

Theoretical Computer Science 290 (2003) 1987-1996

Theoretical Computer Science

www.elsevier.com/locate/tcs

Note

Do stronger definitions of randomness exist?

Bruno Durand^{a,*}, Vladimir Kanovei^{b,1}, Vladimir A. Uspensky^b, Nikolai Vereshchagin^{b,2}

^aL.I.P., Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France ^bDepartment of Mathematical Logic and Theory of Algorithms, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Vorobjyovih Gorih, Moscow 119899, Russia

Received 13 October 1999; received in revised form 7 June 2001; accepted 30 November 2001 Communicated by M. Nivat

Abstract

In this paper, we investigate refined definition of random sequences. Classical definitions (Martin-Löf tests of randomness, uncompressibility, unpredictability, or stochasticness) make use of the notion of algorithm. We present alternative definitions based on set theory and explain why they depend on the model of **ZFC** that is considered. We also present a possible generalization of the definition when small infinite regularities are allowed. © 2002 Elsevier Science B.V. All rights reserved.

Prolegomena

It is rather surprising that algorithms are involved for defining random sequences since probability theory does not use the notion of algorithm. Thus, we try in this paper to propose more general definitions based only on set theory. We first explain why it is not so easy: we prove that perfect definitions (based on the notion of provably null sets) cannot exist. Thus, we propose a weaker definition. We observe that there is a model of **ZFC** (namely the Solovay model) in which our definition gives a perfect notion of randomness. On the other hand, in *all* models of **ZFC** it gives a good notion of randomness. Our paper is not focused on set theory, we just use some known set theoretic results. We proposed that it is not necessary to be an expert on set theory

^{*} Corresponding author. Fax: +7-95-731-0520.

E-mail addresses: bruno.durand@ens-lyon.fr (B. Durand), kanovei@mccme.ru (V. Kanovei), uspen-sky@lpcs.math.msu.ru (V.A. Uspensky), ver@mech.math.msu.su (N. Vereshchagin).

¹ This author acknowledges support of DFG, RFFI, and University of Wuppertal.

² Work done at L.I.P., Ecole Normale Supérieure de Lyon. Partially supported by RFFI Grant 01-01-01028.

to take advantage of new notions. Let us recall that our goal is to understand how far the notion of algorithm is necessary to define randomness and what kind of other definition can be or cannot be proposed.

1. Introduction

If somebody tells us that he has tossed a coin infinitely many times getting the sequence

where each even term is 0, we will most likely be ready to suspect fraudulence. Why? Our disbelief that the sequence is really random can be expressed in different terms: for instance, it contains too much regularities to be really random, or that it is "predictable", or that it has more zeros than ones thus violating the Law of Large Numbers, but essentially any explanation amounts to the following: the sequence is not random because it belongs to a simply defined set of strings of Lebesgue measure 0.

Towards more rigorous presentation, let us define $\Omega = 2^{\mathbb{N}}$, the set of all infinite binary sequences. The Lebesgue, or uniform, measure in Ω , denoted by mes, is the product of \mathbb{N} -many copies of the measure on the 2-element set $\{0,1\}$ giving the value $\frac{1}{2}$ to both $\{0\}$ and $\{1\}$. A *null set* is any set $X \subseteq \Omega$ with mes X = 0. Complements of null sets, i.e., sets of measure 1, are *full sets*.

Coming back to the discussion above, we may conclude that a reasonable notion of a random element of Ω must infer that random sequences avoid all "essential" null sets in Ω , or, what is the same, must belong to all "essential" full sets. The key issue is which sets should be viewed as "essential" here. Of course, these cannot be all (null and full) sets, because then there would be no random sequences at all. As a matter of fact, there is no other reasonable opportunity to provide the existence of random sequences except for taking a *countable* family E of "essential" subsets of E. Then, we can define a sequence E to be *random in the sense of* E iff it avoids any null set E the set E of all random sequences is, of course, full. The larger the family E we take the more refined the notion of randomness we obtain and the stronger is our belief that any random sequence can be obtained by fair coin tossing.

