VLADIMIR KANOVEL" Extending Standard Models
MICHAEL REEKEN of ZFC to Models of
Nonstandard set Theories

Abstract. We study those models of ZFC which are embeddable, as the class of all
standard sets, in a model of internal set theory IST or models of some other nonstandard
set theories.
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Introduction

In the early 60s Abraham Robinson demonstrated that nonstandard models
of natural and real numbers could be used to interpret the basic notions of
analysis in the spirit of mathematics of the 17-th and 18-th century, i.e.,
including infinitesimal and infinitely large quantities.

Nonstandard analysis, the field of mathematics which has been initiated
by Robinson’s idea, develops in two different versions.

The model theoretic version, following the original approach, interprets
“nonstandard” notions via nonstandard models in the ZFC universe.

On the other hand, the aziomatic version more radically postulates that
the whole universe of sets (including all mathematical objects) is arranged in
a “nonstandard” way, so that it contains both the objects of conventional,
“standard” mathematics, called standard, and objects of different nature,
called nonstandard. The latter type includes infinitesimal and infinitely
large numbers, among other rather unusual objects.

Each of the two versions has its collective of adherents who use it as a
working tool to develop nonstandard mathematics.

Many of those who follow the axiomatic version use infernal sef the-
ory IST of Nelson [9] as the basic set theory. This is a theory in the
st-€-language (that is, the language L¢g¢ containing the membership €
and the unary predicate of standardness st as the only atomic predicates)
which includes all axioms of ZFC in the £-language together with three
principles that govern the interactions between standard (i.e. those sets z
which satisfy stz ) and nonstandard objects in the set universe.
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Some other nonstandard axiomatic set theories, introduced by Hrbatek
[2, 3] and Kawai [8], arrange the nonstandard “universe of discourse” in
somewhat different way (see below) but all of them have the predicate st
in the language and do not go essentially beyond ZFC in the sense that

(T} they prove those and only those €-sentences to be true in the class
S = {z:stz} of all standard sets, which are theorems of ZFC .

This property of “conservativity” may be considered as a reason to view
IST and similar theories as a syntactical tool of proving ZFC theorems
often in a more convenient way than “standard” mathematics allows.

However, working with a nonstandard set theory, one should be interested
to know whether its axioms reflect some sort of mathematical reality.

e Let us say that a transitive model M = (M; €) = ZFC extends to
a model of a nonstandard set theory T iff there is a model M1 =T
such that the class of all standard sets of 9 is isomorphic to 9.

In view of the above, one could expect that the relations between ZFC
and e.g. IST are similar to those between the real line and the complex
plane, so that each model of ZFC extends to a model of IST. However
this is not the case: we demonstrated in [5] that minimal €-models of ZFC
do not extend to a model of IST. This observation leads to the question:

e Let T be a nonstandard set theory, e.g., IST. Which “standard”
models (i.e., transitive €-models) of ZFC eztend to models of T ?

The aim of this paper is to answer this question for several nonstandard set
theories. We shall see that, although (I) is their common property, there are
striking differences in what they require from a standard model of ZFC to
be extendible. This observation could perhaps lead to new insights into the
philosophy of nonstandard mathematics.

1. Main resulis

Unfortunately, a complete description of “standard” models of ZFC, ex-
tendible to IST, has not yet been obtained. Our first main theorem solves
this problem for IST' , an extension of IST .

DEFINITION 1. IST? is the extension of IST by the following axiom:

Locally Standard Choice: There is a function C such that § CdomC and,
for any non-empty standard z, C(z) € z and C(z) is standard. O
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This does not seem to be an essential strengthening, at least IST" still
satisfies {I) and follows from ISTGC, a “global choice” version of IST.
See more comprehensive discussion in the beginning of Section 2.

Recall that ZFGC (with Global Choice) is the theory in the language
Le«, containing all of the ZFC axioms (with the schemata of Separa-
tion and Replacement in L¢ o), together with the axiom saying that <
wellorders the universe in such a way that each initial segment is a set.

Suppose that 9 = (9N;...}) is a transitive model of a theory includ-
ing ZF. A family of sets T1,...,7, € 9 will be called innocuous for M iff
the structure (9M; ..., Ty, ..., T5,) models Separation in the language which ex-
tends the language of the signature of 9 by T}, ..., T}, as extra predicates.

Note that every L¢ o-formula having sets in 901 as parameters can be
naturally considered as an element of 9. Let Truth g} . denote the set of all
closed L ¢ -formulas, which are truein (9M; €, <}, so that Truthgt L CIn.

Truth?' will have similar meaning (the set of all €-formulas ...).

THEOREM 2. For any transitive model M = ZFC, the following conditions
are equivalent:!

(1) 9M extends to a model of IST™ ;
(2) M extends to a model of ISTGC ;

(3) there is a well-ordering < of M, such that the structure (M; €, <)}
models ZFGC and Tr1.11;hgf< is innocuous for (MM; €,<).

The proof of (3) = (2) (Subsection 2.2) is a modification of the orig-
inal construction of an IST model by Nelson [9]. Direction (1) == (3)
(Subsection 2.1) is more interesting: the role of the truth relation is some-
what surprising. (However see Lemma 5.)

The other theories we deal with in this paper, NST of Hrbagek [2, 3]
and KST of Kawai [8], differ from IST or IST™ in the manner how they
arrange the “universe of discourse”. While IST sees it as an elementary
extension of the standard subuniverse § in the &-language, NST and
KST view things so that the universe contains an intermediate transitive

! IST*_extendable transitive models of ZFC admit another characterization. Let
{(9; €, <) be amodel of ZFGC. Say that a collection X of subsets of R is innocuous
for (M; €, <) if we have y € M whenever y C x € M and y is definable in the
2nd order structure ((91; €, <); X). Then, a transitive model 9 |= ZFC extends to
a model of ISTY, iff there is a well-ordering ~ of M such that (90; €, <) models
ZFGC and the family X of all sets X C 91, definable in {9; €, <}, is innocuous for
(M; €,=).

The equivalence of this characterization and the one given by the theorem can in prin-
ciple be verified directly without a reference to the IST'-extendibility.
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class T of internal sets, which behaves approximately like an IST universe,
while the whole universe is a sort of well-founded superstructure over I, in
particular it satisfies Separation in the language containing st, hence allows
to freely operate with external sefs which causes trouble for IST users.

