020081

1. PROBLEM SETTING

Our results are valid for any linearly ordered field, but for brevity we will speak about the real
field R. A hypercube (or simply a cube) is a polyhedron in a space of dimension n whose vertices
have coordinates 0 or 1. The weight of a vertex of a cube is the number of its unit coordinates.
A quadric in R™ is the set of zeros of a real (possibly, reducible) quadratic polynomial f(x1,...,x,).
A quadric f = 0 is said to be empty if values of the polynomial f at vertices of the cube are either
all nonnegative or all nonpositive. In what follows, we assume the first case. We consider the
structure of the set of minimum points of a quadratic polynomial f on the set of all vertices of the
cube, i.e., location of an empty quadric with respect to the cube. A particular case of a quadric is a
pair of parallel hyperplanes. In more detail, we consider the possibility of special arrangements of
parallel hyperplanes with respect to vertices of the cube or to an arbitrary set of points in general
position in an n-space.

Finding the minimum of a general quadratic polynomial on the set of vertices of the cube is an
algorithmically hard problem. Efficient algorithms—for instance, the pseudo-Boolean programming
method [1]—are applicable in particular cases only. In [2,3], an overview of heuristic algorithms
is presented. A particular case of optimization problems is the case of problems with separated
variables. In [4] (see also references therein), a multicriteria minimax problem is considered where
optimization of quadratic forms is performed over sets of vertices of two unit cubes of different
dimensions. Results of [5] imply that vertices of the cube lying on an empty quadric lie on a empty
cylinder (non-full-rank quadric) that does not contain other vertices. A degenerate case consists in
describing vertices of the cube that lie on a pair of coinciding hyperplanes.

Many papers (see, e.g., [6-9]) give estimates for the number of vertices lying on a quadric.
A hyperplane contains at most half of all vertices of the cube. However, if the corresponding linear
function depends on each of the n variables nontrivially, the fraction of vertices of the cube lying
on this hyperplane tends to zero with growing n [6]. A similar result was obtained for a quadratic
polynomial with sufficiently many monomials: the fraction of vertices of the cube at which such a
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polynomial takes a fixed value tends to zero with growing dimension of the cube [7]. An estimate
for the number of vertices of the cube lying in a half-space is given in [8].

An important discrete optimization problem is as follows: Is a given vertex of the cube nearest
to a given hyperplane? In other words, we are given parallel hyperplanes, the original one and a
parallel hyperplane passing through the given vertex, and it is required to determine whether there
is at least one vertex of the cube lying strictly between them. Since a pair of hyperplanes can be
represented as the zero set of a reducible quadratic polynomial, this problem is a particular case
of the quadratic polynomial minimization problem. To find the minimum, it is important to know
how minimum points can be located among vertices of the cube [10]. In [11], coverings of vertices of
the n-cube by hyperplanes are considered. The following result is proved: For any m hyperplanes
(m < n) that do not cover all the vertices of the cube, at least 2"~ vertices of the cube remain
uncovered.

Search for (or proving nonexistence of) a vertex of the cube lying strictly between two hy-
perplanes given by equations with integer coefficients can be performed by means of a dynamic
programming algorithm proposed in [12]. For an overview of such algorithms, see [13]. In this
problem, the complexity of the dynamic programming algorithm depends polynomially on the di-
mension of the space but rapidly grows with the number of digits in coefficients of equations. Such
algorithms are said to be pseudopolynomial. At the same time, mutually coprime integer coef-
ficients of an equation specifying a hyperplane can be large, which reduces the efficiency of the
dynamic programming algorithm.

