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Abstract. The parameter-free part PA∗
2 of PA2 , second order Peano arithmetic, is

considered. We make use of a product/iterated Sacks forcing to define an ω -model of PA∗
2+

CA(Σ1
2), in which an example of the full Comprehension schema CA fails. Using Cohen’s

forcing, we also define an ω -model of PA∗
2 , in which not every set has its complement,

and hence the full CA fails in a rather elementary way.
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1. Introduction

Discussing the structure and deductive properties of second order Peano
arithmetic PA2 , Kreisel [18, Section III, page 366] wrote that the selection
of subsystems “is a central problem”. In particular, Kreisel noted that

[...] if one is convinced of the significance of something like a given
axiom schema, it is natural to study details, such as the effect of
parameters.

Recall that parameters in this context are free variables in various axiom
schemata in PA, ZFC, and other similar theories. Thus the most obvious
way to study “the effect of parameters” is to compare the strength of a given
axiom schema S with its parameter-free subschema S∗ . (The asterisk will
mean the parameter-free subschema in this paper.)

Some work in this direction was done in the early years of modern set
theory. In particular Guzicki [10] proved that the Levy-style generic collapse
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(see, e.g., Levy [20] and Solovay [27]) of all cardinals ωL
α , α < ωL

1 , results
in a generic extension of L in which the (countable) choice schema ACω ,
in the language of PA2 , fails but its parameter-free subschema AC∗

ω holds,
so that AC∗

ω is strictly weaker than ACω . This can be compared with an
opposite result for the dependent choice schema DC, in the language of
PA2 , which is equivalent to its parameter-free subschema DC∗ by a simple
argument given in [10]. (See Section 2 on ACω and DC.)

Some results related to parameter-free versions of the Separation and
Replacement axiom schemata in ZFC also are known from [3,21,23].

This paper is devoted to the role of parameters in the comprehension
schema CA of PA2 . Let PA∗

2 be the subtheory of PA2 in which the
full schema CA is replaced by its parameter-free version CA∗ , and the
Induction principle is formulated as a schema rather than one sentence. The
following Theorems 1 and 2 are our main results.

Theorem 1. Suppose that 〈xi〉i<ω is a Cohen-generic sequence over L,
the constructible universe. Let X = (P(ω)∩L)∪{xi : i < ω}. Then 〈ω ; X〉
is a model of PA∗

2 , but not a model of CA as X does not contain the
complements ω � xi .

Thus CA, even in the particular form claiming that every set has its
complement, is not provable in PA∗

2 .

It is quite obvious that a subtheory like PA∗
2 , that does not allow such

a fundamental thing as the complement formation, is unacceptable. This is
why we adjoin CA(Σ1

2), i.e., the full CA restricted to Σ1
2 formulas with

parameters, in the next theorem, to obtain a more plausible subsystem.

Theorem 2. There is a generic extension L[G] of L and a set X ∈ L[G],
such that P(ω) ∩ L ⊆ X ⊆ P(ω) and 〈ω ; X〉 is a model of PA∗

2 +
CA(Σ1

2) but not a model of PA2 . Therefore CA is not provable even in
PA∗

2 + CA(Σ1
2).

Theorem 2 will be established by means of a complex product/iteration
of the Sacks forcing and the associated coding by degrees of constructibility,
approximately as discussed in [22, page 143], around Theorem T3106.

Identifying the theories with their deductive closures, we may present the
concluding statements of Theorems 1 and 2 as resp.

PA∗
2 � PA2 and (PA∗

2 + CA(Σ1
2)) � PA2.

Studies on subsystems of PA2 have discovered many cases in which S � S′

holds for a given pair of subsystems S, S′ , see e.g. [26]. And it is a rather
typical case that such a strict extension is established by demonstrating that
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S′ proves the consistency of S . One may ask whether this is the case for the
results in the displayed line above. The answer is in the negative: namely the
theories PA∗

2 , PA∗
2 + CA(Σ1

2), and the full PA2 , are equiconsistent , by a
result in [4], also mentioned in [24]. This equiconsistency result also follows
from a somewhat sharper theorem in [25, 1.5].1

Generally topics in subsystems of second order arithmetic remain of big
interest in modern studies, see e.g. [7], and our paper contributes to this
research line.