On the other hand NST and KST differ in some important details.
For instance, NST does not have Replacement (but has Power Set) in the
“universe of discourse”, provides a weaker amount of Saturation comparably
with the IST Idealization, and a rather strong form of Standardization which
implies that, given a set X, the intersection X NS is covered by a standard
set {a “boundedness” property, incompatible with IST ). Internal sets in
NST are elements of standard sets and only them.

THEOREM 3. A transitive model M |= ZFC extends to a model of NST
iff there exist a transitive model M of ZC (Zermelo with Choice) and an
ordinal k € N such that & is a cardinal in N while M= NNV, .2

Unlike NST, Kawai’s theory KST arranges the “universe of discourse”
so that § C I are sets (hence the abovementioned “boundedness” property
of S in NST fails) while Replacement in the st-&-language holds.

THEOREM 4. A transitive model M |= ZFC extends to ¢ model of KST
iff there are a model 9 = (M;€) ? of ZFC and a N-cardinal x € N
such that (9M; €) is isomorphic to {(Vi)™; €) .

We would be interested to prove Theorem 4 with the additional require-
ment that M is a transitive set and € is € [ 7M. (See a short discussion in
Subsection 5.4)

2. Internal set theory

Internal set theory IST of Nelson [9] is a theory in the st-c-language,
containing all ZFC axioms (in the €-language) and the following principles:

IST Transfer & < @
— for any €-formula ® with standard parameters;

Idealization: V*'"A3zVa € A B(a,z) <> Iz Ve (0, z)
~ for any €-formula ®(z) with arbitrary parameters;

IST Standardization VX 'Y V2 (z €Y <= z € X & &(z))
— for any st-e-formula ®(x) with arbitrary parameters.

* Recall that Vi is the s-th level of the cumulative set hierarchy.

® In this paper, € always denotes the “true” membership, while € will be used to
denote membership relations in not necessarily standard models.
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The quantifiers 3z and VS'z have the obvious meaning (there exists a
standard set z ..). V'i%A means: for any standard finite set A .

9% is the relativization of an €-formula ® to S ={z:stz}.

ISTGC is a theory in the language L¢ < st, containing all of ZFGC
(in the language Le <, see Section 1), together with the schemata of IST
Transfer, Idealization, and IST Standardization, in each of which the global
order predicate < is allowed to occur in the formulas involved.

It is known that IST proves the existence of a set D such that S C D,
even more, D can be chosen as a formally finite set. (See Nelson [9).) By
the Choice for finite sets, this yields a choice function C defined on D,
hence on S. In other words, C(z) € z for any standard z # @. The special
content of Locally Standard Choice is therefore to guarantee that C can be
chosen so that C(z} is standard for any standard = .

We doubt (but do not know for sure) that Locally Standard Choice is
provable in IST. However, it is an easy theorem of ISTGC. Indeed, take
aset D such that S C D, and, for any z # 0 in D, define C(z) to be
the <-least element in z. Then C(z) is standard whenever z is standard,
by Transfer, where now the predicate < can occur.

To end this discussion, let us cite the following lemma of Kanovei [4].

LEMMA 5. There s ¢ st-€-formule 7(x) such that, for eny €-formula
ox1y .y Ty ), it is a theorem of IST that

V1 LY, (0% (2, ., 2n) = T(To(T1, o 7)) O

Here M7 is the formula 1 considered as a finite sequence of (coded} sym-
bols of the £-language and sets which occur in ¢ as parameters.

2.1. Getting the order

This subsection proves implication (1} = (3) in Theorem 2.

Consider a transitive model 9 |= ZFC which is the standard part
S={zrel:stz} ofamodel T={l;¢€,8t) of IST", 50 €[ M=¢€[M.
Our aim is to find a well-ordering < of 2 such that (9M; &, <) models
ZFGC and Truth?', is innocuous for (M; €, <) .

Let C €I be such that the following is true in [ : “C is a function
which guararantees the axiom of Locally Standard Choice.” Let €' = C [ 90,
so that C is a choice function for the standard ¢-model 9 = (9; €) .

LEMMA 6. The pair of sets C and T = Truth?' is innocuous for {IM; €).

PrROOF. By Standardization, it suffices to prove that T is st-&-definable in
I. But this follows from Lemma 5. |
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We define the required order < as the limit of an increasing sequence of
orders, the construction of which is based on a forcing-like idea.

We argue in the model (M;€,C,T).

Let ¥ be the class of all structures of the form ¢ = (X; <), where
X € 9 is transitive and has the form X = MM, = V, NI for some ordinal
a € M, and < € M is a well-ordering of X. We say that ¢’ = (X'; <’)
extends 0 ={X; <), if X C X’ and <’ is an end-extension of <.

Define a relation o forc ®(z1,...,%,), where ¢ = (X; <} € £ while &
is a L¢ o-formula and zy,...,z, € X, by induction on the complexity of @ .

1. If @ is an elementary formula of Lc <, Le. 2 <y, z=1y, or €y,
then o forc ® if @ istruein o (viewed as o = (X; €, <)).

2. o forc (¢ & ¥) iff o forc ® and o forc V.
3. o forc (—®) iff no ¢’ € ¥ extending ¢ satisfies o' forc .
4. o forc 3z ®(x) iff there is z € X such that o forec ®(z).

For a L -formula @, a structure o0 = (X; <) € £ is $-complele
iff, for any subformula ¥(x,,...,z,) of ® and all zq,...,z, € X, we have
o fore ¥(xy,...,xz,) or o forc ~¥(zy,...,z,), and is tolally complete if it
is ®-complete for any formula ® of L¢ .. The following can be proved by
a standard argument using induction on the complexity of @ .

PROPOSITION 7. If @ isa closed Lc -formula with parameters in X, and
oc={X;<)€X is D-complete, then o forc® iff o =0. O

We define an increasing sequence of structures o, = (Xy; <4) € L.
The construction depends on the extendibility to totally complete struc-
tures. (Note that, given a formula @, every structure ¢ € & extends to a
®-complete ¢' € X because (IN; €) models ZFC. But, to prove that there
is a totally complete extension, one would need that the set T = Truthigt
does not destroy Replacement in 91, which is not assumed.)

Case 1: each 0 € & can be extended to a totally complete o' € 3.