An important definition of this kind, given by Martin-Löf [?], is as follows. Let Ω_u denote the set of all infinite continuations of a finite string u. Recall that $A \subseteq \Omega$ is a null set if it can be covered by an open set (in Cantor's topology) of arbitrarily small measure, that is, for any n, there is a set B_n of finite strings such that (1) $A \subseteq \bigcup_{u \in B_n} \Omega_u$ and (2) $\sum_{u \in B_n} \operatorname{mes}(\Omega_u) = \sum_{u \in B_n} 2^{-l(u)} < 1/n$. A set A is called *effectively null* if there exists a sequence B_n satisfying (1) and (2) such that the set $\{\langle u, n \rangle : u \in B_n\}$

³ For example, if a casino plays this sequence in a gambling where we can bet any amount of money within \$1 on the next term of the sequence, we shall win as much as we want after sufficient number of moves.

is recursively enumerable. According to Martin-Löf, a sequence in Ω is *random* if it avoids all ⁴ effectively null sets. For instance, the sequence (*) above is *not* random: indeed, it belongs to the effectively null set of all sequences x such that x(n) = 0 for all even n. Note that the family of all effectively null sets is countable, as any its element is identified by an algorithm and the number of algorithms is countable.

It turns out that usual laws of probability theory, e.g., the law of large numbers (the frequency of zeros among first n terms tends to $\frac{1}{2}$) or the law of the iterated logarithm, are satisfied by any Martin-Löf random sequence, simply because the set of all counterexamples can be covered by an effectively null set. Yet the Martin-Löf definition does not encounter all possible infinite regularities which a really random sequence should avoid. For instance, a simple diagonal construction yields a particular, definable Martin-Löf random sequence while our intuition refuses to accept any definable sequence to be random.

The aim of our paper is to present more refined definitions of randomness, in part known from modern set theory. We shall assume some surface acquaintance with Zermelo–Fraenkel set theory **ZFC**, including a belief that it is an adequate foundation of mathematics. It will be a separate section (Section ??) which introduces some different opportunities in the study of the notion of randomness, related to *invariant* randomness.

2. Set theoretic approach to randomness

The Martin-Löf definition is an example of randomness definitions which describe the "essential" null sets (i.e., those to be avoided) in terms of a fixed notion of definability. (We treat "to be a r.e. set" as a kind of definability.) Taking more broad concepts of definability, we obtain, generally speaking, stronger notions of randomness. For instance, one defines a sequence $x \in \Omega$ to be *arithmetically random* iff it avoids all arithmetically coded null sets (see Section $\ref{eq:total_set}$). Then many Martin-Löf random sequences, in particular all arithmetically definable among them, become arithmetically non-random.

However, we shall still have *hyperarithmetically* definable arithmetically random sequences. Moreover, whichever particular notion of definability we take, there will be random, in this sense, sequences, definable in some other sense. This persuades us to think how to incorporate the most general set theoretic definability as a whole. In view of this discussion, a perfect notion $\rho(x)$ of a random sequence would be a notion satisfying two principles:

- (1) **ZFC** proves that the set of all random sequences is a full set.
- (2) For any formula $\Psi(x)$ such that **ZFC** proves that the set $\{x \in \Omega : \Psi(x)\}$ is null, it is provable, in **ZFC**, that no random sequence satisfies $\Psi(x)$.

(Formula means a set theoretic formula unless otherwise indicated.) However

Theorem 1. There is no formula ρ satisfying both (1) and (2).

⁴ One can consider only some particular effectively null sets here. This restricted approach leads to notions of *chaotic, unpredictable,* and *stochastic* sequences, see [?,?,?].

Proof. ⁵ Suppose that ρ is such a formula.

The argument is based on ideas connected with the Gödel constructibility. Gödel defined in 1938 a class L of sets called *constructible sets* and proved that L is a model of **ZFC**. The statement that all sets are constructible is called *the axiom of constructibility* and formally abbreviated by the equality V = L, where V denotes the universe of all sets. The axiom V = L was proved to be consistent with **ZFC** by Gödel (the key fact is that V = L is true in the class L) and independent from **ZFC** by Cohen in 1961.