2. Preliminaries

Following [1,18,26] we define second order Peano arithmetic PA2 as a theory
in the language L(PA2) with two sorts of variables – for natural numbers
and for sets of them. We use j, k,m, n for variables over ω and x, y, z for
variables over P(ω), reserving capital letters for subsets of P(ω) and other
sets. The axioms are as follows:

(1) Peano’s axioms for numbers.

(2) The Induction schema Φ(0)∧∀ k (Φ(k) =⇒ Φ(k+1)) =⇒ ∀ k Φ(k), for
every formula Φ(k) in L(PA2) where we allow parameters (free variables
other than k).2

(3) Extensionality for sets.

(4) The Comprehension schema CA: ∃x∀ k (k ∈ x ⇐⇒ Φ(k)), for every
formula Φ in which the variable x does not occur, and in Φ we allow
parameters.

We let CA(Σ1
2) be the full CA restricted to Σ1

2 formulas Φ with pa-
rameters.3

We let CA∗ be the parameter-free sub-schema of CA (that is, Φ(k)
contains no free variables other than k).

We let PA∗
2 be the subsystem of PA2 with CA replaced by CA∗ .

Remark 3. In spite of Theorem 1, PA∗
2 proves CA with parameters over

ω (but not over P(ω)) allowed. Indeed suppose that Φ is Φ(k,m) in (4)

1We are thankful to Ali Enayat for the references to [4,24,25] in matters of this equicon-
sistency result.

2We cannot use Induction as one sentence here because the Comprehension schema
CA is not assumed in full generality in the context of Theorem 1.

3A Σ1
2 formula is any L(PA2) formula of the form ∃ x ∀ y Ψ, where Ψ is arithmetic

i.e., does not contain quantified variables over P(ω).
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and Φ has no other free variables. Arguing in PA2 , assume towards the
contrary that the formula ψ(m) := ∃x∀ k (k ∈ x ⇐⇒ Φ(k,m)) holds not
for all m. By Induction, take the least m for which ψ(m) fails. This m is
definable, and therefore it can be eliminated, and hence we have ψ(m) for
this m by CA∗ . This is a contradiction.

The following schemata are not assumed to be parts of PA2 , yet they
are often considered in the context of and in the connection with PA2 .

The Schema of Choice ACω : ∀ k ∃x Φ(k, x) =⇒ ∃x∀ k Φ(k, (x)k)),
for every formula Φ in which we allow parameters, where as usual
(x)k = {j : 2k(2j + 1) − 1 ∈ x}.

We use ACω instead of AC, more common in PA2 studies, because AC
is the general axiom of choice in the ZF context.

Dependent Choices DC: ∀x∃ y Φ(x, y) =⇒ ∃ x∀ k Φ((x)k, (x)k+1)),
for every formula Φ, and in Φ we allow parameters.

3. Extension by Cohen Reals

Here we prove Theorem 1. We assume some knowledge of forcing and generic
models, as e.g. in Kunen [19], especially Section IV.6 there on the “forcing
over the universe” approach.

Recal that the Cohen forcing notion Cohen = 2<ω consists of all finite
dyadic tuples including the empty tuple Λ. If u, v ∈ 2<ω then u ⊂ v means
that v is a proper extension of u, whereas u ⊆ v means u ⊂ v ∨ u = v . The
finite-support product P = (2<ω)ω consists of all maps p : ω → 2<ω such
that p(i) = Λ (the empty tuple) for all but finite i < ω . The set P is ordered
opposite to the componentwise extension, so that p ≤ q (p is stronger as a
forcing condition) iff q(i) ⊆ p(i) for all i < ω . The condition Λω defined by
Λω(i) = Λ, ∀ i, is the ≤- largest (the weakest) element of P.

We consider the set Perm of all idempotent permutations of ω , that is,
all bijections π : ω

onto−→ ω such that π = π−1 and the domain of nontriviality
|π| = {i : π(i) �= i} is finite. If π ∈ Perm and p is a function with domπ = ω ,
then πp is defined by dom(πp) = ω and (πp)(π(i)) = p(i) for all i < ω , so
formally πp = p ◦ π−1 = p ◦ π (the superposition). In particular if p ∈ P
then πp ∈ P and |πp| = π ”|p| = {π(i) : i ∈ |p|}.