Define ¢, = {X,; <4) € ¥ by induction on v € Ord (in M) so that
Xy = Usey X5 and <y = U, <5 for all limit ordinals vy, and o441 =
C(W(oy)), where W{o,) is the set of all totally complete proper extensions
of ¢ in ¥ of the least possible €-rank, while C' = C [ 2, see above.

Let A be the largest ordinal such that o, is defined (and belongs to %,
hence to M} for all v < A; clearly A < “the least ordinal not in 9M”. -

Case 2: otherwise.

Fix a recursive enumeration {®, : n € w} of all formulas of L .
A structure ¢ € X will be calied n-complete if it is $p-complete for any
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k<n. Weset A =w in this case, pick a structure oy € ¥ not extendable
to a totally complete structure, and define a sequence of structures o, =
{(Xn; <n) € X such that opy1 = C(W(oy,)) forany n € w. =

In each of the two cases (o, : v < A) is a sequence of elements of 9N,
definable in (M; €, T, C), where, we recall, T = Truth?'.

LEMMA 8. X is a limit ordinal and ., X, =90

ProOF. Recall that A=w in Cagse 2. If A=+ + 1 in Case 1 then, by the
assumption of Case 1, we would be able to define o). Hence A is a limit
ordinal and the relation < =], ., <y is a well-ordering of X .

Assume that X =),y Xy # 9. Then X € M aseach X, is M, =
Vo NN for some «. Now the order < belongs to 91 by Lemma 6. Tt
follows that ¢ = (X; <) € £. Moreover ¢ is totally complete. (As the
limit of an increasing sequence of totally complete structures in Case 1, and
by similar reasons in Case 2.} This immediately contradicts the choice of
op in Case 2, while, in Case 1, adds an extra term to the sequence, which
contradicts the choice of A. |

We conclude that < =)\ <y is a well-ordering of 2.

LEMMA 9. (9M; €,<) is a model of ZFGC. The set T, = Truthg); 18
innocuous for (IM; €, <).

PRrOOF. To see that (M ; €, <) satisfies Collection, suppose that p, X € M
and ®(z,y,p) is a L formula. We have to find ¥ € 9 such that the
following holds in M : Vz € X [y @(z,y,p) = Ay €Y ®(z,y,p)] .

In both Case 1 and Case 2, there is v < A such that p, X € X, and
oy is (Fy ®(z,y,p))-complete. Prove that ¥ = X, is as required.

Consider z € X, hence € X,,. Suppose that there is y € 9 such that
®{z,y,p) holds in M, and prove that such a set y exists in X, .

It follows from Lemma 8 that 97 is the union of an increasing chain
of (3y ®(x,y, p))-complete structures. Therefore, by Proposition 7 and an
ordinary model-theoretic argument, (9; €, <} is an elementary extension
of (Xy; €, <) with respect to the formula Iy &(z,y,p) and all its subfor-
mulas. This proves the existence of y in X, .

To prove that T is innocuous, it suffices to show that T. is definable
in (M; €, T,C). Let &(p1,...,pr) be a closed L -formula with param-
eters pr,..,pr € . Let n be the number of ®(zy,...,z;) (see Case 2
above). Take the least v < A such that pi,..,pr € X, and, in Case 2,
v > n. Arguing as above, we conclude that o, is an elementary substruc-
ture of (M;€,<) w. r. t. @, hence P(pi1,..,px) is either true or false
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simultaneously in both ¢, and (9; €, <). It remains to recall that the
sequence of structures o, is definable in (M;€,T,C). [ |

O( (1) =>(3) of Theorem 2)

2.2. Getting the model

This subsection not only proves implication (3) == (2) in Theorem 2,
but also supplies some material useful for the metamathematical analysis of
theories ISTT and ISTGC in Section 2.3. The key tool involved is the
adegquate ultralimit construction of Nelson [9], modified by Kanovei {4].

e A filter or ultrafilter U C P(Pygy(A4)) is A-adeguate il it contains all
sets of the form {7 € Ppn(A) 1 a €7}, where a € A.

Recall that Ui ®(i) means “the set {7 € I : ®{i)} belongs to U”. (The
quantifier: there exist U-many.} In this notation, the A-adequacy of U/ can
be expressed as: “Ui (a €1) forany a € A”.

We begin with a transitive set 27 and a well-ordering < of 9 such that
M is a model of ZF (but, in general, will not assume that 9 | ZFC)
while the pair of sets < and T = T:l:'uthg,I ~ 1s innocuous for 90, so that
(M; €,<, T) models Separation in the language Le 7. In addition, we
agssume that every initial segment of 9t in the sense of < belongs to 7.

The general aim is to embed 2, as the class of all standard sets, in an
“IST'GC-like” model I .

Let I = Pgu(91). Let A be the algebra of all sets X C I which belong
to Def g;, the collection of all sets X C 9N definable in (M; €,<) by a
formula of L¢ o containing sets in DN as parameters.

PROPOSITION 10. There exists an M-adequate ultrafilter U C A safisfying
(A) if a relation P C M x I belongs to the class Def gt{ then the relation
Ui P{z,i) belongs to De‘.FgJ:‘_‘< as well;
(B} there is a set U C M, definable in the structure (M; €, <, T), such
that U ={Uy: 2 € M}, where Uy ={i €1:(z,i) €U} forall z.
Proor. The family Uy of all sets of the form

Ijow,={1€I:01,...,am €1}, where ai,.,am € M,

obviously satisfies FIP (the finite intersection property).

Now suppose that a FIP family U,, of subsets of I has been constructed.
Denote by xn(z,i) the n-th formula in a recursive enumeration, fixed be-
forehand, of all L¢ <-formulas with exactly two free variables.
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We define Uyqy = U, U{B? : 2 € D}, where B} is equal to the set
Ar={i € 1: {IM; €, <) F xn(z,i)} whenever U,U{B} :y < x}UAY still
satisfies FIP, and B7 = I'\ A} otherwise.