It is much easier to determine whether there is an integer point strictly between two parallel
hyperplanes given by equations with integer coefficients. Here the runtime is determined by the
complexity of the Euclidean algorithm for finding the greatest common divisor; as is well known, this
runtime is bounded by a polynomial of the total number of digits in the coefficients of the equation.
In low dimensions, if one of the parallel hyperplanes is uniquely determined by vertices of the cube
lying on it, nonexistence of vertices of the cube lying strictly between the hyperplanes is equivalent
to nonexistence of integer points strictly between them. This is easily verified in dimensions two and
three by exhaustive search over a small number of variants. In what other dimensions does this hold?
Theorem 1 shows that in dimension 30 this is not the case (apparently, the result of the theorem can
be strengthened). It is not clear whether checking the nonexistence of vertices of the cube between
parallel hyperplanes can be reduced to checking the nonexistence of integer points between them
in intermediate dimensions. Thus, Theorem 1 illustrates the computational complexity of the
considered problem. An example in this theorem possesses an interesting arithmetic structure,
which could be of use when searching for analogous examples.

The problem of reconstructing a matrix given a set of its entries or relations between them often
arises in analysis of incomplete data and in factor analysis. This is an applied problem occurring
in image recognition, NMR analysis of molecule structures, and data filtering design in computer
networks. Efficiency of matrix reconstruction algorithms is usually based on the assumption of
uniqueness of reconstruction. Problems of finding a symmetric matrix given relations between its
entries are considered in [14,15]. A pair of parallel hyperplanes corresponds to a symmetric matrix
of rank one, i.e., matrix of a quadratic form.

2. EXAMPLE OF THE GEOMETRIC RELATIONSHIP BETWEEN
PARALLEL HYPERPLANES, VERTICES OF THE CUBE,
AND INTEGER POINTS IN AN n-SPACE

Theorem 1. (a) In the space R0 there exist a hyperplane H uniquely determined by vertices of
the cube lying on it and a parallel hyperplane H' containing at least one vertex of the cube such that
the open domain between H and H' contains no vertices of the cube but contains integer points.
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Table 1
t Uy Ug ug Uy us x1 Y1 21
v 1 1 0 0 0 0 1 1 1
v’ 1 0 1 0 0 0 1 1 1
v 1 0 0 1 0 0 1 1 1
v 1 0 0 0 1 0 1 1 1
v 1 0 0 0 0 1 1 1 1
w 0 1 1 1 1 1 1 1 1

(b) In the space R37 there exists a hyperplane H uniquely determined by vertices of the cube
lying on it such that the distance from H to the nearest vertex of the cube that does not lie on H
1s strictly greater than the distance to the nearest integer point that does not lie on H.

Proof. (a) Consider a linear form in 30 variables
[ =1260t + 315(u1 + ... +us) +252(x1 + ... +x6) + 180(y1 + ... +yg) + 140(21 + ... + 210).

Its coefficients can be expanded into (pairwise coprime) factors 4, 5, 7, and 9: 1260 =4-5-7-9,
315=5-7-9,252=4-7-9,180=4-5-9, and 140 = 4 -5- 7. Thus, one variable has coefficient

4-5-7-9, and the number of coefficients of the form 1 5};7 9 isp+ 1.

Let a hyperplane H be given by f = 2147, where

2147 = 1260 + 315 + 252 + 180 + 140.

Let us show that vertices of the cube that lie on H generate the whole space R3?. Consider
vertices v, v, v”, v"”, v"”, and w lying on the hyperplane f = 2147. Their coordinates are given in
Table 1, where rows correspond to the vertices, and columns to coordinates (unspecified coordinates
of all these vertices are zero).

The linear combination @ = v + v’ + v” + v + v — w has only four nonzero coordinates:
a; = 5 and a,, = ay, = a,, = 4. Similarly, there exist other linear combinations of vertices with
exactly four nonzero coordinates: b with b, = 6 and b,, = b,, = b,;, = 5, ¢ with ¢, = 8 and
Cuy = Cgy = C;; = 7, and d with d; = 10 and d,, = d;, = d; = 9. The vertices v, a, b, ¢, and d
are linearly independent. Indeed, one easily checks that

1 1111
5 0 4 4 4
6 5 0 5 5
8 7 7 0 7
10 9 9 9 0

is a full-rank matrix. Hence, one can compose linear combinations of v, a, b, ¢, and d such that
only one coordinate among t, u1, 1, y1, and z; is nonzero.

Other cases differ only by permutations of coordinate indices, which preserve the form f. Hence,
for each of the coordinates there exists a linear combination of vertices of the cube lying on H for
which only this coordinate is nonzero. Hence, vertices of the cube satisfying the equation f = 2147
lie on a unique hyperplane.