Proof of Theorem 1. We make use of Gödel’s constructible universe L
as the ground model for our forcing constructions. Suppose that G ⊆ P is a
set P- generic over L. If i < ω then we define:
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Gi = {p(i) : p ∈ G} ⊆ 2<ω, a set 2<ω-generic (Cohen generic) over L,
ai[G] =

⋃
Gi ∈ 2ω, a real Cohen generic over L,

xi[G] = {n : ai(n) = 1} ⊆ ω, a subset of ω Cohen generic over L, and
X = X[G] = (P(ω) ∩ L) ∪ {xi[G] : i < ω}.

Thus X[G] ∈ L[G] and X[G] consists of all subsets of ω already in L and
all Cohen-generic sets xi[G], i < ω .

We assert that the model 〈ω ; X[G]〉 proves Theorem 1.
The only thing to check is that 〈ω ; X[G]〉 satisfies CA∗ . For that purpose,

assume that Φ(k) is a parameter-free L(PA2) formula with k the only free
variable. Consider the set y = {k < ω : 〈ω ; X[G]〉 |= Φ(k)}; then y ∈ L[G],
y ⊆ ω .

We claim that in fact y belongs to L, and hence to X[G].
Let ‖− be the forcing relation associated with P. In particular, if p ∈ P

and ψ is a parameter-free formula then p ‖− ψ iff ψ holds in any P- generic
extension L[H] of L such that p ∈ H .

Let G be a canonical P-name for G. We assert that

y = {k < ω : Λω ‖− “〈ω ; X[G]〉 |= Φ(k)′′}. (1)

To prove ⊇, assume that the condition Λω P- forces “〈ω ; X[G]〉 |= Φ(k)”.
But Λω ∈ G since Λω is the weakest condition in P. Therefore 〈ω ; X[G]〉 |=
Φ(k) by the forcing theorem, thus k ∈ y , as required.

To prove the converse, let k ∈ y . By the forcing theorem there is a
condition p ∈ G forcing “〈ω ; X[G]〉 |= Φ(k)”. We claim that then Λω forces
the same sentence.

Indeed otherwise there is a condition q ∈ P which forces “〈ω ; X[G]〉 |=
¬ Φ(k)”. There is a permutation π ∈ Perm satisfying |r| ∩ |p| = ∅, where
r = πq ∈ P. We claim that r forces “〈ω ; X[G]〉 |= ¬ Φ(k)”. Indeed assume
that H ⊆ P is a set P- generic over L, and r ∈ H . We have to prove that
〈ω ; �〉 |= ¬ Φ(k). The set K = {πr′ : r′ ∈ H} is P- generic over L along with
H since π ∈ L. Moreover K contains q . It follows that 〈ω ; X[K]〉 |= ¬ Φ(k)
by the forcing theorem and the choice of q . However the sequence 〈xi[K]〉i<ω

is equal to the permutation of the sequence 〈xi[H]〉i<ω by π . It follows that
�=X[K], and hence 〈ω ; �〉 |= ¬ Φ(k), as required. Thus indeed r forces
“〈ω ; X[G]〉 |= ¬ Φ(k)”.

However p forces “〈ω ; X[G]〉 |= Φ(k)”, and p, r are compatible in P
because |r| ∩ |p| = ∅. This is a contradiction.

We conclude that Λω forces 〈ω ; X[G]〉 |= Φ(k), and this completes the
proof of (1).
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But it is known that the forcing relation ‖− is expressible in L, the
ground model. Therefore it follows from (1) that y ∈ L, hence y ∈ X[G], as
required.

4. Generalized Sacks Iterations

Here we begin the proof of Theorem 2. The proof involves the engine of
generalized product/iterated Sacks forcing developed in [11,12] on the base
of earlier papers [2,9] and others. We still consider the constructible universe
L as the ground model for the extension, and define, in L, the set

I = (ω1 × 2<ω) ∪ ω1; I ∈ L, (2)

partially ordered so that 〈γ, s〉 � 〈β, t〉 iff γ = β and s ⊆ t in 2<ω, while
the ordinals in ω1 (the second part of I ) remain �- incomparable inside I .

Our plan is to define a product/iterated generic Sacks extension L[�a]
of L by an array �a = 〈ai〉i∈I of reals ai ∈ 2ω , in which the structure of
“sacksness” is determined by this set I , so that in particular each ai is
Sacks-generic over the submodel L[〈aj 〉j≺i ].

Then we define the set J ∈ L[�a] of all elements i ∈ I such that:

– Either i = 〈γ, 0m〉, where γ < ω1 and m < ω ,

– Or i = 〈γ, 0m �1〉, where γ < ω1 and m < ω , aγ(m) = 1.