Here the most important property of L is that there is a well-ordering $<_L$ of L, definable by a concrete set theoretic formula.

Let $\psi(x)$ say the following: $x \in \Omega$ is the $<_L$ -least element x_0 of the set $\{x \in \Omega \cap L : \rho(x)\}$, if the latter is non-empty, and x(n) = 0 for all n otherwise. Obviously, **ZFC** proves that there is only one $x \in \Omega$ satisfying $\psi(x)$; hence, by (2), **ZFC** proves that $\psi(x)$ contradicts $\rho(x)$. However, the axiom V = L (which is consistent with **ZFC**) implies, by (1), 7 that there is a sequence x satisfying $\rho(x)$ and $\psi(x)$ —namely, the x_0 defined above. \square

This drawback can be fixed at the cost of employment of non-ZFC means. This can be, for instance, an appropriate class theory, as in [?]. Myhill (see [?]) handled the problem adding to ZFC an extra atomic predicate of randomness and some axioms which govern its use. Another, even more exotic opportunity is to employ a non-standard set theory extending ZFC, to define a sequence to be random iff it avoids any *standard* null set, as in Ref. [?].

However, our requirements should be moderated, as long as we keep commitment not to leave the **ZFC** ground. Our proposal to this end, which seems to be a new one, is to consider the following weaker form of principle (2):

(2') For any formula $\Psi(x)$, if **ZFC** proves the set $\{x : \Psi(x)\}$ to be null, then **ZFC** does *not* prove that there is a random sequence satisfying $\Psi(x)$.

Informally, the principle states that no one will ever prove that a particular law of probability theory is not satisfied by some random sequence. In particular, any notion of random sequence satisfying (2') is resistant to the above critics of Martin-Löf randomness. These are, however, not all the requirements which we find necessary to impose on a notion of randomness. The point is that the principles (1) and (2') do not imply, that the sequence (say) $000000000000000\dots$ is not random. Principle (2') implies, of course, that one cannot prove that it is random. But we expect that such laws as "not to be identically zero" should be proved. This leads us to the third principle:

⁵ A modification of an argument by Myhill which shows that (1) is incompatible with a stronger version of (2) saying that, for any set theoretic formula $\Psi(x)$, **ZFC** proves that if the set $\{x \in \Omega : \Psi(x)\}$ is full then all random sequences satisfy $\Psi(x)$. The argument first appeared in [?, p. 321], see [?] for more on Myhill's approach.

⁶ We refer to [?,?] in matters of all general set theoretic facts used below as well as in matters of the history of related set theoretic research.

⁷ We actually need only that **ZFC** proves the existence of at least one random sequence.

(3) ZFC proves that any random sequence is arithmetically random, hence, Martin-Löf random, too.

We face here the same problem: the choice of arithmetical randomness, as the bottom level, is not well motivated. However, our construction applies to any previously specified amount of definability: for any definable provably countable family of provably null sets there is a notion of randomness satisfying (1) and (2'), and such that it is provable that any random sequence avoids all those sets.

Our main result (see Section $\ref{eq:posterior}$) will be a notion of randomness which satisfies (1), (2'), (3). This notion will comprise two distinct notions: the Solovay randomness and the arithmetical randomness. The key point is that it is *consistent* that the Solovay randomness satisfies both (1) and (2). This allows to define the "aggregate" notion by cases, i.e., as the Solovay randomness whenever it satisfies (1) and (2), and the arithmetical randomness otherwise. This will result in a notion of randomness also satisfying the common closure properties, for instance, stable with respect to finite changes.

3. Solovay random sequences

The aim of this section is to describe a notion of randomness which has the following properties, apparently even stronger than those of (1) and (2), but only in the sense of *consistency*:

- (1*) The set of all random sequences is a full set.
- (2*) For any formula $\Psi(x)$, if the set $\{x \in \Omega : \Psi(x)\}$ is null then no random sequence satisfies $\Psi(x)$.

It immediately follows from Theorem ?? that there is no set theoretic formula which, provably in **ZFC**, satisfies (1^*) and (2^*) . Yet there is a notion of randomness which consistently satisfies (1^*) and (2^*) .