Let us prove that U = |J, U, satisfies both (A) and (B). We first prove,
by induction on n, that the map

(1 i Br=AR
F”(m)_{o if BP =T\ A"

belongs to Def g}t - Let us fix n and suppose that all of Fy, & < n, al-
ready belong to Def g{t ¢ Let, for any y € MM, a y-function be a function
f defined on W, = {z : 2 < y} and satisfying, on this domain, the defini-
tion of F,. Note that, by the assumptions above, W, € 90 for all y, and
~ wellorders W,. 1t easily follows that, for any y, there is at most one
y-function. As for the existence, normally we would have to apply Replace-
ment (which is not assumed here), but, as clearly any y-function, as well as
any y'-function for 3’ < y, is a subset of W, x {0,1} (which is a set in 90},
the ordinary definition of an y-function, by induction on the —<-position of
y, goes through in (9MM; &€, <) with the help of Separation only. (We apply,
of course, the assumption that all maps F; with k¥ < n already belong to
Def g{t » to adequately express the definition of B} .)

Now let us check (A). Let P C 9 x I be definable in 2 by a
L <-formula x(z,i) : we have to prove that the relation Ui P(z,i} be-
longs to Def ZJ} .- It is sufficient to consider the case when X does not contain
any sets as parameters. (Otherwise the parameters involved simply join z.)
Then x is xn for some n, and, by definition, Ui P(xz,{) is equivalent to
F,(z) = 1, so that the result follows from the definability of F, .

Let us check (B). The reasoning above can be summarized as follows:
there is a recursive sequence of parameter-free L o-formulas ¢,(x) such
that, for all n and z € M, F,(z) =1 iff ¢,(x) holds in M. Now the set
U of all pairs {(y,i} € M x I, such that y = (n,z) € w x I and it is true
in M that @,(z) < xn(z,1), is definable in the structure (M; €, <, T},
and, by the construction, we have U = {1, : y € M} . |

Let us fix such an ultrafilter U7 C A.
For > 1, welet I" =7 x...x1I (r times I), and

FT={f€Defgf_< : f maps I" to 9M}.

Let separately 1Y = {0} and Fy = {{{0,z)}: z € M}. We finally define
F=U,c.Fr, and, for f €F, let r(f) be the only r such that f € F,.
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Suppose that f € F, ¢ > r = r(f}, and i = (i1,...,%,...,44) € I%
Then we set f[i] = f({i1,...,%r)). In particular f[i] = f(i) whenever r =g.
Separately we put f[i] =z for any i whenever f = {(0,z)} € Fy.

Let f, g €F and r = max{r(f),r(g)}. Define

fr=g it Ui Ui ... Uir (fli] = gli]),

(where 1 denotes (if,...,%,) : note the order of quantifiers), and define f*eg
and f *< g similarly. The following is a routine statement.

%

PROPOSITION 11. The relation *= 1is an equivelence relation on F. The
relations "€ and < on F are *=-inwvariant in both arguments. |

Define {f]|={g€e F: f*=g}. Let I1={[f]:f € F} (the quotient).
For [f], [g] € I, define [f] € [g] iff /g, and [f] < [g] iff /< g. (This
is independent of the choice of representatives by the proposition.)

For any = € M, define *z = [{(0,z)}], the image of = in I.

We finally define st [f] iff [f]="*z for some z € M.

THEOREM 12. The map x — "z is a 1 —1 map from MM onto the class of
all standard (i.e. satisfying st ) elements of 1. Moreover, x — *z is an el-
ementary embedding of (MM; €, <) in {I; *¢,X). In addition the structure
(I; *¢,*<,st) is a model of Transfer, Standardization, and ldealization, in
their ISTGGC wversions (that is, in the language L¢ ).

PROOF. We begin with some formalism. Let &(fy,..., f;n) be a formula of
Le < with fi1,..., fm € F as parameters. Put r(®) = max{r(fi),....7(fm) }-
If r<gq and i€ I? then let ®[i] denote the formula ®(fi[i,..., fml[i]) (a
formula of L¢ o with parametersin 91 ). Let finally [®] denote the formula
®([f1], s [fm]), which is a formula of L . with parameters in I .

The proof of the next proposition goes on by induction on the complexity
of the formulas involved, following usual patterns, which survive in this setup
despite the fact that not all functions participate in the definition of the
ultralimit. (Only those in Def 2" 2!} The point is that < is innocuous,
so that (91; €, <) models Separation in L¢ ., hence we have sufficient
environment to carry out the ordinary Lo$ argument.

ProrosITION 13. (Los) Let & = &(f1,...,fm) be a formula of L o with
functions fi,...,fm €F as parameters, and r > r(®). Then

[®] holds in (I; "e, <} iff Uip Utpy ... Uiy ((M;€,<) E=Qli]). O

(1 denotes (i1,...,%;} in the displayed line.}
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Using functions in Fy, we immediately conclude that the map z — "z
isa 1 —1 map onto the class of all standard sets in I and an elementary
embedding into {f; "€, *<), which implies Transfer in {I; *&, *<, st }.

Idealization. Let ®(a,z)} be an L -formula with two free variables, a
and z, and some functions in F as parameters. We have to demonstrate

Iy v 432V € A[®)(a,2) = Tz V% [®](a,z)

in I. (It is known that the implication <= here is a corollary of Standard-
ization.) The left-hand side of (IT) implies, by Proposition 13,

Viinite AC M Ui, Uipy ... Uiy Jz Va € A D[4y, ..., 4r)](a, z)

in M, where r = r(®). To simplify the formula note that the leftmost
quantifier is a quantifier over [ and define a function « € F,;; by the
equality «f(i;,...,%,,%) = 4. The last displayed formula takes the form

VielUi, Uipq .. Ui (JzVa € a ®)[(i, ..., 0, 0)){a, 2},

which implies 3z Va € [a] [®]{a,z) in I by Proposition 13. Now, by the
definition of st, it suffices to check *z *€ [a] in I for any z € 9. Thisis
equivalent to Ui Ui, ... Uty (z € 1), which holds by the choice of U .

Standardization. This is the point when the assumption, that the sets <
and T = Truthgj} - are innocuous for (IM; €), comes into play.

Since U/ isdefinablein (IM; €,<,T) by (B) of Proposition 10, the model
(I; *€,st) is definablein (97; €, <, T} as well. Thus we have only to check
that, given = € "M, any set y C 2, which is definable in (9M; €, <, T),
belongs to 9. It remains to recall that (97; €,<,T) models Separation.

O (Theorem 12)

We can now complete the proof of implication (3} == (2) in Theo-
rem 2. In addition to the setup in the beginning of this Subsection, let
us assume that (91; €, <) is a model of ZFGC. Then, by Theorem 12,
(I; *e,*,8t) is a model of ISTGC while the map z — *r isa 1—1
c-embedding of 91 onto the class of all standard elemeunts of 1.