Thus any i = 〈γ, 0m〉 ∈ J is a splitting node in J iff aγ(m) = 1, or in other
words

aγ(m) = 1 iff 〈γ, 0m〉 is a splitting node in J , (3)

We’ll finally prove that the according set

W = P(ω) ∩
⋃

i1,...,in∈J

L[ai1 , . . . , ain ] (4)

leads to the model 〈ω ; W 〉 for Theorem 2. The reals aγ will not belong to
M by the choice of J , but will be definable in 〈ω ; M〉 (with a〈γ,Λ〉 ⊆ ω as
a parameter) via the characterization of the splitting nodes in J by (3).

5. Iterated Perfect Sets

Arguing in L in this section, we define I = 〈I ; �〉 as above.
Let Ξ be the set of all countable (including finite) initial segments ζ ⊆ I .
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Greek letters ξ, η, ζ, ϑ will denote sets in Ξ, and generally countable
subsets of I .

Characters i, j are used to denote elements of I .
For any i ∈ ζ ∈ Ξ, we consider initial segments ζ[≺i] = {j ∈ ζ : j ≺ i}

and ζ[��i] = {j ∈ ζ : j �� i}, and ζ[�i], ζ[��i] defined analogously.
Further, ωω is the Baire space. Points of ωω will be called reals.
Let D = 2ω ⊆ ωω be the Cantor space. For any countable set ξ, Dξ is

the product of ξ- many copies of D with the product topology. Then every
Dξ is a compact space, homeomorphic to D itself unless ξ = ∅.

Assume that η ⊆ ξ ∈ Ξ. If x ∈ Dξ then let x�η ∈ Dη denote the usual
restriction. If X ⊆ Dξ then let X�η = {x�η : x ∈ X}. To save space, let
X�≺i mean X�ξ[≺i], X���i mean X�ξ[��i], etc.

But if Y ⊆ Dη then we put Y �−1 ξ = {x ∈ Dξ : x�η ∈ Y }.
To describe the idea behind iterated perfect sets, recall that the Sacks

forcing consists of perfect subsets of D , that is, sets of the form H ”D =
{H(a) : a ∈ D}, where H : D onto−→ X is a homeomorphism.

To get a product Sacks model, with two factors (the case of a two-element
unordered set as the length of iteration), we have to consider sets X ⊆ D2

of the form X = H ”D2 where H , a homeomorphism defined on D2, splits
in obvious way into a pair of one-dimentional homeomorphisms.

To get an iterated Sacks model, with two stages of iteration (the case of a
two-element ordered set as the length of iteration), we have to consider sets
X ⊆ D2 of the form X = H ”D2 , where H , a homeomorphism defined on
D2, satisfies the following: if H(a1, a2) = 〈x1, x2〉 and H(a′

1, a
′
2) = 〈x′

1, x
′
2〉

then a1 = a′
1 ⇐⇒ x1 = x′

1 .
The combined product/iteration case results in the following definition.

Definition 4. (iterated perfect sets, [11,12]) For any ζ ∈ Ξ, Perf ζ is
the collection of all sets X ⊆ Dζ such that there is a homeomorphism
H : Dζ onto−→ X satisfying

x0�ξ = x1�ξ ⇐⇒ H(x0)�ξ = H(x1)�ξ

for all x0, x1 ∈ domH and ξ ∈ Ξ, ξ ⊆ ζ . Homeomorphisms H satisfying
this requirement will be called projection–keeping . In other words, sets in
Perf ζ are images of Dζ via projection–keeping homeomorphisms.

Remark 5. Note that ∅, the empty set, formally belongs to Ξ, and then
D∅ = {∅}, and we easily see that 1 = {∅} is the only set in Perf ∅ .

For the convenience of the reader, we now present five lemmas on sets in
Perf ζ established in [11,12], with according references.
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Lemma 6. (Proposition 4 in [11]) Let ζ, ξ, η ∈ Ξ. Every set X ∈ Perf ζ is
closed and satisfies the following properties:

(1) If i ∈ ζ and z ∈ X�<i then DXz(i) = {x(i) : x ∈ X ∧ x�<i = z} is a
perfect set in D .

(2) If ξ ⊆ ζ , and a set X ′ ⊆ X is open in X (in the relative topology) then
the projection X ′�ξ is open in X�ξ . In other words, the projection from
X to X�ξ is an open map.

