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Preface

In 1994 the mathematical community marked the 100th anniversary of the birth
of Mikhail Suslin, a Russian mathematician of great talent and tragic destiny. Suslin
was born in Saratov province on 15 (3) November 1894, graduated from Moscow
University in 1917, taught in Ivanovo-Voznesensk Polytechnic Institute for some
time, and died of typhoid in his native place in October 1919.1

When the author received an honorary offer, at the conference devoted to the
memory of Suslin, held in Saratov in the summer of 1994, to write an article for
Uspekhi Matematicheskikh Nauk about one of the modern sections in the founda-
tions of mathematics where Suslin's ideas have found a new realization, he did not
hesitate long before he chose the Suslin sets to be his subject.2 Neither did the
choice of a specific topic cause much hesitation: topologies generated by effectively
Suslin sets, the set-theoretic technique that arose in the late 1970s as a synthesis
of some ideas of the topology of complete metric spaces (and close to them) and
'effective' descriptive set theory, the technique that has now become, after a num-
ber of remarkable successes, perhaps the most popular method in descriptive set
theory. It is typical, for example, that one of the two main lecture courses at the
international conference of topologists in Amsterdam (August 1994) was devoted
mostly to applications of this method in topology and descriptive set theory.3

Only the choice of the style for the article gave rise to some hesitation: should
it be a wide survey of results or a more confined presentation, but showing, to
some extent, the structure of the proofs. The author has chosen the second alter-
native, assuming that such exposition of the method4 in an accessible journal of the
highest rank will better help Russian mathematicians to become acquainted with
applications of the topology of effectively Suslin sets.

It is a pleasure for the author to mention the help of V. M. Tikhomirov and
V. A. Uspenskii in writing and publishing this paper.

Introduction

Generally, the simpler the sets we consider, the easier it is to prove their prop-
erties. Suppose that one or another property that we are interested in has been
proved for all 'simple', say, open sets of the real line E, the Baire space Ν = ωω,
or some other Polish space,5 but we wish to extend the result to more complicated
sets, for instance, Borel or Suslin sets. As a rule, this requires, of course, more
sophisticated techniques. However, there is another approach.

1The article by V. Igoshin in this issue gives material on Suslin's biography. The article [7]
offers an extensive analysis of Suslin's mathematical activity. In [6] Tikhomirov covers important
historical and mathematical moments connected with activities of a group of young Moscow
mathematicians under the guidance of Ν. Ν. Luzin, to which Suslin belonged. All this makes it
unnecessary to go any further into these themes in this article.

2During Suslin's life, only one mathematical work was published under his name: the note [25]
in Comptes Rendus, one of the most authoritative journals of that time. This is where the Suslin
sets were introduced in mathematics-, Suslin himself called them the sets (A). They are known
also under the name the Α-sets, or the sets of the class Σ\.

3The material of the course delivered by A. S. Kechris is presented in his article [16].
4Apparently the first in Russian.
5That is, a complete separable metric space, often with the additional condition of the absence

of isolated points: a perfect Polish space.
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Namely, we change the topology of the space so that the more complicated sets
of interest to us become, for example, open in the new topology. It is necessary,
of course, to find out what is the form of the property that we wish to prove in
the new topology, and also to make sure that this new topology is good enough to
allow the argument about 'simple' sets that was allowed in the old Polish topology.

This approach turned out to be very successfully realized in descriptive set theory
via a topology whose idea is due to Gandy, but whose first remarkable application6

was obtained by Harrington. This is the topology with base formed by Z'J-sets, or,
more generally, sets of class Σ\ (ρ), where ρ £ Ή is fixed (the properties of such a
topology in practice do not depend on the choice of p).

Explanation of terminology. The class Σ\ consists of the sets that can be obtained
by an Α-operation on effective (in our case, computable) families of closed sets of
the space in question, which makes it natural to call the sets of Σ\ effectively Suslin.
In a more general sense, this term extends to the set of any class Σ\ (ρ), as soon as
the point ρ of the Baire space is fixed.

To demonstrate applications of the topologies generated by Suslin sets we have
chosen three theorems (all of them are among the most important of quite recent
results in descriptive set theory): these are Silver's theorem on the number of equiv-
alence classes of the co-Suslin (or, which is the same, Π|) equivalence relations (§3),
the theorem of Harrington, Kechris, and Louveau on the Glimm-Effros dichotomy
for the Borel equivalence relations (§4), and Louveau's theorem on representation of
plane Borel sets with vertical sections of a certain additive Borel class as a countable
union of Borel sets with sections of lower class (§5).

Before that, §2 contains an introduction to the class of topologies under con-
sideration, and §1 presents the main definitions and some principal theorems of
effective descriptive set theory7 used in the article.

This explains, in general, how the paper is organized.
The choice we have made in connection with the style of exposition has resulted

in some disregard for applications of the method, especially those related to measure
theory and Borel transformation groups, in favour of material on 'pure' descriptive
set theory, even though these allegedly applied problems mainly inspired the devel-
opment of the method itself. This circle of topics is covered by Kechris in [16].

§1. On effective descriptive set theory

This section is an introduction to terminology and a brief survey of some impor-
tant theorems of descriptive set theory, which, in principle, is sufficient for a topol-
ogist, say, who has worked with the descriptive theory and has some idea about
recursion theory, to follow the presentation.

6A new proof of Silver's theorem on co-Suslin equivalence relations; see §3 below. It should be
noted that neither Gandy nor Harrington has published materials on their pioneering research of
this subject; their priority has been recognized and become known from the work of successors.

7Certainly, this field of mathematics, like probably any other, includes essential 'folklore' know-
ledge, which is sometimes hard to formalize, and here, in particular, would require more space
than is available in this article. Therefore, preliminary acquaintance with effective descriptive
set theory, in the scope, say, of the article [5] by Martin, would help to understand the technical
details of our presentation.
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1.1. Spaces and sets. We consider sets of spaces X = u>k χ N m , where k, τη
are natural numbers, ω = {0,1,2,...} is the set of natural numbers, and Ή = ωω

is the Baire space. Points of these spaces (in particular, of ΖΝΓ) are denoted by the
letters p, q, x, y, z, or sometimes a, b, c, and natural numbers by the letters i, j ,
k, Ι, τη, η.

It is sometimes convenient to treat sets Ρ C X = uk χ N m as k + m-ary rela-
tions; thus, the formula P{n\,..., nk, x\,..., xm) expresses the same as the formula
{m,...,rik,xi,...,Xm} € P. We shall not use this style when a confusion with a
function may arise or when k + m = 1.

If we fix a discrete metric on ω (for example, S(k, I) — 1 for k Φ I), and the Baire
metric p(x, y) = n"1 on 'N, where η = max{n' : χ \ n' = y \ n'} for χ φ y g Ή, then
the spaces X = ωΗ χ Ή™ under consideration become separable complete metric
spaces; this metric and the topology generated by it will be called Polish metric
and topology in the sequel.

1.2. The classical hierarchies. The Borel hierarchy of classes Σ°, IT|, Δ°,
1 ^ ξ < ωχ, is defined by transfinite induction on ξ:

• Σ° = all the open sets of a given space;
• Π£ = the complements of the sets in Σ£; Δ£ = Σ£ Π ΙΤ|;
• Σ|? = countable unions of the sets in Π°, 1 <r/ < ξ for ξ > 1.
In particular, H° = the closed sets, Σ° = Ρ σ , Π§ = Gj, and so on.
We consider also the initial level of the projective hierarchy:
• Σΐ is the collection of all the projections of IT^-sets. In other words, a set

X C X belongs to Σ} if there is a (closed) II?-set Ρ C Χ χ Ν such that
}

• Π} = the complements of the sets in Σ^; Δ} = Σ | Π Τ1\.
By Suslin's theorem, Δ^ = all the Borel sets.

1.3. Enumeration of bases. All the spaces under consideration have a countable
base; thus, given an enumeration of all the base sets, every open set is determined
by a set of natural numbers, the indices of the base sets. The idea of the effective
theory is to consider only computable unions of base sets.

The question of how all this depends on the choice of a particular enumeration
of the base sets is of no interest here; we simply fix one specific enumeration for
each space.

Natural numbers. We put Bn+1 [ω] = {η}, and separately, Bo [ω] — 0 (the empty set).

The Baire space. Here we have to put in some effort.

Let rk,P = 2k(2l + 1) - 1 for k,l 6 ω (an arithmetic 'pair'). The enumeration
ω<ω = {sn : η 6 ω} of the set ω<ω of all finite sequences of natural numbers is
defined as follows: so = si = Λ (the empty sequence), and if η — rk,P Js 2, then
sn = sk

Al. We put Bn+i[ii] = {χ £Ή: sn C x}, and separately, Bo[>(] - 0.

The general case: the space X — ω1 χ Ν71. Let η = π*1 · · · π(*££", where π< is the
ith prime number. We put

Bn[X] = Bkl [ω] χ · · · χ Bkl [ω] χ Bkl+i [Χ] χ • • • χ Bk,+m [Χ]

for η ^ 1, and separately, B0[X] — 0 (this coincides with .Bi[X]).



Topologies generated by effectively Suslin sets 389

1.4. The effective hierarchy.
• Σ° (in the space X) is the class of all sets of the form X = \JnBf(n)\X\,

where / £ Ή is a computable function.
• Let ρ e !N. Then Σ$(ρ) is the class of all sets of the form X = \Jn Bf{n){X],

where / £ Ν is a function computable with respect to p.
(It can be assumed that a computable function / : ω —¥ ω is a function such that
there is a computer program for its evaluation. If we speak about a more general
concept of a program, which includes the use of values p(n) of a given function ρ
(which itself may fail to be computable), this is the computability with respect to p.
In general, some acquaintance with such notions is assumed.)

• 77? = the complements of the sets in Σ%; Δ\ = Σ\ Π 77 .̂
• Σ\ = the projections of the TZf-sets.
• Π{ = the complements of sets in Σ[; Δ\ = Σ\ Π Π{.
• The classes 77? (ρ), Δ\{ρ), Σ\(ρ), Π\(ρ), Δ\(ρ) are defined similarly.

The initial classes Σ® and Σ® (ρ) for any p, and hence all the remaining classes Τ"1/,
Γ/(ρ),8 contain only countably many sets, unlike their 'classical' prototypes Γ* .

We deliberately omit here the definition of the classes Γ? for 2 ^ ξ < ω\; this
question is not simple9 and will be. considered later, in §5.

This classification is by definition extended to sets of natural numbers as well as
subsets of the spaces ω*; in particular, since every point χ g Ή is a function from
Κ to N, that is, a subset of ω2 (as a graph), this gives a meaning to expressions of
the type χ € Σ\ (ρ), where χ and ρ belong to 3\f.

1.5. Relationships between the classes. For any ρ and i = 0,1, we have
Σ\(ρ) g Π[[ρ); on the other hand, Σ%{ρ) U 77?(p) C Δ\(ρ).

Moreover, the hierarchy is monotone in ρ in the sense that if q € Δ°(ρ), then
^i(?) Q A 1 (P) · The classes Γι are identical to Γ{(ρ) for ρ 6 zlj; in particular,
77 = 77(0), where the point 0 ί Nis determined by the condition 0(k) = 0 for
allfc.

Connection with the classical hierarchy: T\ =

Substitution of parameters: if P(x, y,z,...) is a relation of the class 7Ί

1

1(ρ) and
xo e Κ belongs to Δ\(ρ), then the relation Q(y, z,...) defined as P(xo,y, z,...)
also belongs to Γΐ(ρ). (As usual, Γ = Σ, Π or Δ.)

There are simple rules (see, for example, the book by Shoenfield [8], Chapter 7.8)
that allow evaluation of the class of a set obtained as a result of certain operations
applied to sets whose classes are known. These rules can be conveniently represented
by treating the sets as relations (see §1.1) so that the language of logic can be used.