O {Theorem 2)

2.3. Conservativity

The aim of this subsection is to prove that ISTt and ISTGC share the
property of conservativity (I) with IST. It suffices to verify this property
for ISTGC only.

THEOREM 14. ISTGC satisfies (), that is, every theorem of ISTGC in
the €-language is a theorem of ZFC.
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It immediately follows that IST™T satisfies (I} as well. Thus both ISTGC
and IST™ are equi-consistent with ZFC. We would say that ISTGC and
IST" are “mild” extensions of IST, meaning both Theorem 14 and the
observation that the theories do not differ from each other and from IST
in matters of development of applied nonstandard mathemaitics.

PROOF. Suppose that ¢ is an €-sentence, provable in ISTGC. We have
to show that ¢ is a theorem of ZFC, too. Let @ be a finite subtheory of
ISTGC, sufficient to prove .

Froof of v in ZFC. Let A be a limit ordinal, such that 901 = V), sat-
isfies all those cases of Replacement, which occur in @, and is an elementary
submodel of the universe with respect to ¢ . Let < be any wellordering of
P such that any initial segment of 90t in the sense of < belongs to M.
Then, as sets of the form V) are closed under subset formation, everything
is innocuous for M, so we can apply Theorem 12. (Note that Theorem 12
does not require any instance of Replacement to hold in 9t. ) The structure
(I; *e,*<,st) is then a model of ®, hence a model of . Therefore M
models  as well. This proves ¢ in the universe by the choice of M1. u

3. External nonstandard set theories

Hrbatek (2, 3] and Kawal [7, 8] introduced several nonstandard theories
of this type which differ in detail but have a common part which we will
call basic external sef theory, or BEST. This is a theory in the language
Le st int With three atomic predicates, €, st, and int. (The last one,
expressing the property of being internal, will be reduced to st in some
cases by means of a special axiom, see below.)

The axioms of BEST naturally split in two groups.

1. Basic azioms for the “universe of discourse”. This group
consists of all ZF axioms (with Separation in L¢ g int ), ezcept for the
Replacement and Regularity axioms. (Note the absence of Choice.) A weaker
form of Regularity is added, see below.

2. Azioms for standard and internal sets. This group includes:

ZFC* : all axioms of ZFC (in the €-language) relativized to the standard
universe S ={z:s8tz};

Transitivity of I: the internal subuniverse I = {z : intz} is transitive;

Transfer: &™ & &% - for any c-formula ®(z) with standard param-
eters, where ®™ means the relativization to I = {z : intz};
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Restricted Standardization: VSSYX C STV (X NS =Y NS);

Saturation: if X is a set of standard size, such that every X € X is internal
and N X' # 0 for any S-finite non-empty X' C X, then NX # 0.

(Here, a set of standard size is any set of the form ¥ = {f(z) : x € X NS},
where X is standard. “S-finite” is understood as equinumerous to some
n=1{0,1,...,n — 1} € w, where w is the set of all S-natural numbers.)
This completes the list of BEST axioms. Note that by Transfer 1 is an
elementary extension of § in the €-language, transitive and appropriately
saturated by Saturation. Now let us consider several special extensions.

3.1. “Nonstandard set theory” of Hrbagek

The axioms of the “nonstandard set theory” NST (the original version
was denoted by MG (ZFC) in [2], see also [3]) include all of BEST,
together with the ZFC axioms of Power Set and Choice (as: every set is
well-orderable), and the following axiom:

Standardization: YX Y (XNS=YnNS§).

This axiom is obviously equivalent to VX 3%Y (X NS CY) plus Restricted
Standardization. It clearly implies that S is not a set, and the following:

Internal Boundedness: every internal set is an element of a standard set.

Thus, in NST we have intz <= Iy (z € y), so I = {z: Fy(zecy)}
and NST is a theory in the st-€-language.

We define, as NST™, the theory NST strengthened by the following
three axioms:

Regularity over [: for any X # @ thereis z € X such that X Nz C[;
Transitive Hulls: every set is a subset of a transitive set;

Full Boundedness: every set X C I is a subset of a standard set.

The theory NST™T is strong enough to prove that for any set z there
is a transitive set X satisfying & C X, and a standard set 5 satisfying
XNICS, leading to a more precise general picture of the universe.

* Let # be internal. Let & € I be the I-rank of = (an I-ordinal). If all S-ordinals
are smaller than o then clearly all standard sets belong to the set V, computed in I,
an easy contradiction with the fact that § is not a set. Therefore there is an S-ordinal
¢ > . Then z belongs to the standard set V, computed in I.
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3.2. Kawail’s set theory

Kawai’s set theory KST was introduced by Kawai [8] (under the name:
nonstandard set theory). Unlike the Hrbagek theory NST, it describes the
clagss I of internal sets as an IST universe. This does not allow to use
the NST definition of internal sets as elements of standard sets. Thus, in
Kawal’s system, intxz (“z is internal”) as an independent atomic predicate.

The axioms of KST include: all of BEST, the usual ZFC axioms
of Power Set and Choice, the schema of Replacement in L¢ g int, together
with the Regularity over [ and two more axioms:

Set—existence of I: I isasetand SC1I;°

Strong Saturation: if X is a set of S-size such that every X € X is internal
and NX'#0 for any S-finite X' C X then X #6.

(A set of S-size is by definition any set of the form ¥ = {f(z): 2z € S}.)
The axioms of KST suffice to prove that (I; €, st} models any partic-
ular axiom of IST. The whole universe is postulated to be something like
a ZFC world over [ as the set of “atoms”, but internal sets do not behave
exactly like “atoms” because they participate in the membership relation.

3.3. Two “minimal” nonstandard set theories

Theorems 2, 3, 4 show that, despite of (I} as their common property, theories
IST, NST, KST require quite a lot from standard models of ZFC to be
extendable to a model of such a theory. However there are theories which
require much less (if anything) but preserve useful principles of the theories
above.

Bounded set theory BST is a version of IST containing |dealization in
the following weakened form:

Bounded |dealization:
voting C AgJxVa € A®(a,z) < Jz V¥ € Ay B(a, z)
— for any standard set Ap and any €-formula ®(z),

and the following extra axiom (incompatible with full Idealization):
Boundedness: every set is an element of a standard set.