(3) If ξ, η ⊆ ζ , x ∈ X�ξ , y ∈ X�η , and x� (ξ ∩ η) = y� (ξ ∩ η), then
x ∪ y ∈ X� (ξ ∪ η).

Proof (sketch). Clearly Dζ satisfies (1), (2), (3), and one easily shows
that projection–keeping homeomorphisms preserve the requirements.

Lemma 7. ([11], Lemma 6) If ξ ⊆ ζ belong to Ξ and X ∈ Perf ζ then
X�ξ ∈ Perf ξ .

Lemma 8. (Lemma 8 in [11]) If ζ ∈ Ξ, X ∈ Perf ζ , a set X ′ ⊆ X is open
in X , and x0 ∈ X ′, then there is a set X ′′ ∈ Perf ζ , X ′′ ⊆ X ′, clopen in
X and containing x0 .

Lemma 9. (Lemma 10 in [11]) Suppose that η ⊆ ζ belong to Ξ, X ∈
Perf ζ , Y ∈ Perf η, and Y ⊆ X�η . Then Z = X ∩ (Y �−1 ζ) belongs to
Perf ζ .

Lemma 10. (Lemma 10 in [12]) Suppose that ξ ⊆ ζ belong to Ξ, X ∈
Perf ξ . Then X �−1 ζ belongs to Perf ζ .

6. The Forcing and the Basic Extension

This section introduces the forcing notion we consider and the according
generic extension called the basic extension.

We continue to argue in L. Recall that a partially ordered set I ∈ L is
defined by (2) in Section 4, and Ξ is the set of all at most countable initial
segments ξ ⊆ I in L. For any ζ ∈ Ξ, let Pζ = (Perf ζ)L .

The set P = PI =
⋃

ζ∈Ξ Pζ ∈ L will be the forcing notion.
To define the order, we put ‖X‖ = ζ whenever X ∈ Pζ . Now we set

X ≤ Y (i.e. X is stronger than Y ) iff ζ = ‖Y ‖ ⊆ ‖X‖ and X�ζ ⊆ Y .

Remark 11. We may note that the set 1 = {∅} as in Remark 5 belongs
to P and is the ≤- largest (i.e., the weakest) element of P.

Now let G ⊆ P be a P- generic set (filter) over L.
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Remark 12. If X ∈ Pζ in L then X is not even a closed set in Dζ in
L[G]. However we can transform it to a perfect set in L[G] by the closure
operation. Indeed the topological closure X# of such a set X in Dζ taken
in L[G] belongs to Perf ζ from the point of view of L[G].

It easily follows from Lemma 8 that there exists a unique array a[G] =
〈ai [G]〉i∈I , all ai [G] being elements of 2ω , such that a[G]�ξ ∈ X# whenever
X ∈ G and ‖X‖ = ξ ∈ Ξ. Then L[G] = L[〈ai [G]〉i∈I ] = L[a[G]] is a P-
generic extension of L.

Theorem 13. (Theorems 24, 31 in [11]) Every cardinal in L remains a
cardinal in L[G]. Every ai [G] is Sacks generic over the model L[a[G]�≺i ].

Here follows a list of several lemmas on reals in P- generic models L[G],
established in [11]. In the lemmas, we let G ⊆ P be an arbitrary set P-
generic over L.

Lemma 14. (Lemma 22 in [11]) Suppose that finite or countable sets η, ξ ⊆
I in L satisfy ∀ j ∈ η ∃ i ∈ ξ (j � i). Then a[G]�η ∈ L[a[G]�ξ].

Lemma 15. (Lemma 26 in [11]) Suppose that K ∈ L is an initial segment
in I , and i ∈ I \ K . Then ai [G] �∈ L[a[G]�K].

Lemma 16. (Corollary 27 in [11]) If i �= j then ai [G] �= aj [G] and even
L[ai [G]] �= L[aj [G]].

Lemma 17. (Lemma 29 in [11]) If K ∈ L is an initial segment of I , and
r is a real in L[G], then either r ∈ L[a�K] or there is i �∈ K such that
ai [G] ∈ L[r].

We apply these lemmas in the proof of the next key theorem. Let ≤L

denote the relative constructibility ordering on 2ω, so that x ≤L y iff x ∈
L[y]. Let x <L y mean that x ≤L y but y �≤L x, and accordingly x ≡L y
mean that x ≤L y and y ≤L x.