Negation. The negation of a Σ\ (ρ)-relation is a relation of the class 77{ (ρ), and vice
versa. In terms of sets, this expresses the fact that the sets of Σ\{ρ) and Π{(ρ) are
mutually complementary.

8 It is customary to denote by 7̂  and Γ any of the classifiers Σ, Π, Δ or Σ, Π, Δ, respectively.
9Apart from relatively small, for example, finite values of ξ, in which case the definition is

quite elementary.
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Conjunction and disjunction. All the classes defined in §1.4 are closed with respect
to these operations (in the finite form).

Quantifiers of the type ω. The classes Σ°(ρ) and all Γ{(ρ), Γ = Σ, Π, Δ, are
closed with respect to the quantifier 3 η € ω. In other words, if P(n,x,y,...)
is a Σ® (p)-relation, say, then the relation Q(x, y,...) <—> 3 η s ω P(n,x,y,...)
belongs to the same class Σ® (p).

The classes Π^(ρ) and all Fl(p) are closed with respect to the quantifier Vz 6 ω.

Quantifiers of the type JJ. The classes Σ® (p) and I7j (p) are closed with respect to
the quantifier 3 ζ € Ή. The classes Π® (p) and 77̂  (p) are closed with respect to the
quantifier Vz e N.

These rules will be systematically used in our presentation.

1.6. Uniformization, reduction, and separation.

Uniformization. Let Ρ C Χ χ y. We say that a set Q C Ρ uniformizes Ρ if,
firstly, the projection of Q to X coincides with the projection of Ρ to X, that is,
formally, for any χ € X, if 3y P(x,y), then 3y Q(x,y), and, secondly, Q is a uniform
set, that is, a set whose intersection with any 'vertical line' χ = XQ contains at most
one point. A uniform set can be understood as the graph of a function that maps
a subset of X into y.

Principle 1 (Novikov-Kondo-Addison; see [8], Chapter 7.11). Let Ρ C Χ χ y be
α n\(p)-set, ρ £ Ή. Then there is α n\[p)-set Q C Ρ uniformizing P.

There are known important cases in which uniformization can be achieved via a
set of the class Δ\. We give one example, of special interest.

Corollary 2. //, under the conditions of Principle 1, V = ω, whereas X =
{x : 3y P(x,y)} (that is, the projection of Ρ to X) is a Z^(p)-sei, then the uni-
formizing set Q can be chosen in the class Δ\(ρ).

Proof. We take an arbitrary II\{p)-set Q C Ρ uniformizing P. Then Q automati-
cally belongs to Σ\ (ρ) since

Q{x,k) <—> xeXkVk' jik^Q(x,k').

Reduction and separation. We say that a pair of sets A', B' reduces the pair
A, B if A' C A, B' C Β, Α' Γ) B' = 0, but A'U B' - AU B. We say that a set C
separates A from Β if A C C and Β Π C = 0.

Corollary 3 [Reduction and separation]. Let ρ € Ή. Any pair of II\(p)-sets A, B
(in the same space) can be reduced by a pair of II\(p)-sets. If A and Β are disjoint

s, then there is a separating A\(p)-set.

Proof. The set Ρ = (A x {0})U(Bx {1}) belongs to Πΐ(ρ). We uniformize Ρ by a
set Q C Ρ in Π\(ρ); then A' = {x : Q(x,0)} and B' = {x : Q(x, 1)} are IIl(p)-sets,
which proves the reduction. To obtain the separation, it suffices to perform the
reduction of the complements.
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1.7. Enumeration of the classes Δ\(ρ). We recall that in each class
there are only countably many sets. One of the most important technical tools of
the effective theory is the existence of special enumerations of these classes.

Principle 4 [Part 1: enumeration of Δ\-sets]. There are a II\-set W C Ή χ ω
and an indexed family (Dn(p) : (p,n) £ W) of sets Dn(p) C Ν such that

(i) for any ρ £ Ν, the set {Dn(p) : (p,ri) £ W} is identical to the collection of
all A\(p)-sets X C N ;

(ii) the following sets belong to Π\:

{(ρ,η,χ) :\ν(ρ,η)&χ<ΕΌη(ρ)} and {(ρ,η,χ) : W(p,n)tx £ Ώη(ρ)}.

[Part 2: enumeration of Z\J-points]. There are a II\-set w C Ji χ ω and an
indexed family (dn(p) : (p,n) £ w) of points dn(p) € Ν such that

(iii) for any ρ £ Ή, the set {dn(p) : (p,n) £ w} is identical to the collection of
all Δ\(ρ)-points χ £ Ν;

(iv) the following sets belong to III:

{(p,n,dn(p)) : (p,n) £ w} and {{ρ,η,χ) : (ρ,η) e w&ar φ dn(p)}.

Thus, for any ρ € Ν, we have the enumeration of the family of all i ( )
X C N i n the form {Dn(p) : η £ W(p)}, where W(p) = {n : W(p,n)} is a set of
the class Π\(ρ), and the similar enumeration of the collection of all zij(p)-points
χ £ Ή. Both enumerations have convenient characteristics of definability that are
close to Δ\ (p)-definability. (It is known that, in reality, a Δ\ (p)-enumeration is
impossible in this situation.)

Proof. 1 0 Part 1. Using the technique of constructing universal sets (see [5],
Theorem 4.9) we can produce a pair of 77i-sets U,V CNxuxN that is doubly uni-
versal in the sense that, for any ρ £ X, if sets Χ, Υ C Ν belong to Π\ {ρ), then there
is an η € ω such that X = Upn = {x : U(p,n,x)} and Υ = Vpn = {x : V{ρ,η,χ)].

Corollary 3 gives a pair of IZ|-sets U' C U, V C V, that reduces the pair
U, V; in particular, U' Π V = 0. Let W = {{p,n) : Upn U Vj,n = Ή} and
Dn(p) = U'pn = {x : U'(ρ,η,χ)} for (p,n) € W. To prove that the second set
mentioned in (ii) belongs to Π}, one must use the fact that, for (p,n) £ W, the
sets Upn and Vpn are the complements of each other.

Part 2. Here the calculations are somewhat different. We start with a
iTi-set U C 7\f χ ω χ ω2 that is universal in the sense that, for any ρ 6 Ή, if a set
X C ω2 belongs to Πΐ(ρ), then there is a natural number η such that X = Upn —
{(k,l) : U(p,n,k,l)}. We uniformize U as a subset of (Ή χ ω χ ω) χ ω by a set
V C [/ of the class J7j. The main feature is that if Upn is already a function defined
on ω, that is, a point of Ή, then Vpn — Upn- Now we achieve the goal by putting

w = : Upn £J4} = {(p,n) : Vfc 3!/ U{p,n,k,l)}

10We give an outline of the proof here because, firstly, this is a key fact, and, secondly, it is
difficult to offer a reasonable reference to a source in Russian.
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and dn(p) = Vpn = Upn for ip,n) € w. To prove that the sets in (iv) belong to Π\,
one must keep in mind that, for (p, n) € w,

χ = dn(p) <—• VA,Z € ω (t/(p,n,M) -> *(*) = Z]

Corollary 5. Lei R(x,p,...) 6e α IJl-relation. Then the relation 3x 6

R(x,p,...) also belongs to Π\.

Proof. Applying Principle 4, we obtain

Consider the right-hand side. The quantifier 3 η is 3 η € ω, that is, it does not count.
It remains to observe that w(p, n) is a Π\-relation, and the equality χ = dn(p) can
be expressed by the Σ\-formula ->(x φ dn(p)).

Corollary 6. The set A = ({p,x) G Ή2 : χ e A\{p)) belongs to Π{.

Proof. A(p,x) ^>3x' ΕΔ\(ρ)(χ = Χ').

§2. Topologies generated by effectively Suslin sets

Now we have the terminology needed to formally introduce this family of
topologies.11

2.1. Topology.

Definition 7. Τ is the topology whose base is formed by all U^-sets of a given
space. Similarly, for p e N , 7(p) is the topology generated by the Σ\ (p)-sets of a
given space.

These topologies are rather unusual. 7(p) is stronger than the Polish topology,
since all the Baire intervals belong to Σ\(ρ). However, 7{p) makes some singletons
open; more precisely, {a;} is open in 7{p) if a; € A\{p). On the other hand, T(p)
has a countable base.

Furthermore, these topologies are not Polish. In fact, a simple property of topol-
ogies metrizable by a complete metric is that every closed set is Gs- Consider an
arbitrary Π\-set that is not a Σΐ-set. (The existence of such sets is easily proved
in the framework of the effective theory.) This set is closed in 7{p) by definition,
but it cannot be Gg, since any Gg in the sense of 7{p) is Σ^ in the sense of Polish
topology.

At the same time, some derivatives of the completeness of Polish spaces are
inherited by the topologies T(p). In particular, we shall see later (Corollary 13)
that all these topologies are Baire topologies.

1 1 A significant part of the material of this section is taken from the articles by Martin and
Kechris [20], Louveau [18], Kechris [16], Harrington, Kechris, and Louveau [12], and the book by
Mansfield and Weitkamp [19] where more complete information can be found.
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For a proof of this property it is necessary to have a method of constructing
decreasing sequences of sets with non-empty intersection in the given topology, a
method similar, say, to the one provided by a complete metric. In the classical
presentations of the subject (see footnote 11) this is done via Choquet games. We
use a different technique, which is closer to the methods of complete metric spaces,
but we consider also the method based on Choquet games.

As is customary, in what follows we consider only the topology T; however, all
the results hold for any topology T(p), with obvious changes as appropriate.

2.2. Ensuring the non-emptiness of intersections. The following definition
introduces a structure that will quite successfully replace complete metrizability for
the topology T.

Definition 8. We call a collection of families of sets Xm (m £ ω) a Polish network
if

(1) each Xm is a family of non-empty open subsets of a given space;
(2) each Xm is dense in the topology: for every non-empty open set X there is

Υ e Xm, Υ Q X;
(3) compactness: if Xm 6 Xm and X^m — C\k<m -̂ * ^ ^ ^0Γ ^ m ' then the

intersection f]meul Xm contains exactly one point.

For example, in the case of Ν with the usual topology we define a Polish network
by X m = {Hs : s £ ω"1}, where 7JS = {x £ Κ : s C x} for s e ω<ω.

L e m m a 9. The topology Τ has a Polish network that satisfies the following addi-
tional condition of 'genericness':

(4) for any I7j-set A c N there is an πι £ ω such that each X £ Xm satisfies
the requirement: X C A or else Χ Π A = 0 .

Proof. Consider the space Κ 1 + ω = Ή χ Ήω. It is convenient to represent points
f e N 1 + u in the form x = (x,xo,x1,x2,...). For Ρ C Ή1+ω we put

ρτΡ={χ :3x = (x,xo,...)eP} and p r n P = { a ; n : 3x = (x,x0, • • • ,xn, • • •) £ P}

for all n. Also, we put χ \^n— (x,%o,xi> • • • ,%η) for any point χ —
{χ,χο,χι,...,χη,...) e N 1 + u a n d p r < n P = {χ \^η: χ ζ P} for Ρ C

We define £„ as the family of all iTf-sets Β C Κ 1 + ω of the form

Β = p r^(B) = {£ € Χ 1 + ω : f \^n£ B'}, where B' C Ήι+η is a ^-set,

for every n. It is clear that Έ = \Jn B n is countable; let Ί> — {Bm : m 6 ω}, where
any Β € 33 has infinitely many numbers m such that Β = B m .

Let m G ω. We introduce the collection Xm of all non-empty JJj-sets X =
pr Β C K, where the (non-empty) Β 6 !B satisfies the following conditions:

(i) diamprfc Β ^ m~1 for all k ^ m and diamprZ? ^ m" 1 ; 1 2

(ii) either Χ Π prB m = 0, or Β C B m .
We prove that the families Xm form a Polish network. We need the following result.