Recall that countable intersections of open sets are called G_{δ} sets. Let us say that a sequence of sets B_n of finite binary sequences is a code for a G_{δ} set $U \subseteq \Omega$ iff $U = \bigcap_n \bigcup_{u \in B_n} \Omega_u$, where, as above, $\Omega_u = \{x \in \Omega : u \subset x\}$.

Definition 2. A sequence $x \in \Omega$ is *Solovay random over* L iff it avoids any null G_{δ} set with a code in L, the class of all Gödel constructible sets.

The formula saying that $x \in \Omega$ is Solovay random over L is denoted by $\rho_L(x)$. Put $\mathcal{R}_L = \{x \in \Omega : \rho_L(x)\}$ (all Solovay random over L sequences).

In fact, it will not be different to say: whenever $X \subseteq \Omega$ is a null *Borel* set with a code in L. ⁸ Indeed, it is a classical fact of measure theory that any null Borel set $X \subseteq \Omega$ can be covered by a null G_{δ} set $U \subseteq \Omega$. The construction of the covering set

⁸ It would be difficult to fully present here the involved mechanism of coding Borel subsets of Ω . It is based on the observation that construction of a Borel subset of Ω from sets of the form Ω_u , where u is a finite binary sequence (see Introduction) needs only countably many applications of the operations of countable union and countable intersection. This can be adequately coded, e.g. by a sequence $c \in \Omega$. Sequences which code Borel sets this way are called *Borel codes*. The set of all Borel codes is a co-analytic subset of Ω .

U can be maintained effectively enough to show that any null Borel set coded in L can be covered by a null G_{δ} set coded in L.

It occurs that basic properties of \mathscr{R}_L depend on the structure of the set universe: **ZFC** alone does not prove much, so that one either considers special models or proves consistency theorems. In particular, it is consistent with **ZFC** that \mathscr{R}_L is empty, just because $\mathscr{R}_L = \emptyset$ is a (trivial) consequence of the axiom of constructibility V = L. On the other hand, we have

Theorem 3 (Solovay). It is consistent with **ZFC** that the formula $\rho_L(x)$ satisfies both (1^*) and (2^*) .

Proof. The method of proof will be to demonstrate that $\rho_L(x)$ satisfies (1^*) and (2^*) in a particular model of **ZFC**, called *the Solovay model* [?].

To obtain this model, one has to fix an inaccessible cardinal ϑ in the constructible universe L. Then one defines a *generic extension* of L, which is a model of **ZFC** where each ordinal $\alpha < \vartheta$ is made countable by adding an appropriate *collapse function* $f_\alpha : \mathbb{N}$ onto $\alpha = \{\beta : \beta < \alpha\}$. The model has a lot of applications in set theory, for instance, it is true in this model that all projective sets of sequences are Lebesgue measurable. This result is based on the following key fact (we refer to [?,?] for proof):

Proposition 4. In the Solovay model, if a set $X \subseteq \Omega$ is definable by a set theoretic formula containing only sets in L as parameters then there is a Borel set $B \subseteq \Omega$ with a code (see footnote 8) in L such that $X \cap \mathcal{R}_L = B \cap \mathcal{R}_L$.

The following lemma is another key ingredient of the proof of Theorem ??.

Lemma 5. In the Solovay model, \mathcal{R}_L is a full G_δ set.

Proof. Codes for G_{δ} sets, defined above, can themselves be effectively coded by sequences in Ω . Thus, it suffices to prove that the set $\Omega \cap L$ of all constructible sequences is countable in the Solovay model.