Theorem 18. Assume that i ∈ I and r ∈ L[G] ∩ 2ω. Then

(i) if j ∈ I and j � i then aj [G] ≤L ai [G];

(ii) if j ∈ I and j �� i then aj [G] �≤L ai [G];

(iii) if r ≤L ai [G] then r ∈ L or r ≡L aj [G] for some j ∈ I , j � i;

(iv) if i = 〈γ, s〉 ∈ I , e = 0, 1, and i�e = 〈γ, s�e〉 then ai �e[G] is a true
successor of ai [G] in the sense that ai [G] <L ai �e[G] and any real
y ∈ 2ω satisfies y <L ai �e[G] =⇒ y ≤L ai [G];
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(v) if i = 〈γ, s〉 ∈ I , and x ∈ 2ω ∩ L[G] is a true successor of ai [G] in
the sense of (iv), then there is e = 0 or 1 such that x ≡L ai �e[G].

Proof. (i) Apply Lemma 14 with η = {j} and ξ = {i}.
(ii) Apply Lemma 15 with K = [� i].
(iii) If there are elements j ∈ I , j � i, such that aj [G] ∈ L[r], then let
j be the largest such one, and let ξ = [� j] (a finite initial segment of
I ). Then, by Lemma 17, either r ∈ L[a[G]�ξ], or there is i′ �∈ ξ such that
ai′ [G] ∈ L[r].

In the “either” case, we have r ∈ L[aj [G]] by (i), so that L[r] = L[aj [G]]
by the choice of j . In the “or” case we have ai′ [G] ∈ L[ai [G]], hence i′ � i
by (ii). But this contradicts the choice of j and i′ .

Finally if there is no j ∈ I , j � i, such that aj [G] ∈ L[r], then the same
argument with ξ = ∅ gives r ∈ L.

(iv) The relation aj [G] <L ai �e[G] is implied by Lemmas 14 and 15. If
now y <L ai �e[G] then y ∈ L or y ≡L aj [G] for some j � i�e by (iii),
and in the latter case in fact j ≺ i�e, hence j � i, and then y ≤L ai [G].

(v) By (iv), it suffices to prove that x ≤L ai �0[G] or x ≤L ai �1[G].
Assume that x �≤L ai �0[G]. Then by Lemma 17 there is an element j ∈ I
such that j �� i�0 and ai0 [G] ≤L x. If aj [G] <L x strictly then aj [G] ≤L

ai [G] by the true successor property, hence i0 � i, contrary to i0 �� i�0,
see above. Therefore in fact ai0 [G] ≡L x. Then we must have i0 = i�0 or
i0 = i�1 as x is a true successor, but then i0 = i�1, as x �≤L ai �0[G] was
assumed, and we are done.

7. The Subextension

Following the arguments above, assume that G ⊆ P is a set P- generic over
L, and consider the set J [G] ∈ L[G] of all elements i ∈ I such that:

either i = 〈γ, 0m〉, where γ < ω1 , m < ω , 0m = 〈0, 0, . . . , 0〉 (m terms
equal to 0),

or i = 〈γ, 0m �1〉, where γ < ω1 and m < ω , aγ [G](m) = 1.

Following (4), we define

W [G] = P(ω) ∩
⋃

i1,...,in∈J [G]

L[ai1 [G], . . . , ain [G]], (5)

Lemma 19. If i /∈ J [G] then ai [G] /∈ W [G].
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Proof. This is not immediately a case of Lemma 15 because J [G] /∈ L.
However the set K = {j ∈ I : i �� j} belongs to L and satisfies J [G] ⊆
K ⊆ I . We have i /∈ K , and hence ai [G] /∈ L[a[G]�K] by Lemma 15. On
the other hand, we easily check W [G] ⊆ L[a[G]�K], and we are done.

We are going to prove that 〈ω ; W [G]〉 is a model of PA∗
2 +CA(Σ1

2), but
the full CA fails in 〈ω ; W [G]〉.
Part 1: 〈ω ; W [G]〉 is a model of all axioms of PA2 except for CA, trivial.
Part 2: 〈ω ; W [G]〉 is a model of CA(Σ1

2) (with parameters). This is also
easy by the Shoenfield absoluteness theorem.
Part 3: 〈ω ; W [G]〉 fails to satisfy the full CA. Here we need some work.
Let γ < ωL

1 , so that both γ and each pair 〈γ, s〉, s ∈ 2<ω, belong to I by
(2) in Section 4, in particular i0 = 〈γ,Λ〉 ∈ I , where Λ is the empty tuple.
In addition γ (as an element of I ) does not belong to J [G]. Our plan is to
prove that aγ [G] /∈ W [G] but aγ [G] is definable in 〈ω ; W [G]〉.