Since the greatest common divisor of all coefficients of the linear form f is 1, this form takes all
possible integer values at integer points. Let us prove by contradiction that this form never takes
the value 2146 at vertices of the cube. Let v be such that f(v) = 2146. Since 2146 = 2 (mod 4),
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Table 2
t uy u us Uy us ug x1 Y1 21
v 1 1 0 0 0 0 0 1 1 1
v’ 1 0 1 0 0 0 0 1 1 1
v 1 0 0 1 0 0 0 1 1 1
v 1 0 0 0 1 0 0 1 1 1
v 1 0 0 0 0 1 0 1 1 1
v 1 0 0 0 0 0 1 1 1 1
w 0 1 1 1 1 1 1 1 1 1

315 = 3 (mod 4), and the other coefficients are divisible by 4, equality of residues modulo 4 occurs
only if vy, + vy, + Vyy + Vuy + vy, = 2. Similarly, 2146 = 1 (mod 5) and 252 = 2 (mod 5), whence
Uz, + ...+ Uys = 3. Similarly, 2146 = 4 (mod 7) and 180 = 5 (mod 7), whence vy, + ...+ vy, = 5.
Similarly, 2146 = 4 (mod 9) and 140 = 5 (mod 9), whence v,, + ...+ v, = 8. But then the sum of
the last four terms of the form f is 315-2+252-3+180-5+140-8 = 3406 > 2146, a contradiction.
Since f(0) = 0 < 2147, there exist hyperplanes parallel to H and passing through vertices of
the cube in the corresponding half-space. Denote by H’ the hyperplane nearest to H among such
hyperplanes. Between H and H' there are no vertices of the cube but there are integer points.

Remark 1. On the other hand, the form attains the value 2148 at each of the vertices v satisfying
Vp = Uyy = Uyy = Vyz = Vyy = Vyy = 0, Vg +. ..+ 0z =4, 0y, +...+vyy =4, and v, +.. . v, = 3.
Indeed, by substituting these equalities into f, we obtain

f(v) =252-4+4180 -4+ 140 - 3 = 2148,

Hence, it is not true that the distance from H to the nearest vertex of the cube that does not lie
on H is strictly greater than the distance to the nearest integer point that does not lie on H.

Remark 2. Statement (a) of Theorem 1 becomes obvious if we do not require that both hyper-
planes H and H’ contain vertices of the cube.

Remark 3. This statement does not hold in spaces of low dimensions. For instance, for R? and R*

this can easily be shown by exhaustive search over all possible variants. It would be interesting to
find the lowest dimension for which the statement is true.

(b) Consider a linear form in 37 variables
f = 3465t +693(u1 + ... +ues) +495(x1 + ... +5) +385(y1 + ... +y10) + 315(21 + ... + z12).

Its coefficients can be expanded into (pairwise coprime) factors 5, 7, 9, and 11: 3465 =5-7-9- 11,
693 =7-9-11,495=5-9-11,385 =5-7-11, and 315 =5-7-9. Thus, one variable has coefficient

5-7-9-11, and the number of variables with a coefficient of the form 5-7-9-1 isp+ 1.
p

Let a hyperplane H be given by the equation f = 5353, where

5353 = 3465 + 693 + 495 + 385 + 315.

Let us show that vertices of the cube that lie on H generate the whole space R37. Consider
vertices v, v’, v”, v", v"", v""”, and w lying on the hyperplane f = 5353. Their coordinates are
given in Table 2, where rows correspond to the vertices, and columns to coordinates (unspecified

coordinates of all these vertices are zero).
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The linear combination a = v+ v’ +v” +v" +v"" +v""” — w has only four nonzero coordinates:

a; = 6 and a,, = ay, = a;, = 5. Similarly, there exist other linear combinations of vertices with
exactly four nonzero coordinates: b with by = 8 and b,, = by, = b,, = 7, ¢ with ¢; = 10 and
Cuy = Czy; = ¢z, = 9, and d with dy = 12 and d,,, = d;, = d,, = 11. The vertices v, a, b, ¢, and d
are linearly independent. Indeed, one can easily check that

1 1 1 1 1
6 0 5 5 5
8 7 0 7 7
10 9 9 0 9
12 11 11 11 O

is a full-rank matrix. Arguing in the same way as in the proof of statement (a), we conclude that
vertices of the cube satisfying the condition f = 5353 lie on a unique hyperplane.