1 2The diameter diamX of a set X C N i s understood in the sense of a fixed complete metric
on JJ; see §1.
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Proposition 10. Suppose that Q £ Έ and X C pr Q is a non-empty E\-set. Then
there is a set Β £Έ, Β C Q, such that prB = X.

Proof. There is a 77?-set F C Ή2 satisfying X = p r F = {x : 3yF(x,y)}. Let
Q £ "Bn. Then Β = {χ £ Q : (x,xn+i) £ F} belongs to S n + 1 (since Q £ Bn)
and pr Β = X.

We now return to the proof of the lemma.

Verify the density of Xm: condition (2) of Definition 8. Suppose that a I^-set
I C N i s non-empty; it is required to find a Y £ Xm such that Υ C X.

Case 1: Χ Π prB m = 0. Then X = prQ for a suitable Q £ Bo, since I € Γ}.
Taking the intersection of <3 with a 'Baire cube' of sufficiently small diameter
in Ν 1 + ω , we obtain a non-empty 77°-set Β £ "Β, Β C Q, satisfying (i). It remains
to put Υ = prB.

Case 2: X' = Χ Π prB m φ 0. We apply Proposition 10 to the sets X' and
Q = B r o. We have a subset Q' € 3 , Q' C Q, such that X' = prQ'. It remains to
take the intersection of Q' with a suitable 'cube' to obtain a non-empty set Β C Q'
satisfying (i).

Verify the compactness: condition (3). Thus, suppose that Xm £ Xm and
Πί;<ΐη -^k ^s non-empty for each m; we prove that the intersection f]m Xm contains
exactly one point. It suffices to show that, whatever m = m0, there is an infinite
sequence m0 < m,\ < τη2 < • · · such that f\n Xmn is non-empty; in fact, because of
condition (i) every non-empty intersection of this kind has exactly one point, and
so any two points obtained in such a way coincide.

Thus, let m 0 € ω. By induction, we find numbers mn and sets Pn £ tBmn

satisfying the conditions Pn+i Q Pn, Xmn = prll ra and diampr fcPn ^ m^1 for
any k ^ mn. Then the intersection C\nPn is non-empty (each Pn is closed in the
Polish topology of the space Ή1+ω, and the diameters converge to zero), that is,
the intersection (~)n Xmn is non-empty as well.

Since Xmo £ DCmo, there is a set Ρ £ Έ for which conditions (i) and (ii) hold for
τη — mo and the equality Xmo = p r P is fulfilled. Let Po = P.

We assume that mn and Pn £ 23mn have been already defined. Then P n = B' m '
for a suitable m > mn. We recall that Xm £ 1m; therefore, there is a set Β £ ¥> sat-
isfying (i) and (ii) for this m, and Xm = pr B. We remark that the case XmHpr B^771'
in (ii) is impossible here. In fact, prB^m^ = prP n = Xmn; however, Xm ΠXmn is
non-empty by the choice of the sets Xm. Consequently, Β C B' m ' = Pn. It remains
to take mn+i = m and Pn+i = B.

Finally, the 'genericness' requirement (4) is ensured by (ii).

Remark 11. It is easy to see that the Polish network {Xm : τη £ ω} given by
the lemma satisfies the following monotonicity condition: if Υ is a I7j-set and
0 φ Υ C X £ Xm, then Υ £ Xm.

2.3. Some corollaries. We consider applications of Lemma 9, in particular, to
some derivative topologies.



Topologies generated by effectively Suslin sets 395

Definition 12. Let η ̂  1. We denote by Tn the T-topology of the space Nn. (We
note that {N";Tn} is homeomorphic to (3\f;T).)

T™ is the Tikhonov product of η copies of Τ = Τχ.
T n + m is the product 7n χ Tm, a topology on 3\fn+m.

Corollary 13. All the topologies Tn and T" are Baire.13

Proof. First, a product of two topologies that have a Polish network has a Polish
network (consisting of Cartesian products of the sets that form the networks of the
factors). Then, to prove that a topology with a Polish network is Baire, we use an
elementary proof of the Baire property for complete metric spaces.

The topology Tn contains Tn and, in fact, is strictly stronger than Tn; for exam-
ple, the diagonal A(N) = {(x,x) : χ € Ν} is open in 72, but not in T2. However,
the product of topologies is sufficiently dense in the product topology.

Lemma 14. Suppose that a set V C Ν is 7-open, and D C V is of the second
category in V in the sense of 7. Then D x D is dense inVxVin the sense of 72 •

Proof. For simplicity we assume that V = Ή. Let f]nDn C D, where all the sets
Dn C Ν are T-open and dense in 3sf. Then every set D'n = Dn χ Ν is open and
dense in the sense of T2. (For the projection pr A of any 27*-set A is a Z"J-set in Ή.)
Similarly, every set D'n = Ν χ Dn is open and dense. At the same time, we have
f]n(D'n Π D'n) C D χ D. It remains to apply Corollary 13.

The next lemma will be used later, in examining Borel equivalence relations.
Let R be an equivalence relation on N. We put

RW = {<!!,. . .,XnJlViinRli+O}.

For any η and m we denote by ( R ( n + m ) ; T n + m ) the set R(n + m) C Ήη+™ w i th
topology inherited from the space ( N n + m ; T n + m ) .

Lemma 15. Let R be α Σ\-equivalence relation on Ή, η' ^ η and m' ζ. τη.
Then the projection π: Ν η χ N m to Ήη' χ Ή"1' is an open continuous map of
(R(" + m ' ;T n + m ) onto <R("'+m'>;Tn,+rn-)·

Proof. For simplicity, let m = η = 2, ml = n' = 1; then π(χχ,χ2;2/1,2/2) = {^i,yi)·
We omit an easy verification of continuity and concentrate our efforts on the proof
of the openness, where, in particular, a special structure of the set R("+m) will be
important. Consider a pair of ^Vbase sets, that is, JCf-sets U,V Q N2. We prove
that the projection Ο = n((U x V) Π R(4)) is T^-open in R(2) = R. Using the
properties of closedness of the effective classes (see §1.5), we conclude that the sets

U'= {x1:3x2[U(x1,x2)kx1Rx2]} and V = {2/1 : 3j/2 [V{yl,y2)kyl Ry2]}

belong to Σ\, that is, are T-open. But Ο = (U' x V) Π R.

1 3The Baire topologies are characterized by the following property: all sets of the second
category are dense. A set of the second category is a set containing an intersection of countably
many dense open sets. (A direct proof that Τ is a Baire topology is given in [20].)
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2.4. Choquet spaces. Now we present the more traditional technique of investi-
gating the T-topologies based on Choquet games.

A Choquet game C% in a topological space X proceeds as follows. There are two
players, β and a, and β starts the game. The moves in the game are non-empty
open subsets of X, and each move must be a subset of the previous move of the
opponent. We obtain a sequence of moves

U02VQ^U1DV1D---DUnDVnD--- (Un and Vn are open), (1)

where Un are the moves of the player β, and Vn those of a. Each player, before his
next move, knows everything that has happened in the game till this move.

Finally, the winner is a if f]n Un (= f]n Vn) φ 0.
We call X a Choquet space, or a space with the Choquet property, if a has a

winning strategy.14

A modified, strong Choquet game C'x gives an additional chance to the player β.
Namely, with every move Un, β makes an extra move xn £ Un, which forces a to
respond by Vn such that xn € Vn (and, as before, Vn C Un).

The result is determined as in the game C%: a wins if f]n Vn φ 0.
Finally, X is called a space with the strong Choquet property if a has a winning

strategy in the game C'x.

Lemma 16. Complete metric spaces and the spaces with a Polish network have
the strong Choquet property.

Proof. In the case of a complete metric space, a can play in such a way that the
closure of Vn is a subset in Un of diameter less than n" 1 . If there is a Polish network
{Xm : m e ω}, then all that the player a has to do is to make each move Vn so
that Vn e Xn-

The strong Choquet property, in turn, implies a certain 'regularity', which allows
us to deduce some usual consequences of the completeness.

Proposition 17 (Harrington, Kechris, and Louveau [12]).

1. The strong Choquet property implies the Choquet property.
2. A Choquet space is a Baire space.
3. If X and Υ are Choquet spaces, then Χ χ Υ is also a Choquet space. The

same is true for spaces with the strong Choquet property.
4. // X has the strong Choquet property, then any non-empty Gg-set X C X

has the strong Choquet property in the inherited topology.

Proof. Assertion 1 is obvious: the Cx-strategy for the player a is his Cx-strategy
with moves xn disregarded.

2. Suppose that every Dn C X is open and dense, and U is open and non-empty;
we prove that I = U Π f]n Dn is also non-empty. Let β play the game Οχ making

1 4 That is, a rule that prescribes how a must play, depending on the play of β, so that a
will win, no matter how β plays. Technically, this notion is realized as a function τ denned
on finite sequences of open sets (Uo,-.-,Un) with values also among open sets, so that Vn =
T(UO, ..., Un) C Un. See [20] on infinite games with perfect information, one of which is the
game Cx.
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moves Un C Dn (we use the fact that the Dn are open and dense) and the initial
move Uo C Do Π U. Then the winning strategy for a proves that / is non-empty.

3. Exercise: a 'splits' the game Cxxy into the games C% and Cy by restricting
each move Un of the opponent to the product [/* χ U% C Un, where U% and [7£
are open in X and y, respectively.

4. Let X = f\nGn, where each Gn is open in X. To win the game C'x, the
player a acts as follows. Let (Uo,xo), · · · > (tAu^n) be the initial moves of β in the
game C'x. Then Xi € ί7» = Χ Π Vn, where the sets Uj C X are open for all i ^ n.
Suppose that the C^-strategy for a recommends the move Vn in response to the
moves (Uo,xo), (ΊΙι,χι),. . . , (Un,xn) of β. Then there is an open V C X such that
xn e V C Vn η Gn. Now α makes the move Vn = V Π Χ in the game C^·.

We conclude this section by presenting a direct proof of the Choquet property for
the T-topologies. The reader may find interesting parallels between this argument
and the proof of Lemma 9.

Lemma 18. Let ρ £ Ή and η ^ 1. Then the topology Τ on Ήη has the strong
Choquet property.

Proof. Each 3sTn with the T-topology is homeomorphic to (N;T); therefore, we can
assume that η = 1. We recall that the base of Τ is formed by Uj-sets, and every
such set X C Ν is the projection of some iT^-set F C K 2 , This outlines the main
idea of the proof: to make use of the completeness of the spaces Ή™ in the Polish
metric (see §1.1).

In the notation of the proof of Lemma 9, the desired strategy for a in the game
C" = C/χ.χ) c a n be described in the following way.

Let (Uo,xo),{Ui,xi),(U2,X2), • • • be the sequence of moves made by β. The
player a, making his moves VQ, V\, V2, •.., which in this case are i7j-sets rather
than just T-open sets, and in addition xn £ Vn, constructs a sequence of i7j-sets
Fn C Ή χ Ήη so that

xn 6 Vn = pr Fn C Un, p r < n Fn C F n _ 1 ? diamprm Fn ^ n " 1 for m ζ n. (2)

By virtue of the completeness, the condition on diameters implies the existence
of a unique sequence of points χ = (χ,χο,Χι,χ-ζ,Χί,- • •) € !Ν 1 + ω, that satisfies
x Γίξη^ Fn for all n. Then χ € f]n Vn, which is the required result.

It remains to check that a, by playing properly, can ensure that (2) is valid for
all n. Thus, suppose that β has made his next move (Un,xn); here xn € Un C
Vn-i = pr.Fn_i. Since Un is T-open, there is a non-empty Z'J-set Un C Un and a
Tl^-set Ρ C Κ χ Ή such that U'n = prP. Then the set F = {(x,x,y) : (x,x) e
Fn-i &Ρ(χ^)) belongs to Π® and satisfies xn € prF = U'n and p r < n F C Fn-\.
(We remark that F C X x Hn.) We partition F into countably many u^-sets with
projections of diameter less than n~1 by taking the intersections with 'small' Polish
base neighbourhoods in NxN™. One of these sets, F' C F, say, satisfies xn € prF' .
We put Fn = F' and Vn = pr F' (the response of a).
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§3. First application: co-Suslin equivalence relations

Before we start the technical part of this section, some discussion is necessary to
present properly the meaning of the results.