Subpart 3.1: aγ [G] /∈ W [G] by Lemma 19 just because γ /∈ J [G].
Subpart 3.2: aγ [G] is definable in 〈ω ; W [G]〉 with ai0 [G] as a parameter,

where i0 = 〈γ,Λ〉 ∈ J [G]. Namely we claim that for any m < ω :

aγ [G](m) = 1 iff there is an array of reals b0, b1, . . . , bm, bm+1 and
b′
m+1 in 2ω such that b0 = ai0 , each bk+1 is a

true successor of bk (k ≤ m), b′
m+1 is a true

successor of bm as well, and b′
m+1 �≡L bm+1.

(6)

The formula in the right-hand side of (6) is based on the Gödel canonical
Σ1

2 formula for ≤L , which is absolute for W [G] by the definition of W [G].
Therefore (6) implies that aγ [G] is definable in 〈ω ; W [G]〉 with ai0 [G] as a
parameter. Thus it remains to establish (6).

Direction =⇒ . Assume that aγ [G](m) = 1. Then J [G] contains the
elements ik = 〈γ, 0k〉, k ≤ m+1, along with an element i′m+1 = 〈γ, 0m �1〉.
Therefore the reals bk = aik [G], k ≤ m+1, and b′

m+1 = ai′
m+1

[G] belong to
W [G]. Now Theorem 18(iv),(ii) implies that the reals bk and b′

m+1 satisfy
the right-hand side of (6), as required.

Direction ⇐= . Assume that the reals bk , k ≤ m + 1, and b′
m+1 satisfy

the right-hand side of (6). By Theorem 18(v), there is an array of bits
e1, . . . , em, em+1 and e′

m+1 such that bk = aik [G] for all k ≤ m + 1 and
b′
m+1 = ai′

m+1
[G], where ik = 〈γ, 〈e1, . . . , ek〉〉 and i′m+1 = 〈γ, 〈e1, . . . , em,

e′
m+1〉〉.

However ik ∈ J [G] for all k ≤ m + 1, and i′m+1 ∈ J [G], by Lemma 19,
since the reals bk and b′

m+1 belong to W [G]. Then obviously e1 = · · · =
em = 0 while em+1 = 0 and e′

m+1 = 1 or vice versa em+1 = 1 and e′
m+1 = 0.
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In other words, the elements 〈γ, 0m+1〉 and 〈γ, 0m �1〉 belong to J [G]. This
implies aγ [G](m) = 1.
Part 4: 〈ω ; W [G]〉 satisfies the parameter-free schema CA∗ . This is rather
similar to the verification of CA∗ in 〈ω ; X[G]〉 in Section 3.

Assume that Φ(k) is a parameter-free L(PA2) formula with k the only
free variable. Consider the set y = {k < ω : 〈ω ; W [G]〉 |= Φ(k)}; then y ∈
L[G], y ⊆ ω . We claim that y even belongs to L, and hence to W [G].

Let ‖− be the forcing relation associated with P, over L as the ground
model. Thus if X ∈ P and k < ω then X ‖− Φ(k) iff Φ(k) holds in any P-
generic extension L[H] of L such that X ∈ H .4 Let G be a canonical P-
name for G. We assert that

y = {k < ω : 1 ‖− “〈ω ; W [G]〉 |= Φ(k)′′}. (7)

(See Remark 11 on 1, the weakest condition in P.)
In the nontrivial direction, assume that k ∈ y . Then by the forcing the-

orem there is a condition X ∈ G forcing 〈ω ; W [G]〉 |= Φ(k). We claim that
then 1 forces the same as well.

To prove this reduction, we define, still in L, the set Perm ∈ L that
consists of all bijections π : ω1

onto−→ ω1 such that π = π−1 and the domain
of nontriviality |π| = {α : π(α) �= α} is at most countable, i.e., bounded in
ω1 . Any π ∈ Perm acts on:

– Elements i = γ or i = 〈γ, s〉 of I , by πi = π(γ), resp. i = 〈π(γ), s〉;
– Maps g with domg ⊆ I , by dom(πg) = π ”domg and (πg)(π(α)) = g(α)

for all α ∈ domg ;

– Thus if ξ ⊆ I and x ∈ Dξ then πx ∈ Dπ”ξ and (πx)(π(α)) = x(α);

– Sets X ∈ Perf ξ , ξ ∈ Ξ, by πX = {πx : x ∈ X} ∈ Perf π”ξ .