This theory (defined by Kanovei [4], but implicitly contained in Hrbagek [2])
is fully equivalent to IST as a basis for applied nonstandard mathematics,
but has some advantages (see Kanovei and Reeken [5]). A visible difference
between the two is that IST proves the existence of sets X satisfying
S € X while BST proves that every set is a subset of a standard set.

® It follows, by Separation, that then S8 = {z € I :stx} is a set as well.
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The Hrbacek set theory HST (MG (ZFC) in Hrbaéek [2], the current
version see Kanovei and Reeken [6]) differs from NST so that the axioms
of Power Set and Choice are removed while Regularity over T, Replacement
in the st-c-language, and two useful restricted forms of Choice are added.

Note that the axioms of HST, as well as those of NST, are strong
enough to prove that the internal subuniverse I models all axioms of BST.
The “universe of discourse” is postulated by HST to be a ZF™-like (minus
the Power Set axiom) world over internal sets as “atoms”, but, unlike KST,
the clags I of all “atoms” is now a proper class rather than a set.

THEOREM 15. (Kanovei and Reeken [5]) Ewvery transitive €-model 9N of
ZFC, which admits o well-ordering < such that (M; €,<) = ZFGC b
extends to o model of BST. Every model 1 of BST exrtends to a model
of HST (i.e. there is a model H = HST having [ as the class of all
internal sets}. O

The extendibility criteria in this theorem are weaker than those in theo-
rems 2, 3, 4. Possibly they can be totally eliminated, at least by Felgner [1]
every countable transitive model of ZFC extends to a model of ZFGC,
hence to BST and HST by the theorem. It is an interesting problem to
figure out whether uncountable models of ZFC admit such an extension.

4. Extendibility to NST

This section proves Theorem 3. The proof consists of two parts.

4.1, From left to right

Let a transitive model MM = ZFC be the standard part of a model H =
(H; e,st) of NST, sothat M=S={zcH:stz} in H and e [M =
£ 79, We have to define a transitive model 9 of ZC and a 91-cardinal
k € I, such that M = MNV,. The next lemma is based on ideas introduced
in [2]. Note the absence of Replacement in NST !

LEMMA 16. There is a st-€-formule O(d,s) such that NST proves the
existence of a set M such that O defines o bijection from M onio S.

PROOF. We argue in NST. Let S={z:stz} and I = {y: Pz (y )}
be the classes of all standard and internal sets, as usual.
For any standard z, let TC(z) denote the S-transitive closure of z.

8 In fact the existence of a well-ordering ~ of 90 such that {9;€, <) models
Separation (nothing about Replacement) suffices in this theorem.
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Let F be the (internal) set of all I-hereditarily finite internal sets.

We will prove that (%) for any standard =z, the set S, =TC(x) NS is
e-isomorphic to a subset of ¥. Then, for any standard x, let d, to be the
set of all sets d C F, €-isomorphic to S;. Put M = {d, : z € S} (aset in
NST since M C P(P(F))) and define O(d,z) to say that d =d, € M.
(Note that S, is not €-isomorphic to S, whenever z # y are standard —
an easy application of Standardization). The formula © proves the lemma.

To prove (), let W, be the set of all S-finite subsets of S,. Easily both
Sy and W, are sets of standard size. Moreover any w € W; is internal
and I-finite (holds in NST for every S-finite subset of I ). Therefore, every
w € Wy is €-isomorphicin 1 to a subset of F, as it is a standard ZFC fact
that any finite set z is €-isomorphic to a (finite) set congisting of hereditarily
finite sets. It follows that the (internal) set @, of all internal 11 functions
¢, which are €-isomorphisms and satisfy W; C dom¢ and ran¢ C F, is
non-empty. Moreover, if W C W, is S-finite then Qw = [J,cw Pu I8
non-empty because it includes ®,,, where w =W € W, .

Thus the set X = {®,, : w € W,} is a standard size collection of
non-empty internal sets, satisfying the finite intersection property. Hence
® = Nyew, Pw is non-empty by Saturation. But any ¢ € ® proves (x). W

Let M < H be a set which satisfies the lemma in H. For any z € M,
let s(z) be the only element s € 9 = S satistying O(z,s) in H, so that
sisa 1—1 mapfrom M¢={z€H:zeM} onto M.

Let, for any n, M, be the n-th power set of M in H. Let M, be
the corresponding (in the s-sense) part of the full n-th power P?(9} in
the universe, so that MM,y C P(M,). Then N =J, M, is as required.

Indeed, the sequence (M, : n € w) is clearly st-&-definable in H, hence
N models Separation because H models st-e-Separation. Power Set and
Choice hold in 91 by the construction. In addition, it easily follows from
the NST Standardization that every set Y € I, satisfying ¥ C X for
some X € 9N, belongs to M. This property, together with the assumption
that 991 is a transitive model of ZFC, easily implies that the least ordinal
% € M (= the union, in N, of all ordinals in M) is an N-cardinal, and
M=NNV,.

4.2, From right to left; the internal universe

Suppose that M € N are transitive models of resp. ZFC and ZC and
M =9MNNV,, where kK € 9 is a cardinal in 9.
Prove that N extends to a model of NST .



Extending Standard Models of ZFC . .. 53

The first step is to extend 9, within 91, to a model I, which will be
the internal part of a more complicated extension to NST. To define I we
apply a version of the ultralimit construction of Subsection 2.2. However,
in order to fulfill Standardization and Saturation, we shall involve, in the
construction of the ultralimit, only those functions whose ranges belong to
2, but take the length of the ultralimit much longer than w.

We argue tn M. Thus x is a cardinal and M = V.. Since I is
assumed to be a model of ZC, the cardinal kT may not exist in 9 in the
usual sense (as an initial ordinal). However ZC is obviously strong enough
to get a well-ordered set x™ with the necessary properties: 1) every proper
initial segment of & has cardinality < s, and 2) cardx™ > x. Since we
have Choice, any set X C k™ of cardinality < x is bounded in &1 .

We take x* as the length of the ultrapower construction.

Let a < k1. Put Dy = [0, k) (ko means « times ), I, = Paa(Dy),
D% = Dyy1 \ Do = [sa, 6(a + 1)), and I* = P, (D).