We recall that Cantor's continuum hypothesis (CH) is the assertion that there
is no cardinality strictly between the countable cardinality No and the cardinality
of the continuum c = 2K° (which is strictly greater than Ko). After the work
of K. Godel in the 1930s and P. Cohen in the early 1960s it has been definitively
established that modern mathematics (at least as long as it is based on the Zermelo-
Fraenkel set theory ZFC) does not allow the answer 'yes' or 'no' to the question: is
the CH true?

However, the approach aimed at verifying CH for certain set classes turned out
to be rather fruitful. In particular, Aleksandrov [9] and Hausdorff [13] proved that
CH is true in the class of Borel sets (in the sense of Polish topology) of the real line
Μ or, which is the same in the present case, the space N. In other words, a Borel
set X C 3\f cannot have an intermediate cardinality. There are no counterexamples
in the larger class of Sj-sets either: this is Suslin's theorem [3], which asserts that,
moreover, every uncountable Sj-set has a perfect15 subset. However, there may be
some counterexamples in the class Π 1 . (See the author's work [4], where a more
detailed analysis of this circle of questions is given.)

There is yet another approach to the study of CH for certain classes that consists
in finding counterexamples in the form of quotient sets rather than point sets, that
is, the following question is investigated: how many equivalence classes may an
equivalence relation have? The situation here is somewhat similar to that for sets,
but with a reverse: the number of equivalence classes for a Π}-relation cannot be
an intermediate cardinal, whereas that for a Sj-relation may (see the end of this
section).

The second part of this assertion (on E}-relations) follows from what was said
above about Ilf-sets, whereas the first part is very complicated. In fact, no proof of
it has been known so far that was carried out in the framework of classical methods
of descriptive set theory.

Theorem 19 (Silver [23]). Let Ε be a Tl\-equivalence relation on K. Then either
Ε has finitely or countably many classes, or there is a perfect set of pairwise
E-inequivalent points.

We remark that this result automatically carries over to all the complete
separable metric spaces, since every such space admits a Borel (in particular,
preserving ΐΙ\) isomorphism onto N.

Proof. 1 6 We assume that Ε has uncountably many equivalence classes and prove
that in that case there is a perfect set of pairwise inequivalent points. The proof of
this assertion consists of the idea and two technical parts.

1 5 That is, a non-empty closed set that has no isolated points in the sense of Polish topology.
Such sets have the cardinality of the continuum.

1 6The proof given here is due to Harrington and is taken from the article [20] by Martin and
Kechris, with a change in that we use the technique of Polish networks instead of Choquet games.
The more complicated proof of Silver himself [23] relies on forcing technique; a similar proof is
presented by Miller [21].
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The idea. Suppose that we have managed to find a non-empty set Η C ]\f, open in
the Polish topology of Ή and such that Ε is of the first category on H2 = Η χ Η;
in other words, Ε Γ\Η2 C (Jn Pn, where all the Pn C H2 are nowhere dense. In this
case we construct easily a system (Xs : s 6 2< ω) of non-empty open-closed sets
XSQH such that

(a) Xs*i C Xs, X s A O nl s Ai = 0,
(b) (Xs χ Xt) Π | J m s S n Pm = Z for s, t G 2", s φ t,
(c) diamXs ^ m" 1 for s £ 2m,

where 2n is the collection of all sequences of O's and l's of length η, 2<ω = Une^ ̂ n,
sAi has the obvious meaning, and diam X denotes the diameter in the Polish metric.
Then the set X = f]n U s 62" -̂ * ^s t n e desired perfect set of pairwise inequivalent
points.

Unfortunately, we cannot claim that a set Η of the above-described form actually
exists, in the Polish topology. This is where the topologies T(p) come into play.

Technical part 1. First, since Ε 6 Π}, there is a p £ Ή such that Ε is a
Π\(p)-relation. We assume that Ε belongs to Π\\ if this is not so, then simply
the parameter ρ uniformly enters the computations, that is, say, 7 changes to 7(p),
and so on (see the remark at the end of §2.1).

We indicate a non-empty T-open set Η such that Ε is of the first category on
H2 = Η χ Η in the sense of T2.

The idea is essentially very simple: we remove the Ε-equivalence classes that are
open in the topology T. In the Polish topology, this trick will not work: there is
no guarantee that after the removal of open classes the rest will be an open set.
However, in the Gandy-Harrington topology, as we shall see, everything will be all
right due to its descriptive properties.

The Harrington set Η is defined as follows:

Η = {x eN: there is no ZiJ-set Β such that χ € Β C [χ]},

where [χ] = [x]g = {y : χ Ey} is the Ε-equivalence class of x.
We remark that Η is non-empty; otherwise, every Ε-class would be a union of

Z\J-sets, and since there are only countably many of those, Ε would have at most
countably many classes, which contradicts the assumption made at the beginning
of the proof.

Lemma 20. The set Η is open in T; moreover, Η belongs to Σ\.

Proof. Indeed,

x€H <^>VB e Δ\ (x£B -+ 3y€B χ £y). (3)

Let ρ = 0 = ω χ {0} (identically zero, that is, say, Δ\ = Δ\(0)). Using the sets W
and D ra provided by Principle 4 (part 1) in §1, we bring the right-hand side of (3)
to the form

Vn[W(0,n)&xeD n (0) -»• 3 y ( y e D n ( 0 ) & i J E v ) ] .
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This expression can easily be transformed to Σ\ by using the properties of W
and D n .

Lemma 21. Ε is of the first category on H2 in the sense of!2.

Proof. We recall that Ε is a IlJ, that is, a co-Suslin set in the Polish topology, and
hence in T. This implies that Ε has the Baire property in the sense of T, since, as is
known, the Baire property is preserved under Α-operations. Thus, by virtue of the
Ulam-Kuratowski theorem, it suffices to prove that Hx = Hf~\[x] = {y £ Η : xEy}
is of the first category in the sense of Τ for any χ £ Η.

As before, Hx has the Baire property in the sense of T. Therefore, to verify that
Hx is of the first category in the sense of T, it suffices to establish that Hx cannot
be of the second category on any non-empty Z^-set U C H.

Assume the contrary: let Hx be of the second category in the sense of Τ on a
non-empty Tj-set U CH. The set D' = (HxnU) χ (ΗΧΓ\ΙΙ) is dense in U2 = U χ U
in the sense of T2, by Lemma 14. Thus, D' has a non-empty intersection with any
non-empty Σ^-set Ρ C U2. In particular, if the set Ρ — {(y,z) £ U2 : y JE z) is
non-empty, then Ρ Π £>' φ 0.

Suppose that (y,z) £ Ρ Γ\ D'. Then both y and ζ belong to Hx, that is, yEz,
which contradicts the assumption (y,z) £ P. Therefore, Ρ is in fact an empty set,
which implies that U C [χ].

But in this case, the equivalence class [x] itself belongs to Π\, since y Ε χ is
equivalent to Vz [z £ U -* zEy]. Thus, the 27|-set U is included in the ΠI -set [a;].
By the separation theorem (Corollary 3), there is a ZiJ-set Β such that U C Β C [a;].
We take an arbitrary x' 6 U. Then x' Ex, that is, we have x' e Β C [a;'], whence
x' $ H. But x' € U C H, a contradiction.

Technical part 2. We modify the argument at the beginning of the proof of the
theorem to construct a perfect set X of pair wise E-inequivalent points, the modifi-
cation being that the Polish network of the topology Τ will replace the completeness
of the Polish topology of N.

By what we have already proved, let ΕΠΗ2 C \JnPn, where each Pn C K2 is
nowhere dense in T2. Let {Xn : η £ ω} be the Polish network provided by Lemma 9
for the topology 7.

It is not difficult to construct a family of Σ\-sets Xs C Η (s £ 2< ω), that satisfies
conditions (a) and (b) (see above) and the following condition replacing (c):

(c') if s 6 2 m , then Xs C X's for some X'seHm.

For any α Ε 2ω, the sequence of sets Xa\m, τη £ ω, has exactly one point xa in
its intersection, since Xa\m € Xm- By construction, if α φ a', then (xa,xa') £ Pm

for all m, so that xa JE xa· and, in particular, xa φ χαι. Therefore, the set X =
{xa : a £ 2ω} is a perfect (and even homeomorphic to Cantor's discontinuum) set
of pairwise E-inequivalent points.

Remark 22. We describe briefly the construction of the set of pairwise inequivalent
points given in the paper [12], where a Choquet game was used to ensure the non-
emptiness of intersections on each path a £ 2ω.
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We construct two indexed families {Us : s € 2<ω} and {V̂  : s 6 2<ω} of non-
empty Σ\-subsets of Ν so that, first, the family of sets Us satisfy conditions (a), (b),
and (c), and, second, for any α 6 2ω the sequence of sets

Ua\Q = U\, Va\0 = VX, Ua\l, Va\i, Ua\2, Va\2, · · · , Ua\n, K f n , · · ·

corresponds to the winning strategy of the player a in the Choquet game C^yi-γ)
(which exists for a by virtue of Lemma 18).17 Then the intersection Xa = |")n Va\n

is non-empty for any a £ 2ω, and, in fact, because of condition (c) on diameters,
Xa contains just one point xa, and so on.

Equivalence relations of the class Σ*. This line of investigation now generates
considerable interest, offering challenging problems, in particular, those connected
with the possibility of obtaining analogues of the Silver theorem.

Unfortunately, Theorem 19 itself does not extend to the Sj-relations. Consider
a non-Borel nj-set C C Ή, which is decomposed into Borel constituents: C =
UQ<LJi Ca- We define the relation Ε by

χ Ε y if and only if 3 α (χ € Ca h y £ Ca) V (x $ C k y $ C).

This is a Sj-relation that does not admit perfect sets of pairwise inequivalent points
by virtue of the restriction principle of the classical descriptive theory, but has Νχ
(non-empty) equivalence classes.

Burgess [10] proved that this example is sufficiently representative: in general,
a relation of the class T,\ such that there is no perfect set of pairwise inequivalent
points—such relations are called thin—has at most Ki equivalence classes. The
question whether an absolute list of classes is possible remains open so far.

The following seems to be desirable (and natural). Consider a transitive class
Μ C V in the set-theoretical universe V which itself is a model of ZFC, for example,
the class L of all constructible sets. We assume also that Μ correctly computes Ν χ,
that is, Ni = Nf̂ . (Otherwise, the statement of the question does not make sense.)
Finally, let Ε be a thin Σ\-equivalence relation. Is it true that in this case any (non-
empty) class of Ε has a representative in Μ ? The positive answer was obtained by
Hjorth [14] in two cases:

1) V is a generic extension of M;
2) a derivative of the hypothesis of the existence of a measurable cardinal.

However, the general case remains open.
Investigation of thin Σ \ -relations is facilitated considerably if we introduce the

additional requirement that all the equivalence classes are Borel sets of bounded
rank, that is, they all belong to a single Borel class Σ° (α < ω{)\ such relations
are called Luzin, since Ν. Ν. Luzin initiated their study.18 Although even here
the statement that every Luzin Σι-relation has only countably many classes is not
true (the corresponding counterexamples were given by Sami in [22]), neverthe-
less, in this case the classes admit quite absolute numbering by countable ordinals.
Moreover, under the assumption that NnL[i] is countable for any i 6 N , even any
Luzin AJj-relation has only countably many classes; see [26] and [3] (especially for
the equivalences generated by partition into constituents).

17Formally, this means that Va\n = τ((7α | 0, Ua\\, • • •, Ua\n) f°r anY «, where τ is the winning
strategy for a.