Since the greatest common divisor of all coefficients of the linear form f is 1, the form takes all
possible integer values at integer points. Let us prove by contradiction that the form never takes the
value 5352 at a vertex of the cube. Let a vertex v be such that f(v) = 5352. Since 5352 = 2 (mod 5),
693 = 3 (mod 5), and the other coefficients are divisible by 5, equality of residues modulo 5 occurs
only if v, + ...+ vy, = 4. Similarly, 5352 = 4 (mod 7) and 495 = 5 (mod 7), whence vy, + ...+
Uzg = 5. Similarly, 5352 = 6 (mod 9) and 385 = 7 (mod 9), whence vy, + ...+ vy,, = 6. Similarly,
5352 = 6 (mod 11) and 315 = 7 (mod 11), whence v;, + ... + v, = 4. But then the sum of the
last four terms of f is 693 -4 + 495 -5+ 385 -6 + 315 -4 > 5352, a contradiction.

Now we prove in the same way that the form never takes the value 5354 at a vertex of the cube.
Let v be such that f(v) = 5354.

Since 5354 = 4 (mod 5) and 693 = 3 (mod 5), we have vy, + ... + vy, = 3. Similarly,
5354 = 6 (mod 7) and 495 = 5 (mod 7), whence vy, +...4+v;, = 4. Similarly, 5354 = 8 (mod 9) and
385 = 7 (mod 9), whence vy, +...+v,,, = 5. Similarly, 5354 = 8 (mod 11) and 315 = 7 (mod 11),
whence v,, + ... + v, = 9. But then the sum of the last four terms of f is 693 - 3 + 495 -4 +
38554315 -9 > 5354, a contradiction.

Thus, both “neighboring” hyperplanes do not contain vertices of the cube but contain integer
points. A

Remark 4. 1t is interesting to note that in the proof of both parts of Theorem 1 the determinants
of the considered matrices are equal to the values of the form f on the hyperplane H, i.e., to 2147
in the first case and 5353 in the second.

Question. Can the condition that the hyperplane H is uniquely determined be replaced by the
condition that it contains sufficiently many vertices of the cube with linearly independent tensor
squares (more precisely, tensor squares of vectors composed of coordinates of the vertices)?

3. ADMISSIBLE ARRANGEMENTS OF VERTICES OF THE CUBE
ON AN EMPTY QUADRIC

Theorem 2. Let us be given an empty quadric f = 0 in an n-dimensional space R™ and an
nteger w, 2 < w < n — 1. If all vertices of the cube of weights 0 and w lie on this quadric, then
all other vertices of the cube also lie on the quadric.

Proof. The origin lies on the quadric. Hence, the polynomial f is of the form
flxe,. o zn) = Zfijmimj + Zfﬂu
ij i
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where f;; = f;; form a symmetric matrix of the quadratic form. Denote D = Z( fii + fi) and

1
B =3 fij. By summing values of the polynomial at vertices of weight w, we obtain the equality

i#j
(n—1)! (n—2)! o
(n—w) (-1 (= w)w—2p P =
o +D+B=0, (1)

-1 . .. . .
where v = " 1 > 1. Since the quadric is empty, values of the polynomial f are nonnegative at
w

all vertices of the cube. In particular,
f(1,...,1) =D+ B >0. (2)

The nonnegativity of values of f at all vertices of weight 2 implies that for any pair of indices i # j
we have