We return to the nontrivial direction =⇒ of (7), where we have to prove
that the condition 1 forces “〈ω ; W [G]〉 |= Φ(k)”. Let this be not the case.

Then there is a condition Y ∈ P which forces “〈ω ; W [G]〉 |= ¬ Φ(k)”.
There is a permutation π ∈ Perm satisfying ‖Z‖ ∩ ‖X‖ = ∅, where Z =
πY ∈ P. We claim that Z forces “〈ω ; W [G]〉 |= ¬ Φ(k)”. Indeed assume
that H ⊆ P is a set P- generic over L, and Z ∈ H . We have to prove
that 〈ω ; W [H]〉 |= ¬ Φ(k). The set K = {πZ ′ : Z ′ ∈ H} is P- generic
over L along with H since π ∈ L. Moreover K contains Y . It follows that
〈ω ; M [K]〉 |= ¬ Φ(k) by the forcing theorem and the choice of Y .

4 See Kunen [19] on forcing, especially Section IV.6 there on the “forcing over the
universe” approach.
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However the array a[K] is equal to the permutation of the array a[H]
by π . It follows that W [H] = M [K], and hence 〈ω ; W [H]〉 |= ¬ Φ(k), as
required. Thus indeed Z forces “〈ω ; W [G]〉 |= ¬ Φ(k)”.

Recall that X forces “〈ω ; W [G]〉 |= Φ(k)”. On the other hand, X,Z are
compatible in P because ‖Z‖ ∩ ‖X‖ = ∅. This is a contradiction.

We conclude that 1 forces “〈ω ; W [G]〉 |= Φ(k)”, and this completes the
proof of (7). But it is known that the forcing relation ‖− is expressible in L,
the ground model. Therefore it follows from (7) that y ∈ L, hence y ∈ W [G],
as required.

8. Discussion

We present several remarks and questions related to possible extensions of
Theorem 2.

Problem 1. Is the parameter-free countable choice schema AC∗
ω in the

language L(PA2) true in the models 〈ω ; W [G]〉 defined in Section 7 ?
Models of ZF separating AC∗

ω from the full ACω are defined in [10] (via
a cardinal-collapse below ℵω1 ) and in our recent paper [13] (by a cardinal-
preserving model rather close to the model L[G] as in Section 6).

Problem 2. Can we sharpen the result of Theorem 2 by specifying that
CA(Σ1

3) is violated? The combination CA(Σ1
2) + ¬CA(Σ1

3) would be op-
timal. The counterexample to CA defined in Section 7 (Part 3) definitely is
more complex than Σ1

3 .
According to recent advances in this direction partially outlined in [5,8],

Jensen’s iterated forcing introduced in [6], may lead to a solution. Such a
construction makes use of the consecutive “jensenness”, known to be a Π1

2

relation, instead of the consecutive “sacksness”, as in this paper, which can
help to define a counterexample required at the minimally possible level Σ1

3 .

Problem 3. As a generalization of the above, prove that, for any n ≥ 2,
PA∗

2 + CA(Σ1
n) does not imply CA(Σ1

n+1). (Compare to Problem 9 in [1,
§ 11].) Such a result would imply that the full schema CA is not finitely
axiomatizable over PA∗

2 .
We expect that methods of inductive construction of forcing notions in

L, that are similar to the iterated Jensen forcing as in [6] but carry hidden
automorphisms, recently developed in our recent papers [14–16] and some
others, may lead to the solution of Problem 3.
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Problem 4. [Communicated by Ali Enayat] A natural question is whether
the results of this note also hold for second order set theory (the Kelley-
Morse theory of classes). This may involve a generalization of the Sacks
forcing to uncountable cardinals, as in Kanamori [17], that have been re-
cently further developed in [5,8].

As a concluding remark, we expect that the methods developed for this
research can also be useful in creating computational algorithmic models,
of various complexity in terms of the second order Peano arithmetic, that
represent the evolution of cell types and are related to the storage and
processing of genomic information.
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