18See [4] and [26] on the history of the question.
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§4. Classification of Borel equivalence relations

We continue the presentation of results on equivalence relations, which, in fact,
admit much more thorough analysis than just the alternative: 'countably many
classes or a perfect set of pairwise inequivalent points' given in §3. This analysis is
connected with questions of comparison and classification of equivalence relations.

4.1. Smooth relations. This kind of equivalence relations has assumed great
importance, in particular, in connection with some problems of the theory of Borel
transformation groups and measure theory.

Definition 23. An equivalence relation Ε on the space X is called smooth19 if there
is a Borel function /: X —>· Ή such that xEy <—> f(x) — f(y).

In other words, smooth relations have Borel invariants. We can replace Ν by
any other perfect Polish space y, since all such spaces are Borel isomorphic to Ή.

The following criterion is often helpful: Ε is a smooth relation if and only if
there is a family of Borel sets An such that xEy «—> Vn (i £ An <—> y g An)
{separating family).

For example, some relations between matrices, arising as a result of reduction to
a canonical form, belong to this type.

An example of a non-smooth relation is the Vitali relation Ey on the real line Ά.
To verify that Ey is not smooth, assume the contrary, and let the Borel func-
tion /: R —> Ή demonstrate the smoothness of Ey. Then all the sections P/x =
{y : P(x,y)} = f~1(x) of the plane Borel set Ρ — {{x,y) : f(y) = x}, that is, the
Vitali equivalence classes, are countable. By the classical theorem of P. S. Novikov,
in this case Ρ admits a representation Ρ = \Jn Pn, where all Pn are uniform Borel
sets. Each set Xn = {y : 3xPn(x,y)} belongs to Σ} (in fact, it is even a Borel
set); therefore, it is Lebesgue measurable, and M. = {JnXn, which implies that at
least one of the Xn has non-zero measure. On the other hand, Xn has at most
one common point with every Ey-equivalence class, which rapidly brings us to a
contradiction, by means of Vitali's argument.

In a similar way, non-smoothness can be proved for the analogue of Ey in N, the
relation

jE0S <—>· 3 m V ^ m ^(k) = S(k)] (4)

on Cantor's discontinuum T> = 2ω, which is of principal importance in the classifi-
cation of equivalence relations.

4.2. Glimm—Effros dichotomy. More precisely, we shall see that Eo is the
'smallest' among non-smooth Borel relations: any of them contains Eo in a certain
sense.

Definition 24. Let Ε and E' be equivalence relations on X and X', respectively. We
write Ε ̂  E' if there is a Borel function /: X -> X' such that χ Ε y <—> f(x) E' f(y)
for all x, y € X. (Such a function / , if it exists, is called a reduction of Ε to E'.)

We write E C E ' if there is a one-to-one (but not necessarily 'onto') Borel function
with the above property. (Such a function, if it exists, is called an embedding of Ε
into E'.)

1 9This is the term adopted in English-language literature. A verbatim translation of the
Russian term would be smoothed.
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It is clear that in this situation, if E' is smooth, then Ε is also smooth. Therefore,
any relation Ε satisfying Eo C Ε is non-smooth. The following theorem shows that,
moreover, the condition Eo CE characterizes the property of non-smoothness.

Theorem 25 (Harrington, Kechris, and Louveau [12]). 2 0 Let Ε be a Borel equiv-
alence relation on Ή. Then one of the following two alternatives holds:

(I) E is α smooth relation;
(II) Eo C E, and even by means of a continuous f.

Hence we can easily obtain Silver's theorem (Theorem 19) in the case of a Borel,
and not just co-Suslin, relation E.21 For it is easy to construct a perfect set of
pairwise Eo-inequivalent points; therefore, in the case (Π), Ε also has a perfect set
of pairwise inequivalent points. On the other hand, the dichotomy of Theorem 19
for smooth Borel relations is readily verified.

We note that both (I) and (II) have several equivalent forms and derivatives
related to Borel transformation groups and measure theory; see [12], and also [16].

As before, the theorem extends to all Polish spaces.

Proof. 2 2 Thus, let Ε be a Borel equivalence relation on K. Then Ε belongs to
Δ\(ρ) for some ρ £ Ν. As usual in such cases, we carry out the proof under the
assumption that Ε is a ZiJ-relation; in the general case, ρ enters the argument
uniformly, so that T, say, changes to 7(p), and so on.

The main idea of the proof is the use of the relationships between Ε and E, the
closure of Ε in the topology T2 (which, we recall, is the product of two copies of T).
There are two possibilities:

Case 1: Ε = Ε, that is, Ε is closed in I 2 .
Case 2: Ε C E.

We consider these possibilities separately. It will turn out that in the first case the
relation Ε is smooth, and in the second, Eo can be continuously embedded into E.

4.3. The case of closed relations. Thus, we assume that Ε = E.
We define [A]g = {x : 3y € A (x Ey)} for A C Ν (the Ε-saturation of A). A set

A is called Ε-invariant if A = [A]£.

To estimate the descriptive complexity of E, we need the following lemma.

Lemma 26. // E\-sets A, B are such that [A]^ Π [Β]^ = 0, then there is an
Ε-invariant A[-set C that separates [Α]ξ from

2 0 The dichotomy of Borel equivalence relations given by this theorem is known as the Glimm-
Effros classification, in the name of the mathematicians who first obtained the result for relations
of the class ¥σ. See the article [12] in connection with the history of the subject and various
applications in algebra and probability theory.

21Theorem 19 itself can be stated as follows: if a Il}-relation Ε has uncountably many equiv-
alence classes, then Δ(Τ>) C Ε by means of a continuous /, where Δ(Ι>) is the equality relation
on Cantor's discontinuum D = 2".

22We follow the proof in [12]. Some recursive-theoretic facts have been successfully eliminated.
The construction in [12] based on a Choquet game has been replaced by Polish networks.
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Proof. Using the fact that [A]E e ΣΊ1 whenever A € Σ\, and the separation theorem
(Corollary 3), we construct an increasing sequence of sets A — Co C C\ C C-2 C · · •
such that Cn is a A\-set separating [Cn_i]g from [B]^ for any n. The union
C = [Jn Cn is Ε-invariant and separates [A]^ from [B]^.

It is not immediately obvious why C is Zl} (it is only clear that C is Borel);
however, a more sophisticated analysis (see [12], Lemma 5.1) shows that the sep-
aration theorem has enough uniformity to allow the construction to be performed
in a version that guarantees C & Δ\.

Lemma 27. Ε is an equivalence relation of the class Σ\.

Proof. According to Lemma 26 and by the definition of Τ we have

xEy <—>· V C e / l | [C is Ε-invariant -*• (x e C -» y e C)]. (5)

Consequently, the (countable) family of all invariant ZJj-sets C is a separating
family. But the right-hand side of (5) can be brought to the I71

1-form in the same
manner as in the proof of Lemma 20, using Principle 4.

Thus, if Ε = E, that is, Ε is closed in T2, then Ε is smooth.

4.4. The case of non-closed relations. We continue the proof of Theorem 25
and now consider the case E ^ E , and show that this assumption implies Eo C E.

Since E C E, each Ε-class [x}£ = {y : xEy} is included in the Ε-class [x]-p =

{y : xEy}, and by assumption there are Ε-classes that contain more than one
Ε-class. Consider the union

of all such classes; Η £ Σ\, since Ε 6 Δ\ and Ε € Σ\. The set H plays the key role
here, like the other set Η did in the proof of Silver's Theorem 19.

Lemma 28. In the sense of I2, E is dense and of the first category in the (open
in E) set Η2 Π Ε.

Proof. The density is obvious; let us check the category statement. Since Ε is
a Borel set, assuming the contrary gives a pair of Z'J-sets A, B C Η such that
(A x JB) Π Ε φ 0, and Ε is of the second category (that is, the complement of a set
of the first category) on (Α χ Β) Π Ε. Suppose that A C [Β]ψ and Β C [A]w (if not,
we replace A by Α Π [-Β]ρ, and similarly for B).

We claim that Α2 Π Ε C Ε; in other words, Ε and Ε coincide on A. To prove
this, consider the set E 3 = {(x,y,z) : xEyEz} with topology inherited from
T 2 + 1 = T2 χ 7.

Fact 29. (E3;T2+i) has the Baire property.
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3

Proof. It suffices to indicate a Polish network for Ε in the topology inherited
from T2+1. To this end, we use the 'generic' Polish networks {Xn : η £ ω} and
{£.„ : η £ ω} for the topologies T2 and 7 given by Lemma 9. The desired network
{7n : η £ ω} for Ε3 is determined as follows: Tn is the family of all non-empty
sets of the form Ρ = (Χ χ Ζ) Π Ε3, where Χ £ 1η and Ζ β Ζη. We verify the
requirements of Definition 7.

Density. Suppose that the Z'J-sets X C Ή2 and Ζ C. Ή are such that the set
Ρ = ( Χ χ Ζ ) Π Ε 3 is non-empty. We take an arbitrary X' £ Xn satisfying X' C
Χ Π {[Z}-£ χ [Ζ]φ, and then an arbitrary Z' £ Zn such that 2 ' C X i l [^']g; then

P' = (X' x Z ' ) n E 3 belongs to 3>n and P' C P.
3

Compactness. Let P m = (Xm x Zm) Π Ε € J"m for every m, and assume that all
finite intersections are non-empty. There is a unique triple {x,y,z) £ N3 such that
(x,y) £ Xn and ζ £ £.„ for all n. We show that (x,y, z) 6 E3. On the contrary,
let χ JEz. By Lemma 26, there is an Ε-invariant /ij-set C that contains χ and does
not contain z. Since the networks {Xn} and {&n} are 'generic', there are numbers
m and η such that Zm Π C = 0 and Xn C C x N . But in this case Pn Π P m is
empty, a contradiction.

We continue the proof of the inclusion Α2 Π Ε C Ε. Consider now the set

Ρ = {(x,y,z) £~E3 :x <=Aky£ Akz£B},

which is T2+i-open in Ε 3 and non-empty by assumption. In view of Lemma 15 the
maps from E3 to E2 defined by (x,y,z) >-» (x,z) and (x,y,z) >-> (y,z) are open,
and hence, by the choice of A and B, the sets R = {(x,y,z) € Ρ : χ Ε ζ} and
S = {(χ, y, ζ) € Ρ : y Ε ζ} are of the second T2+i-category in P. If we now assume
the contrary, that is, Α2 Π Ε % Ε, then the set Q = {(x,y,z) £ Ρ : χ JE y} will be
non-empty. But Q is T2+i-open, since Ρ is open, and Ε € Δ\. Therefore, Q has
non-empty intersection with Rf\S (we use the Baire property of the topology), and
we arrive at a contradiction.

Thus, in fact, Ε coincides with Ε on A. A simple argument shows that
[Α]γ: = [A]-F. (For otherwise the Uj-set A' = [Α}ΓΪ \ [A]£ is non-empty, that is,

(Α' χ Α) Π Ε is also non-empty. Then (A' x A)f)E^ 0, since Ε is the closure of E,
a contradiction.) But this is impossible, since A C H.

4.5. Embedding of Eo into E. We proceed with the proof of the theorem (the
case Ε ̂  Ε).

According to Lemma 28, there is a decreasing sequence of sets Wn C Η2,
T2-open in K2, such that every Wn Π Ε is T2-dense in Η2 Π Ε and the intersection
E n p | n Wn is empty. We can assume that the diagonal Δ(Η) = {(χ, a;) : x £ H]
is disjoint from WQ (otherwise we replace all the Wn by the differences Wn \ Δ;
the set Δ is closed, even in the Polish topology).