Let o < 3. If w C I, then we define u[— Bl ={j € I3: N Dy € u}.
If UC P(1,) thenlet U= Fl={u[-28:ucU}.

Using the ZC Choice in M, fix a D%adequate ultrafilter /% for any
a < &T. Define, in M, a sequence of D,-adequate ultrafilters U,, by
induction on a < &%, as follows. Ist, U; = U? (a x-adequate ultrafilter).

2nd, Ugy1 is the set of all sets uw C I,y such that U®d Uyt (U € ).
Here ' ranges over I%, i ranges over I,, thus {U¢ is a typical element
of Iny1, while Uip(i} means {i € I:4(i)} € U asusual. Then U,;; is
an D,i-adequate ultrafilter and Uy[— a + 1] C Uayr1 -

3rd, if -y is a limit ordinal then U, is any D,-adequate ultrafilier which
includes Uy<y Ual— 7] as a subset.

By the construction, we have

(IIT) (1) U Upi ®(iU1') <= Upyrj B(j) forall q, and
(2} Ual— 8] CUs whenever o < .

For a < & let F, denote the set of all functions f (in 9 ) mapping
I, into some R =ranf ¢ M. Put F =, .+ Fo and, for f ¢ F, let
a(f) be the only « such that f € F,. Further if f € F,, i is finite and,
perhaps, ¢ &€ I, thenlet f[i] = f(inDy,). Note that f[¢] = f(¢) whenever
i € I,. Separately define f[i| =z for any i whenever f = {{(0,z})} € Fy.

Let f,g € F and & > ap = max{a(f),a(g)}. Define f *=g iff we
have Uyt (f[i] = g[¢é]}). (It follows from (III) that this does not depend on
the choice of @ > ag.) Define f *¢ ¢ similarly.

A routine verification shows that *= is an equivalence relation on F.
Hence we can define [f] = {g € F: f *= g} (the equivalence class of f).
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Let I = {[f]: f € F} (the quotient). In particular, *z = [{{0,z)}] € [
for any z (the image of z in I). For [f], [g] € I, define [f] *e [g] iff
f *€ g. (This is independent of the choice of representatives because *€ is
*=-invariant.) Finally put st[f] iff [f] ="z for some =z.

This completes the definition of (I; *€,st} as a set in N.

For any formula ®(fy,..., f») with functions fi,...,f, € F as parame-
ters, define @[] to be ®(fi[¢],..., fn[i]) and [®} to be &([f1],...,[fn]). Put
(@) = max jcpce(fy). In this notation, the Lo lemma, takes the form:

PrROPOSITION 17. Let & be an €-formula, having paremeters in F, and
a(®) < a< &t. Then [®] holds in (I; *€) iff Uyt (M = i)} . m]

This immediately implies both ZFC® and Transfer for I.
In addition, the map z +# *z is an isomorphism of {(M; €) onto (S; *¢),
where S={yel:sty}.

4.3. From right to left: the external universe

Now, it is not too difficult to “enlarge”, in 91, the model I = ([; *&,st) to
amodel H of NST, defined as a sort of full type theoretic “superstructure”
over I. Specifically, one defines, in I, a sequence of pairwise disjoint sets
Hy, n € w, and a binary relation € on H = |, H,, satisfying conditions
(h.1) through (h.5). Note that each H, is assumed to be a member of N
while the sequence of them is, generally speaking, a definable class but not
a set in 91 : recall that 91 is a model of ZC, but perhaps not of ZFC.

(h.1) Ho=1 and €[ Hp=*c.

(h.2) If X € Hy41 then the collection X¢ = {z € H : z € X} of all
c-elements of X is a subset of the set Hey, = Upen Hiy, but X €
Hep forany n' <n.

Next requirements involve the following definition. Define ||A|| C 1 for all
A C Hep by induction on n. If n =0, so that AC I, put ||4] =A. If
AC Hepyr, put [|A|| = Uxea | Xell- (Here any X is a subset of Hcp )

Say that a set A C H,, is S-bounded when there isaset $§ €8 =M
such that {|A| C S¢, where, as above, S¢ = S« = {z €l:z€ X} is the
set of all €-elements (= the set of all *c-elements} of X in I.

(h.3) If X € Hp4q then X is S-bounded.

(h.4) If AC He, is S-bounded and A € Hey for all n’ < n then there is
unique X € Hy 4 such that A = X — with the following exception:



Extending Standard Models of ZFC ... 55

(h.5) If A C Hy and already A = X for some X € I then there is no
X € H; such that A= X,.

(The exceptional case is introduced to keep Extensionality. The restriction to
S-bounded sets is introduced in order to keep Standardization, for which sets
in H needn’t grow “too big”.) Finally, define the standardness predicate
st in H sothat st X iff X € and st X in the sense of I. This ends
the definition of H = (H; €,st ).

To see that H is a model of NST, it clearly suffices to check Stan-
dardization and Saturation in H. (Other axioms follow either from the con-
struction, as, e.g., Separation or Choice, or from the results in the end of
Subsection 4.2).

Standardization. Consider a set X € H,.;. Then X is S-bounded by
(h.3), so that {|X|] C Se for some S € S. By definition {Subsection 4.2),
we have § ="s, for some s € M. Let y be the set of all = € s such that
*z is an €-element of X. Then YV ="y €8 and ¥V = X NS is truein H.

Saturation. Essentially we have to prove that, given a S-bounded set
X C 1 of cardinality cardX = A < s (in 91}, satisfying FIP in the sense
that X' #@ in [ for any S-finite X' C X, the intersection N X is also
non-empty in I. By the boundedness, X C X for astandard X. Then there
is (in M) a sequence of functions f, € F, v < A, satisfying ranf, C X
for all v and X = {[f,]:v < A}

Pick an ordinal a < £ big enough for a(fy) <« forall v < A. Define
hrasy = [y for any 4 < A, so hs is defined for all é € D = [k, s + A).

Define h € F,1; as follows. Let j € I,41. Then i = jN D is a finite
subset of D. If ¢/ =0 put A(j) = {@}. Otherwise set h{j} = Nscs hsli]-
Then h(j) # 0 for all 4, hence [A]#® in I by Proposition 17.

It remains to check that [h] C [hs] for each é € D. This is equivalent to
U1t (h(7) C hs[i]). To see that the last inclusion statement is true note
that by definition h(i) C hs[i] for all 7 such that 4 € 4. However we have
{t € In41: 0 €1} € Upy1 as this is a D, 1-adequate ultrafilter.