(fii + 1) + (35 + f3) + (fij + f5) 2 0. (3)
The nonnegativity of values of f at vertices of weight 1 implies that for each index ¢ we have
fii + fi > 0. Hence, D > 0. Subtracting (1) from (2), we obtain D(1 —~) > 0, whence D < 0.
Therefore, D = 0, and for each index i we have f; + f; = 0. Also, from (1) we obtain B = 0.
By (3), for each pair of indices i # j we have f;; > 0. Now from B = 0 we obtain f;; = 0. The
polynomial f = Y ( fmx? + fix;) with fi; + f; = 0 for each i is zero at each vertex of the cube. A

(2

Ezample. The empty quadric ) z;z; = 0 contains all vertices of the cube of weights 0 and 1
1>]
and only them. The empty quadric

n n 2
nZ(mZ)z - < xl> =0
i=1 i=1

contains all vertices of the cube of weights 0 and n and only them. Therefore, bounds for the
weight w in Theorem 2 cannot be improved.

Remark 5. Theorem 2 remains valid for any affine image of the cube in any dimension under
the corresponding redefinition of the weight. This allows one to find 2¥ vertices of the original
cube on a quadric if he knows k + 1 such vertices arranged in a certain way on some k-dimensional
parallelepiped embedded in the cube.

In [9], the following statement is proved, a particular case of which is given in [11].

Proposition 1. Let f(x1,...,x,) be a polynomial in n variables of degree d over an arbitrary
field k. If at least one vertex of the cube does not lie on the variety f = 0, then the fraction of
vertices lying on it is at most 1 —27%.

In particular, if seven of eight vertices of a 3-dimensional cube lie on a quadric, the eighth also
does. This is the only restriction on a possible location of vertices of the 3-dimensional cube lying
on arbitrary quadrics. If we restrict ourselves to empty quadrics only, it is possible to obtain a
constraint involving four vertices only. For instance, if four vertices of the 3-dimensional cube with
coordinates (0,0,0), (0,1,1), (1,1,0), and (1,0, 1) lie on an empty quadric, the same holds for all
the other vertices.

4. NUMBER OF PAIRS OF PARALLEL HYPERPLANES
CONTAINING A GIVEN SET OF POINTS

Let k be an arbitrary field. Consider the question of the number of parallel hyperplanes in the
n-space k™ such that every pair contains a prescribed set of points of this space.
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Proposition 2. For any field k any set S consisting of n+ 1 points in K™ in general position
there exist exactly 2" — 1 parallel hyperplanes such that every pair contains all points of S.

Proof. Let us show that for any partition of S into two nonempty sets I and J there exists
a unique pair of parallel hyperplanes such that one of them contains the vertices from I and the
other from J. Without loss of generality we may assume that the origin belongs to J. Then
coefficients of a linear form defining both hyperplanes must satisfy an inhomogeneous system of
linear equations where free terms equal zero or one according to the partition into I and J. The
system is nondegenerate because of independence of points of S. Hence, it has a unique solution
for a fixed J. The number of proper subsets J is 2! — 2. Since interchanging I and J preserves
the pair of hyperplanes, the total number of such hyperplanes is 2" — 1. A

Proposition 3. For n > 2 there exists a set of n+ 2 points in k™ lying on 3 -2""2 — 1 pairs
of parallel hyperplanes.

Proof. Consider a set S of n 4+ 1 points in general position. Take any three points of S and
complete a (plain) parallelogram. The sought-for set is the union of S and the fourth vertex of
the parallelogram. Partition this set into subsets I and J as in the proof of Proposition 2. Linear
dependence of vertices of the parallelogram imposes an extra constraint: .J contains an even number
of vertices of the parallelogram. If J contains exactly two such vertices, then these are vertices of
one side of the parallelogram. Then 6/8 = 3/4 of all choices of I and J are suitable, except for the

. 3 ..
cases I = @ or J = @. Thus, in total we have 4(2”_2/2 —1) = 3.2 — 1 partitions. Each of
these partitions defines a unique pair of parallel hyperplanes. A
Propositions 2 and 3 show nontriviality of the optimization problem: if we know in advance
that vertices of the cube under consideration lie on a pair of parallel hyperplanes (or on a quadric

of low rank), then there may be many choices for such hyperplanes, and the complexity of the
corresponding integer programming problem varies depending on a particular choice.
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