The embedding of Eo into Ε that we present relies on the same idea as the classical
construction in the article [12] by Harrington, Kechris, and Louveau. However,
instead of Choquet games (which are the main tool in ensuring non-emptiness of
the intersections along the branches of the splitting) we consider Polish networks,
which somewhat simplifies the computation. We begin with some definitions.
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Let Ρ C N 2; we put prx Ρ = {χ : 3yP(x,y)} and pr2 Ρ = {y : 3xP(x,y)}.
Let X , F C Tsf and R C Ή2. We write I R F if

\/x£X3y£ Υ (xRy) and Vy £ F3a; G X (a;Rj/).

By Lemma 9, there are Polish networks {Xm : m £ ω} and {!Pm : m £ ω} for
the topologies Τ on Κ and T2 on Ή2, respectively. We put

X; = {X : X is a non-empty Ζ?-set and 3 I ' e I n ( l C X')}

and similarly define 3>̂  from Tn.
We construct a family of IT^-sets Xu (u £ 2< ω) such that
(a) Xu £ X;_j and ΛΓ«Λί C Xu C i/ for all η and all u € 2" and i = 0,1.

(We recall that 2" denotes the collection of all sequences of 0's and l's of length n,
and 2<ω = Un€a) 2n.) It follows that for any α 6 2ω the intersection f]neul Xa\n
contains a single point, which we denote by φ{α) in the sequel, and the map φ is
continuous in the sense of Polish topology.

To ensure that φ is one-to-one, and for some other purposes, we need to impose
another requirement, on pairs u,v € 2<u).

(b) Xu χ Xv C Wn-i for all η and each pair u,v € 2n such that u(n - 1) Φ
v(n — 1) (that is, the last terms of u and υ are distinct).

We note that φ(α) Φ <̂ (6) for α Φ b e 2ω, since WQ is disjoint from Δ; therefore, ψ
is one-to-one.

We need additional connections between some pairs (u, v) to ensure the correct
interaction of branches in 2<ω and eventually establish that Eo C Ε by means of φ.

Let u,v € 2". We say that u,v is a critical pair if ω = 0fcA0Ar and t; = 0 * Λ 1 Λ Γ

for some k < η (0* is the sequence of A; zeros) and some r € 2n~k~1 (it is possible
that k = η — 1; then r = Λ).

Thus, we shall construct X^-sets Ruv for all critical pairs u, ν so that the following
requirements will be fulfilled:

(c) prj Ruv = Xu, pr2 Ruv = Xv, RuAit,Ai C Ruv, for any critical pair u,v £ 2n

andi £ {0,1}.
(d) Ruv € y^_! for any critical pair u,v £ 2".
(e) For any A;, the set R& = RotAoofcAj satisfies R& C E.

We note that uAi,vAi is a critical pair whenever u, ν is a critical pair. However,
the pair uAi, vAj cannot be critical if i Φ j (except for the case u = υ = Qk for
some k).

Remark 30. Condition (c) implies XURUV Xv, hence, by (e), also XUEXV, for all
critical pairs u, v. Since any pair u,v £ 2n can be joined by a finite chain of critical
pairs in 2", we conclude that Xu Ε Χυ, and therefore Xu Ε Xv for all pairs u, ν £ 2".

We now verify that conditions (c)-(e) guarantee that Eo Ε Ε by means of φ.
We prove that aEo& implies ψ(α) Ε< (̂6). It suffices to consider the case when

a = 0fcA0Ac and b = 0*AlAc for some c £ ω and k £ 2ω, since any pair u,v £ 2n can
be joined in 2™ by a chain of critical pairs. The intersection Γ\ηςω ̂ o*AoAcfn,ofcAiActn
is non-empty by (d), but since Ruv C Xu χ Χυ, this intersection is none other than
the point (φ(α),φ(1>)). Thus, ((p(a),ip(b)) £ Rk, which yields φ(α)Έ.φ(1>) in view
of (e).
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We now show that a JEQb implies φ(α) JE <p{b). Indeed, a JEob means that
o(n) Φ b(n) for infinitely many n; then, by virtue of (b), (tp(a),ip(b)) £ Wn for
infinitely many n, that is, in fact, for all n, since the sets Wn decrease. We con-
clude that φ(α) JE y(fc), since Ε has no common points with the intersection of the
sets Wn.

Thus, to prove Theorem 25 it remains to construct sets Xu and Ruv satisfying
conditions (a)-(e). Before we start the construction we prove a useful combinatorial
lemma.

L e m m a 3 1 . Let η £ ω, and let {Xu : u £ 2"} be a family of non-empty E\-sets.
In addition, suppose that for every critical pair u,v £ 2 n there is given a El-set
Ruv C N 2 satisfying Xu Ruv Xv.

1. If UQ £ 2 n , and X' C XUo is a non-empty E\-set, then there are non-empty
E\ -sets Yu C Xu (u £ 2n) such that Yu Ruv Yv continues to hold for all
critical pairs u, ν and YUo = X'.

2. If uo,v0 £ 2" is a critical pair, and the non-empty E\-sets X' C XUo and
X" C XVo satisfy X' Ruovo X", then there are non-empty El-sets Yu C Xu

(u € 2n) such that Yu Ruv Yv continues to hold for all critical pairs u, ν and
γΊ \r γΊΙ

u0 — Λ > ϊ ν 0 — Λ •

Proof. We observe that the assertion 1 follows from 2: take any vo such that one
of the pairs (UO,VQ), (VO,UO) is critical and put, respectively,

X" = {y e Xvo : 3x € X' (x Ru0v0 y)} or X" = {y e XVo • 3 z e X' (y RVoUo x)}.

The assertion 2 is proved by induction on n.

If η = 1, then u0 = (0) and v0 = (1), and we put YUo = Y' and YVo = Y".

Induction step. We prove the lemma for η + 1 assuming that it has already been
proved for η, η ^ 1. We partition the set 2 n + 1 into two parts, UQ — {sA0 : s £ 2n}
and U\ = {sAl : s € 2 n } , joined by the unique critical pair of sequences u = 0™A0

Suppose that uo = u and i>o = v. We apply the induction hypothesis (version 1)
separately to the system {Xu : u £ Uo} and the set X' C XUo, on the one hand,
and the system {Xu : u G Ui} and the set X" C XVo, on the other. Combining
the results, we obtain a system of Z'J-sets Yu C Xu (u £ 2n + 1) such that Yu Ruv Yv

for all critical pairs (it,υ), with the possible exception of the pair u = UQ = u,
υ = υ0 = ν, and in addition YUo — X' and YVo = X". Finally, we note that
Ys Ruff Yv by the choice of X' and Y'.

Consider the second case: uo and vo belong to the same part, say, UQ. Applying
the induction hypothesis (version 2) to the system {Xu : u £ Uo} and the sets
X' C XUo and X" C XVQ we obtain a system of non-empty 17}-sets Yu C Xu

(u £ Uo); in particular, the Z'J-set Yq C Xs. Now we put Y$ = {y £ Xy :
3x £ YQ {xRuvy)}, so that YqRuvYv, and apply the induction hypothesis
(version 1) to the family {Xv : ν £ U\} and the set Yg C Xg.
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4.6. Construction of the splitting system. Beginning our construction of the
sets Xu and Ruv, we put X\ = H.

We assume that a system of sets Xs (s € 2") and relations Rsi for critical pairs
s,t £ 2k, k ^ n, has already been defined, and continue the construction to the
level η + 1.

First, we define As*i = Xs for all s € 2n and i G {0,1}, and also Quv = Rst for
every critical pair u = sAi, ν = tAi in 2 " + 1 except for the pair u = 0"Λ0, ν = 0 η Λ 1 ;
for the latter pair (observe that As = A$ = Xon), we define Qgy = E, so that
Au Quv Av holds for all critical pairs u,v € 2 n + 1 .

The sets Au and Quv will be reduced (in several steps) to satisfy conditions (a)-(e).

After 2 n + 1 steps of using Lemma 31 (version 1) we have a system of non-empty
Σΐ-sets Bu C Au, Bu e X*n (it 6 2 n + 1 ) , such that BUQUVBV is fulfilled for every
critical pair u,v in 2 n + 1 . This guarantees (a).

To guarantee (b) we consider an arbitrary pair ito = SQQ, vo = £A1, where
s0, ίο € 2". According to Remark 30 and the ^-density of the T^-open set Wn

in Η2 Π Ε, there are non-empty I^-sets B' C BUo and B" C BVo such that Β' χ
Β" C Wn and Ρ = (Β1 χ Β") Π Ε is non-empty. We can assume that prx Ρ = Β'
and pr 2 Ρ = Β" (if this is not so, we put B' = ρτ1 Ρ and Β" = pr2 Ρ ) . Under
this assumption, B' EB". Now we apply Lemma 31 (version 1) separately to the
families {Bs*o : s e 2"} and {Bt*i : t 6 2"} (compare with the proof of Lemma 31)
and the sets B' C Bs*0, B" C Bt*i, respectively. Combining the results, we obtain
a system of non-empty Z^-sets B'u C Bu (u € 2n + 1) such that B'Uo = B', B'Vo = B",
that is, B'uo χ B'Vo C Wn, and β{, Q u w 5^, continues to hold for all critical pairs u,v
in 2 " + 1 except, possibly, the pair u = 0"Λ0, ί; = 0 η Λ 1 , the only one that joins the
two regions. We remark that for this special pair we have BL Ε B'Uo and B'~ Ε B'Vo

(Remark 30 works in each of the two regions), so that B'~EBL, since B'EB".
Finally, at this moment, Q2 5 ? is Ε by definition, whence BL QS i ? B'~.

After 2 " + 1 steps (the number of pairs rto,uo which need to be considered) we
obtain a system of non-empty £"J-sets Cu C Bu (u € 2n + 1) such that CuxCv C Wn

whenever u(n) φ ν(η), and CUQUVCV for all critical pairs u,v g 2 n + 1 . Thus,
everything is all right with the condition (b).

Now we make sure that (e) holds for the pair u = 0 η Λ 0, ν = 0 η Λ 1 . At the given
moment, Qg^ = E. Using the T^-density of Ε in Ε and the relation Cu Ε CV, we
find that the set Q = (CU Χ C$) Π Ε is non-empty. Consider the JC^-sets C" =
pri Q (C Cu) and C" = pr2 Q (C Cp); it is clear that C" Q C", whence C" Qsy C".
Lemma 31 (version 2) gives a system of non-empty X^-sets Du Q Cu (u 6 2 n + 1 )
such that £>„ Qu t, Dv continues to hold for all critical pairs u, υ in 2 n + 1 and DQ = C,
Dp = C". We redefine Q ^ by Qgy = Q; the relation DqQuvD^ is preserved.

Finally, we ensure (c) and (d). Consider an arbitrary critical pair UQ = sA0,
v0 = ig l in 2 n + 1 . The set Q' = QUoVon(Duo χ DVo) is a non-empty (since
Du0Qu0v0Dvo) Σι-subset of QU o U 0. Take any non-empty Σΐ-set Q C Q' that
belongs to 7*n. Let D' = prx Q and D" = pr 2 Q (then D' Q Z?", since D' QUoVo D").
We apply Lemma 31 (version 2) to the system of sets Du (u S 2 n + 1 ) and the sets
D' and £>". After that, we introduce the 'new' QUOVo via QUovo — Q.
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We do this successively for all critical pairs; the resulting sets—we denote them
by Xu (u G 2n + 1)—are the desired sets. The relations Ruv (u,v e 2n + 1) are
obtained by restricting Quv to Xu χ Χυ.

This completes the construction and the proof of Theorem 25.

4.7. Some other results. (This brief account is not meant to be complete, but
rather to demonstrate the abundance of ideas in this branch of descriptive theory.)

By Theorem 19, the equality Δ(Ί)) on the Cantor discontinuum Ί) = 2ω is
C-smallest among Borel relations with uncountably many equivalence classes.
Leaving aside the smooth relations, we see that Eo is C-smallest among non-smooth
Borel relations. One of the main problems in this field is to understand what is
going on above Eo.