O (Theorem 3)

5. Extendibility to KST

This section proves Theorem 4.

5.1. From left to right

Let a transitive model 907 |= ZFC be the standard part of a model H =
(H; €,8,I) of KST, sothat M =S ={x € H:stz} and €[ =e[M.
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We argue in H .

Define 91 to be the class of all well-founded sets, e. g. those sets x which
have e-well-founded transitive closure. ( KST is strong enough to define
transitive closures. Moreover, as KST containg all of ZFC except for
Regularity, it is a standard fact that then the model (91; € [ 91) satisfies all
of ZFC including Regularity.)

Define, following Hrbacek[2] and Kawai [8], for any z € M =S a set
FeN by 2={g:yecxnS}.” Then 2~ % isa 1 —1 e-preserving
embedding of S onto an e-transitive part § = {Z:2 € S} of N. Moreover,
by Standardization, if x € § and y C z (in the e-sense) then y € S§. This
easily implies that S = (Vi)™, where % is the least 9i-ordinal which does
not belong to 5, as required.

5.2. From right to left: the internal universe

Suppose that 9 is a transitive model of ZFC, isomorphic to {(Vi)™; €),
where 91 = (I, €} is a model of ZFC while x is a 9-cardinal. We have
to extend 97 to a model of KST.

The whole construction is carried out in (91; €), hence

(IV} we suppose (in ZFC) that 9 is a transitive model, of the form
I =V, where & is a cardinal,

and the goal is to define a structure (H; €,st) (H will be a proper class)
which models KST and has 91 as its standard part.

The whole plan will be as in Section 4: we first embed 90 in an internal
model I (which will be a set) and then extend it to H (a proper class).

Let st be the next cardinal, as usual. Define D%, D,, I®, I,, U%, U,
for all & < &* exactly as in Subsection 4.2. (IIT) holds in this case as well.

For any a < &t let F, denote the set of all functions which map
To = Pan(Dga) into 9. After this we define F, a(f), fii], therelations *=
and *e, theclasses [f]|={g € F: f*=g} (in particular *z = [{{0,z)}] for
any z € 9 ), the model {I; *¢,st), and the subclass S = {z € [ : stz },
following the pattern of Subsection 4.2.

Routine verification shows that Proposition 17 survives, together with
the schemata ZFC® in I and Transfer.

7 This definition goes by induction on the von Neumann rank of z in §. To justify
this kind of definitions note that by Standardization € [ S is a well-founded relation.
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5.3. From right to left: the external universe

We continue to argue assuming (IV). We have defined a nonstandard exten-
sion {I[; *€,st) of 9, which now is to be extended to a model of KST .
Following the construction in Subsection 5.2, one easily defines (in 91}
an Ord-long sequence of pairwise disjoint sets H,, a € Ord, and a binary
relation € on H ={J, H,, satisfying conditions (h:1) through (h:4).

(h:1) Hy =1 and e [ Hy= "¢ .

(h:2) If @ >0 and X € H, then the collection X, ={zcH:ze X} is
a subset of Hey =g, Hp but X € Heo forany of <.

(h:3) If conversely A C H., but A € H .y for all o < a then there is
unique X € H, such that A = X — with the following exception:

(h:4) If A C Hp and already A = X¢ for some X € I then there is no
X € H; such that A= X,.

The only point of notable difference, from the reasoning in Subsection 5.2,
in the proof that the structure (H; €,§,1} models KST, is the verification
of Strong Saturation. Since clearly cardS = card 9 =« (in 1), consider
aset X ={X,:v9 <&} CI, satisfying the property that NX' # 0 in I
for any finite X’ C X. Then X, = [f,] for some f, € F - for all v. By
the cardinality argument there is an ordinal o, s < @ < 5™, big enough for
a(fy) < a for all v < k. Now, the argument in the end of Subsection 5.2
can be applied, with obvious minor changes, to prove that X £ 0.

O (Theorem 4)

5.4. Extendibility to well-founded parts of models of KST

We would be interested to strengthen the “only if” part (that is, implication
=) of Theorem 4 by the requirement that 9 = (M; €) is a transitive
€-model, so that 91 is a transitive set while € = € [ 91. A natural way to
get such an improvernent would be to prove the following:

(V) Suppose that M = (MNM; €) Is a non-standard model of ZFC, with the
standard w. Then the well-founded part of M is a model of ZFC.

(The well-founded part of 91 consists here of those sets z € N whose
e-ranks, defined in 9, are true ordinals. An 9-ordinal e is a true ordinal
when the set of all €-smaller 9-ordinals is well-founded by € in the universe.
For ingtance by our assumption all 9-natural numbers are true ordinals, i.e.
just the usual natural numbers.) However this is not provable!
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To see that (V) is false, consider a countable transitive model 2N = ZFC
with the shortest possible Ord N 9. (If there are no transitive models of
ZFC, we are done.) However the existence of a countable w-model of ZFC
is a %1 statement. Therefore, there is an w-model (M €) € M of ZFC.
The well-founded part of M is then (isomorphic to) a transitive €-structure,
with Ord N M shorter than Ord N 9%, hence, not a model of ZFC.

Perhaps, this argument® can be sharpened enough to demonstrate that
the desired improvement is impossible.

On the other hand, there is a different version of extendibility to KST,
which admits a stronger connection with transitive €-models.

Let, in KST, V be the class of all well-founded sets - i. e., those having
well-founded transitive closures. Say that a transitive model 9 = (9M; €)
V-extends to a model of KST when M is V of a model of KST .

THEOREM 18. A transitive model N |= ZFC V-eztends to a model of
KST iff there is a N-cardinal &« € N such that Ny = NNV, isa
model of ZFC.

Proor. (Sketch} Suppose that a transitive model 91 = ZFC is V of a
model H = (H; €,S,I) of KST. For any standard x, define aset £ €V
by &= {g:y € znNS}. Aswesaw in Subsection 5.1.theset M = {Z:z € S}
is equal to M NV, for a M-cardinal «.

Conversely, if 91 is a transitive model of ZFC while x is a 9-cardinal
and 9 = M NV, also 1s a model of ZFC, the construction described in
subsections 5.2and 5.3yields a model of KST having 91 as V. [
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