HyperBnite and hypersmooth relations.
Dougherty, Jackson, and Kechris [11] considered an important special case of hyper-
finite relations, that is, relations of the form Ε = [_}n En, where En C En +i and each
En is a finite relation (which means that every equivalence class of En is a finite set).
The Borel hyperfinite relations are exactly those that are induced by the action of
a Borel automorphism. The following is proved in [11] for such relations. First,
every non-smooth relation Ε of this form is similar to Eo in the sense that Ε C Eo

and Eo C E. (The latter follows from Theorem 25.) Second, a finer classification
of Borel non-smooth hyperfinite relations is obtained within Borel isomorphism: a
countable set of distinguishable isomorphism types is indicated.

The second important class of Borel relations is formed by hypersmooth relations,
that is, relations of the form Ε = | J n En, where En C En +i and all the En are
smooth. Kechris and Louveau [17] found yet another dichotomy theorem: for any
hypersmooth Borel relation E, either Ε ̂  Eo or Ei ^ E, where Ei is the relation on
the space Ί)ω of all infinite sequences of points of D = 2ω defined by

{xn)neu Ei(yn)n<=u, <—> 3 n V m > η (xm = ym),

and the order ^ (which is weaker than C) is introduced in Definition 24. A result
that has been gained from this shows that for the order ^, Theorems 19 and 25, in
principle, exhaust all the assertions of this kind. We call a Borel relation R critical
if it is ^-comparable with any other Borel equivalence relation E. It turns out that
the equality relations Δ(Τ>), Δ(ω) and Δ({1,2,... ,η}), η € ω, are the only (aside
from R « R' when R ̂  R' and R' ^ R) critical Borel relations. It follows that the
only instances of dicohotomy among Borel relations are the pairs

(1) (Δ(Ί)),Ε0)— Theorem 25;
(2) (Δ(ω),Δ(Τ>))—Silver's theorem;
(3) (Δ(η), Δ (η + 1)) for all η—this is trivial.

Relations of the class Έ\.
Like the studies in connection with Silver's theorem (mentioned at the end of §3),
the problem of generalizing Theorem 25 to equivalence relations of the class Σ\ is
of great interest.

A direct statement of Theorem 25 for Σι-relations fails. For let Ε be the relation
introduced at the end of §3; in particular, Ε is thin, that is, it does not admit a
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perfect set of pairwise inequivalent points, but has uncountably many equivalence
classes. Then Eo C Ε is impossible, since there is a perfect set of pairwise non-
Eo-equivalent points; Ε is not smooth either, because a smooth thin relation may
have at most countably many classes.

Quite recently, Hjorth and Kechris [15] showed that the essence of the problem
is that the definition of smoothness is not adequate in the case when Σ {-relations
are under consideration.

We say that a relation Ε is Ulm-smooth23 if there is a Δι-function24 / : Ν -+ 2 < ω ι

such that χ Ε y <—l· f(x) = f(y) for all x, y ζ Ν. (We remark that 2 < ω ι is the set
of all countable (of any length < ωχ) binary sequences.) It is easy to see that each
relation that is smooth in the sense considered above is also Ulm-smooth.

In [15] it is shown that if all the classes of a Ej-relation Ε are Borel sets, then
either Eo C E, or else Ε is Ulm-smooth.

So far we have not succeeded in completely avoiding the troublesome require-
ment for the classes to be Borel. Hjorth and Kechris [15] proved the alternative:
either Eo C Ε or else the Ulm-smoothness, for an arbitrary Sj-relation E, under
an assumption connected with the existence of a measurable cardinal. There is no
reason to believe that a hypothesis so strong is really needed here, if only because
no counterexample is known so far.25

§5. Decomposition of plane Borel sets

Our last application of the topology generated by effectively Suslin sets is
connected with an interesting and important topic: plane Borel sets with special
sections.

5.1. Decomposition theorem. Consider a set Ρ C Ν2 = Ή χ Ή; it is proper
to call subsets of the 'Baire plane' N2 plane sets. Every point χ € Ή determines a
section

P/x = {y:(x,y)€P}

of the set P.26 Suppose that all the sections P/x are sets of the class Σ°, where
2 ^ λ < ω\ is a fixed ordinal. Then, by the axiom of choice, we have Ρ = \Jn P"n,
where each Pn has the property that all the sections Pnjx (x 6 N) belong to the
class Π°<λ = υ ι α < λ Π ° .

Suppose now that Ρ is a Borel set; is it possible to arrange that the sets Pn are
also Borel? The classical descriptive theory has given a positive answer to similar
questions in some cases. For example, if each section P/x of a Borel set Ρ is at
most countable, then Ρ = | J P n , where each Pn is a uniform Borel set. If each
section P/x is σ-compact, then all sections Pn/x can be required to be compact
and all sets Pn to be Borel. (Theorems of P. S. Novikov; see [4].)

23Hjorth and Kechris refer to Ulm's theorem on classification of countably Abelian p-groups,
which can be interpreted in the present context.

2 4Prom the point of view of complexity, the class Δ ι is approximately equivalent to the pro-
jective A^, but is denned in the framework of set-theoretic, and not descriptive, hierarchy.

2 5 The author has recently established that the alternative is true in all generic extensions of
the constructible universe.

26We use this notation P/x to avoid confusion with indices.
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Theorem 32 (Louveau [18]). Suppose that 2 ^ λ < u>i and Ρ C Ν χ Ν is a Borel
set such that P/x G Σ° for any χ G Κ. There is a sequence of Borel sets Pn such
that Ρ = (Jn Pn and, for any η and x, Pn/x is a set in Π^,λ.

Proof. Before turning to technicalities we outline the idea of the proof. Construc-
tion of a Borel set X C 3\f can be formalized as a countable sequence of the oper-
ations of countable union and complementation, starting with Baire intervals; we
call this a Borel construction. Each Borel construction has a certain length, the
ordinal λ < ωχ, that shows the number of elementary steps of the construction, and
thereby gives an upper bound of the Borel class of the resulting set X.

However, it is possible (and we immediately come to this in our analysis of
Theorem 32) that, in fact, the class of Borel set X is much lower than the one
suggested by the length of a given construction of X. Thus, we may have a con-
struction Π of length λ for X and be aware that there is actually a construction Π'
of a known length ξ < λ.

It turns out, and this is the key point in the proof of the theorem, that in
this case there is an effective (in a certain sense) procedure for finding the 'short'
construction Π' from Π. For example, under the hypothesis of the theorem, we
shall be able to effectively assign to each χ a Borel construction of the section P/x
in the form of a Σ^-set, which automatically provides a representation of P/x as a
countable union of Π^-sets; by 'integrating' the latter sets with respect to χ we
obtain the theorem.

Now we proceed with the details. We begin with a number of important
definitions.

5.2. Coding of Borel sets. An enumeration {N(n) : η G ω} of all Baire intervals
of Ή is assumed to be fixed; for example, N(n) = Bn[N\ in the sense of §1.3.

Let χ G Ή and η e ω. We define (x)n G Ή by (x)n(k) = x(rn,k~> + 1) for all k,
where, we recall, rn,k^ = 2™(2fc 4- 1) — 1. Thus, to each collection of a number
m Ε to and a set of points xn G Ν (η G ω) there corresponds, on a one-to-one way,
a point χ G Ν such that x(0) = m and (x)n = xn for all n.

Finally, for x e N w e define x~ e N b y the condition x~(k) — x(k + 1) for all k.
The map χ ι-)· (x(0),a:~) is a bisection of N onto ω χ Ή.

Now we introduce the collection of Borel codes BC C N, and for each k € BC,
the (Borel) set B(c) C Ή. Namely, BC is the smallest subset of Ή such that

(1) BC contains all c e Ν satisfying c(0) = 0.—For every such c we put B(c) =
U C - ( C ) = 1 : N ( C ) .

(2) If c(0) = 1 and c~ € BC, then c G BC.—In this case, i/B(c~) has already
been defined, then we put B(c) = Ή \ B(c~).

(3) If c(0) = 2 and (c)n 6 BC for all n, then c G BC—Here, if all the sets
B((c)n) have already been defined, then we put B(c) = \JnM((c)n).

It is easy to see that {B(c) : c G BC} is the family of all Borel subsets of Ή. By
induction on λ, 1 ^ λ < ωχ, we define the sets of codes σλ C BC and πχ C BC,
that generate specific Borel classes:

1. <7! = {c € X : c(0) = 0};
2. for any λ, π λ = {c : c(0) = \hc~ G σ λ } υ π < λ υ σ < λ ;
3. for λ > 1, σχ = {c : c(0) = 2&Vn (c)n G π<χ) ϋπ<χυσ<χ.
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(Here and in the sequel, π < λ = U I ^ < A
 π ί an<^ s o on> f°r similar notations.) Thus,

(c) : c e σχ] is the collection of all E°-sets X C N, and similarly for the pair π λ

°andn°v

Principle 33 ([24]; see also [1], Chapter 20, or [2]). The sets BC, {(c,x) : c e BC
I(c)} and {{c,x) : c G BC kx <£ B(c)} fte/on^ ίο ί/ie class Π{.

Definition 34 [effective Borel codes and sets]. Let ρ ε Ή. We put σχ(ρ) =
σ χ Π zl|(p), ττλ(ρ) = 7Γλ Π 4} (ρ) and

Σ°λ(ρ) = {B(c) : c € σλ(ρ)}, 77°(ρ) = (B(c) : c € πλ(ρ)}.

As usual, if ρ is absent, σχ = σχΠ Δ\, πχ = πχΠ Δ\ and i?° = {B(c) : c e σλ},
J7° = {B(C):ce7rA}.

Thus, we have defined the effective subclasses Γ and Γ(ρ)2Ί in each of the classes
Γ = Σ° and Π°. The sets of the class, say, Σ° are precisely those E°-sets that
admit an effective (that is, belonging to Δ\) construction from Baire intervals.

5.3. Effective version of the Louveau theorem. According to Principle 33,
every, say, 27°(p)-set belongs to both Σ° and Δ\(ρ). It is very important that under
some non-restrictive conditions the converse inclusion holds as well.

Theorem 35 (Louveau [18]). Suppose that ρ € Ν and λ < ωχ are such that all the
sets σξ, ΤΓξ, <τ<ξ, ΤΓ<£, where ξ ^ λ, belong to Δ\(ρ). Then every set X C. Ή of
Σ^ η Δ\{ρ) belongs to Σ°χ(ρ).

This proves our informal assertion made before: an effective set of the class Σ°
effectively belongs to this class.

We remark that, in fact, in our presentation this theorem is somewhat weaker
than in Louveau [18]. First, Louveau proves a separation theorem, which could be
stated here as follows: if, under the hypotheses of Theorem 35, disjoint i7j(p)-sets
X and Υ are such that the former is II°-separable from the latter, then there is a
separating set of the class 77°(p). Second, the relationship between ρ and λ in [18]
is like this: λ is a recursive ordinal with respect to ρ (then it can be proved that
all the sets mentioned in Theorem 35 belong, in fact, to Δ\(ρ)).

Derivation of Theorem 32 from Theorem 35. We fix a po 6 Ν such that a
given set Ρ and all the sets σξ, 7Γξ, σ<ξ, ττ<ξ, where 1 ^ ξ ^ λ, belong to Δ\(ρ0).
For χ Ε Ή, let px G Ν be defined by the equalities px(2A;) = po(k), px(2k + 1) =
x(k) for all k. Then each section P/x belongs to Σ^, and hence to Σΐ(ρχ), by.
Theorem 35. This means that there is a code c € σχ(ρχ) = σχΠ Δ\{ρχ) such that
P/x = B(c). We conclude that the set

U= {(x,k) :keax(px)&m(c)=P/x}

satisfies domt/ = 3\f. However, U € Π\{ρο) (Principle 33 and Corollary 6). There-
fore, by the uniformization theorem (Theorem 1), there is a 77i(po)-function F such
that U(x,F(x)) for all χ eK.

2 7 In the special case of λ = 1 there is a little problem: the classes Σ^(ρ) and Π°(ρ) have
already been defined in §1, and it can be shown that our definition here introduces classes that
are much larger than those in §1. To overcome this difficulty, we simply forget in this section the
definition of the classes Γ®(ρ) in §1.
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We note that, in fact, F belongs even to Δ\(ρ0), since

F(x) =c^- iVc 'e Δ\(ρχ) {οφ(! -> F(x) φ c),

and we can use Corollary 5. In particular, F is a Borel function and F(x) £ σχ,
B{F(x)) = P/x for any x.

By the definition of σ χ, in this case a countable sequence of Borel functions Fn

(n £ ω) can be given in such a way that Fn(x) £ π<χ and P/x = B(.F(x)) =
U n e w MFn(x)) for all x. Now it remains to put Pn = {(x,y) : y £ M(Fn{x))}.

5.4. Proof of the effective theorem. First of all, let us agree to carry out the
proof for the case where there is no p, that is, for the classes Δ\ and £"°; see the
remark at the end of §2.1.

We use induction on λ. Even in the case λ = 1, some ingenuity is needed. Let
I C Ν be open and of the class Δ\\ we prove that X £ Σ1".28 It suffices to find
a ZiJ-set Ν C ω such that X = UneiV-^(n); t o obtain from this Ν a code c £ σχ
with X — B(c) presents no difficulty.

Let Κ = {η £ ω : Ji(n) C X}; then Χ = UneK ̂ (n)> but immediately we
have only Κ £ Π\. To replace Κ by a zij-set with the same property we use an
argument that is later referred to as the (Π —>• A)-trick, Uniformizing the ΠI-set

Ρ = {(χ,η) :x£XkxC Ή(η) C Χ]

by means of Corollary 2, we have a ZiJ-selector Q that assigns to every χ £ X
the number η = Q(i) € ω such that χ £ 7ί(η) C X. Then the set L = {n : 3 a;
(n - Q(x))} satisfies X = \JneL N(n). On the other hand, I C if and I is in Σ\.
By the separation theorem (Corollary 3) there is a Z\J-set N, L C Ν C K. This
Ν is the desired set.

induction step. Suppose that 2 ̂  λ < ω\ and Theorem 35 has already been proved
below λ, that is, Σ° Π Δ\ C Σ° for ξ < λ. The idea of the proof for λ itself uses
the same method as for λ = 1. The role of Baire intervals is played by the sets in
77° λ . The following lemma demonstrates that there are certain premises for this
approach.

Lemma 36. Suppose that ξ ^ λ, and A C σ^ is a A[-set, and if ξ = X, we have
ACa<xU π < λ · Then X = \JaeA M{a) belongs to Γ°.

Proof. First, we see that X £ Δ\, since

[foruj 1 ] x£X +-* 3α£Δ\[α£Α&εχ£Ώ,(α)}

and

[for ΣΊ1] χ £ X i—> 3a [a £ Ak->(x £ B(a))]

(Corollary 5 and Principle 33 have been used). The induction hypothesis of the
theorem closes the case ξ < X. It remains to consider the case ξ = X, where the
code for X must be given by direct construction.

28See footnote 27. Now the S^-sets are open sets with <d}-code.
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It is necessary to find a Δ\ -enumeration of the elements of A. To this end, we note
that Principle 4 (part 2), in the special case when ρ = ω χ {0} (identically zero), gives
a set Κ C ω and a point d n 6 N for all η 6 Κ such that A\ Π Ή = {dn : η e Κ},
and the sets

/if, {(n,dn) :nEK}, {(n,x) : η 6 Κ kx φ d n }

belong to 77/. Now we apply the (Π -> A)-trick.
The set Ρ = {(α,η) : α Ε Akn 6 Kkdn = a} also belongs to TTj1, and

domP = A is a Z\}-set. By Corollary 2 there is a uniformizing ZlJ-set Q C P.
Then L = {n : 3aQ(a,n)} is a ITj-subset of K, that is, by virtue of separability,
there is a 4}-set N, LCN C K.

There are two principal points. First, A — {dn : η g N}. Second, F = {(n, dn) :
η € Ν} belongs to Δ\, by what was said above. The latter shows that the code
a £ BC defined by the conditions o(0) = 1, (a~)n = d n for η € Ν, and (α~)η = e
(where e is a fixed code of the empty set) for η £ N, belongs to Δ\, and hence
to σχ. Because of the former circumstance, B(a) = X.

It seems appropriate to give here the proof of another lemma, also based on the
(Π —> A)-trick. The meaning of this lemma is that in certain cases, intersections
over /Γι-sets of indices can be approximated by intersections over Z\}-sets.

Lemma 37. Suppose that A C BCflZiJ is a II{-set, and X = f]aeA B(a) does not
intersect a E\-set Z. Then there is a A\-set A' C A such that X' = f]aeA, B(o)
does not intersect Ζ either.

Proof. The set Ρ = {(x,c) : c e Akx $. B(c)} belongs to 77̂  by Principle 33.
Consequently, by the uniformization theorem (Principle 1), there is a Π{ -set Q C Ρ
that uniformizes P. The set A" = {c : 3χ € ZQ(x,c)} is in i7j; in fact,

c € A" *—> 3a; € ZVc' 6 4 j [c' ^ c _> -Q(a;,c')]

and it remains to use Corollary 5. The separability theorem (Principle 3) provides
a Z\}-set A' such that A" C A' C A. Then X' = flce/i' ®(c) n a s n 0 common points
with Z. (If a; g Z, then there is a c such that Q(x, c); hence c £ ^4", and so c £ A1.
But according to the choice of Q and the definition of P, we have χ £ B(c), that is,
χ i X'.)

Continuing the proof of Theorem 35, we introduce I7|, for ξ ^ λ, as the family
of all sets of the form Υ = [JaeAB(a), where A C σ^ is a ITj-set. Similarly,
Π.Ί denotes the family of all sets Π ο 6 Λ Β(ο), where 4̂ C ττξ belongs again to the
class Π\.

Fact 38. ΣΙ C 77/ and 77| C ΣΊ1.

Proo/. See the beginning of the proof of Lemma 36.

After these preparations, we prove a lemma that justifies the induction step of
Theorem 35. In a certain sense, the induction step of the theorem is simply reduced
to that of the lemma.
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Lemma 39. If 2 ^ ρ ^ λ, then every U°p-set is 7-almost equal29 to a (countable)
intersection of sets of the class £"<p = Ui<£<p ^\·

Proof. We use induction on p. Thus, let 2 < ρ ^ λ.
Consider a II°-set X C N . Then X is a countable intersection of sets in Σ0-.^,

that is, we can assume that X itself belongs to Σ° for some ξ < p. By the induc-
tion hypothesis, X is T-almost equal to a countable union of sets in 77<ξ. Con-
sequently, we can assume that X itself is a countable union of sets in 77^ (or of
Baire intervals—for ξ = 1).

We denote by X* the intersection of all ££-sets that contain X. Since ΣΪ is
a countable class, to finish the proof of the lemma it suffices to verify that the
difference X* \ X is of the T-first category. In fact, we prove that X* \ X is
T-nowhere dense.

Thus, for an arbitrary non-empty i7j-set Ζ we find a non-empty Z'J-set Z' C Ζ
that has no common points with X* \ X.

Case 1. ZC\X is non-empty. Then, by the assumption on X, there is a 77^-set (or
a Baire interval—for ξ = 1) Υ C X whose intersection with Ζ is also non-empty.
However, Υ is in Σ{ (Fact 38). It remains to take Ζ' = ΖΓ\Υ.

Case 2. Ζ Π Χ = 0. We show that in this case Ζ Π Χ* = 0, that is, we can simply
take Z' = Z. First, consider the subcase ξ > 1. In view of Lemmas 37 and 36 (in
the dual form), each 77^-set Υ C X is separable from Ζ by a set of the class 77° ξ .
Thus, X C X', where X' is the union of all Π^-sets that do not intersect Z.

We show that X1 € ££; then X* C X', and, further, Χ* Π Ζ = 0. It suffices to
verify that the set C = {c € π<ξ : B(c) Π Ζ = 0} belongs to 77 .̂ We have

ceC <—> c€ Zi}&c€ 7Γ<ξ&νζ (

The relation c G A\ is expressed by the 77^-formula 3 a € zij (c = a) (we refer to
Corollary 5). The second conjunction term is 77j by the hypothesis of the theorem.
Finally, the last term is of the same class by the choice of Ζ and Principle 33.

Now consider the subcase ξ = 1. Here in the role of 77<i- and 77° x -sets we
have Baire intervals. Thus, let X' be the union of all Baire intervals that do not
intersect Z. We need to verify that X' £ ΣΙ. We recall that N(n) denotes the
nth Baire interval in the sense of some effective enumeration of these intervals. We
have X' = Uneiv^C71)' w h e r e Ν = {η: Ή(η) Π Ζ = 0} is a 771

1-set.
We define cn e Ν by the conditions cn(0) = 0, c~(n) — 1 and c~(k) = 0 for

k Φ η, so that B(cn) = Ή(η). Then C = {cn : η e N} belongs to 77̂  together
with N. On the other hand, X' - U c e C l ( c ) , that is, X' e Σ{.

We return to the proof of Theorem 35 (the induction step). Consider an arbitrary
set X C Κ in Π^ Π Δ\ and prove that X belongs to 77°. By the lemma, X is
T-almost equal to a countable intersection of sets in Σ^χ. Let U be one of these

29We say that two sets X and Υ are τ-almost equal, where τ is a topology, if their symmetric
difference XAY is a first category set in the sense of τ.
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I7<A-sets, that is, the difference D = X \ U is of the T-first category. But U € Π£
(Fact 38), whence D € Σ{. We recall that Τ is a Baire topology by Lemma 13,
which means that an open set of the first category must be empty. Thus, in fact,
X C U. Using Lemmas 36 and 37 we see that there is a I7°A-set V such that
X CV CU.

The result: the intersection X* of all 27°A-sets V D X is T-almost equal to X.
We have X* = f]a€A B(a), where A = {a € σ < λ : X C B(o)}. It is easy to verify
that ΑΕΠ\, that is, X* e Π*<χ and X* € Σ\ (Fact 38). Lemma 13 gives X = X*.
Applying Lemma 37 to X* and the complement of X, and then Lemma 36, we
obtain X € 77°, which ends the proof.

5.5. Concluding remark. Theorem 35 expresses undoubtedly a more fundamen-
tal fact than does Theorem 32, though the latter appears more classical. Here is
yet another application.

Corollary 40. / / 1 < λ < ωΧ, then the set σλ = {c e BC : B(c) Ε Σ^} of the
Borel codes of the Σ° -sets belongs to U\.

Proof. We choose a po and define px in the same way as in the argument
immediately after the statement of Theorem 35 (but without the requirement
concerning P). For any c S BC the set B(c) belongs to A\(c), by Principle 33.
Consequently, if B(c) e Σ^, then, by Theorem 35, B(c) = B(c') for some
c' G σλ(Ρο) = σΧΠ A\(pc). Therefore,

c € σ'χ <—)· 3 c' € Z\i(pc) (c' e <rA&B(c) = B(c')).

The equality B(c) = B(c') can be expressed by a Π\-relation in view of Principle 33;
it remains to use Corollary 5.

A direct verification yields only σ'χ £ Σ2, which is, of course, much worse. Even
the use of a forceful tool such as Martin's theorem on Borel determinacy leads to
σ'χ e Δ2 only, and this demonstrates the power of Theorem 35. Among applications
of results of the type of Corollary 40 (we speak about the effective version of it in
the same sense as Theorem 35 can be called the effective version of Theorem 32),
we mention one of the results of [3]: if among the constituents of a Σ^-βεί given
by means of a Borel sieve there are uncountably many non-empty ones (for Σ \ -sets
this does not imply non-Borelness!), then these constituents do not form a family
of bounded Borel rank. .
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