To show this recall that \aleph_1 is the least uncountable cardinal, or, that is the same, the least cardinal bigger than $\aleph_0 = \text{card}\,\mathbb{N}$, the countable cardinality. By \aleph_1^L they denote " \aleph_1 in the sense of L", that is, the object defined, in L, as the least uncountable cardinal. Clearly $\aleph_1^L < \vartheta$, where ϑ is the L-inaccessible cardinal which participates, as above, in the construction of the Solovay model. It follows that \aleph_1^L is countable, in the Solovay model. On the other hand, it is known that, in L, the continuum hypothesis $2^{\aleph_0} = \aleph_1$ holds; hence, sequences in $\Omega \cap L$ admit 1–1 correspondence with L-countable ordinals, i.e., those smaller than \aleph_1^L . It follows that the set $\Omega \cap L$ is really countable. \square

Thus, in the Solovay model, \mathcal{R}_L has full measure, so that every set of sequences, definable by a formula with parameters in L, is a Borel set modulo a null set—hence, it is Lebesgue measurable. (This remains true even if we allow, in addition, arbitrary parameters in Ω in definitions of sets.) In other words, we have (1^*) . We easily prove

 (2^*) , too. Indeed, suppose that, in the Solovay model, $X \subseteq \Omega$ is a null set, definable by a formula containing only sets in L as parameters. By Proposition ??, we can assume that X is a *Borel* null set, coded in L. It follows from observation after Definition ??, that X is covered by a null G_{δ} set $U \subseteq \Omega$, coded in L. However $U \cap \mathcal{R}_L = \emptyset$. \square

The use of the Solovay model in this proof needs to be commented upon. Recall that the construction of this model starts with a model with an inaccessible cardinal. It is known that the existence of such a cardinal cannot be proved in **ZFC**, moreover, it implies the formal consistency of **ZFC**, so that a set theory with an inaccessible cardinal is much stronger than **ZFC**. Therefore, it is important to figure out whether the existence of inaccessible cardinal can be eliminated from the proof of Theorem ??.

In many similar cases, the use of inaccessible cardinals is unavoidable (sometimes it is very difficult to prove this!), but in this case the Solovay model can be replaced by a model not based on inaccessibles. One of them is a model obtained as an extension L[f] of the constructible universe L by a generic map $f:\mathbb{N}$ onto \mathbb{N}^L_1 . Another one, much more sophisticated but not using a cardinal collapse (which means that all L-cardinals remain cardinals in the extension) is described in [?, p. 315]. (We shall not stop at set theoretic details related to those models.) Neither of the two needs inaccessible cardinals or anything else beyond **ZFC**. However, the Solovay model has another advantage.

Indeed, consider the notion of *relative standardness*, which naturally arises in the study of some probabilistic phenomena like the Fubini theorem (see [?]). This would be a binary formula R(x, y) (reads: x is random relative to y) satisfying the two following requirements

- (1°) If $y \in \Omega$ then the set $\{x : R(x, y)\}$ is a full set.
- (2°) For any formula $\Psi(x, y)$, if $y \in \Omega$ and the set $\{x \in \Omega : \Psi(x, y)\}$ is null then no sequence $x \in \Omega$ satisfies R(x, y) & $\Psi(x, y)$.

For instance, let, following [?], R(x, y) be the formula saying that $x \in \Omega$ is Solovay random over L[y], the class of all sets sets constructible relative to y: in other words that x avoids any null G_{δ} set with a code in L[y]. A minor modification of the proof of Theorem ?? shows that it is consistent with **ZFC** that this formula R satisfies both (1°) and (2°) , and in fact R satisfies (1°) and (2°) in the Solovay model. However, unlike the "simple" randomness above, it is not known whether the consistency of (1°) and (2°) can be established on the base of **ZFC** alone. (This problem was formulated in [?].)

4. The "consistent" randomness

Recall that a code for a G_{δ} set is, as defined in Section $\ref{thm:property}$, essentially a subset of $S \times \mathbb{N}$, where S is the set of all finite binary sequences. Let us fix a recursive bijection $\beta: S \times \mathbb{N}$ onto S. Say that a G_{δ} code S is arithmetically definable iff its S-image S is an arithmetical subset of S in the ordinary sense, i.e., it can be defined by a formula written in terms of addition and multiplication, with quantifiers over natural numbers. Let us say that a set S is an arithmetically coded S set iff it has an arithmetically definable code.

Definition 6. A sequence $x \in \Omega$ is an arithmetically random iff it avoids any null arithmetically coded G_{δ} set. ⁹ The formula saying that $x \in \Omega$ is arithmetically random is denoted by $\rho_{A}(x)$ Put $\mathcal{R}_{A} = \{x \in \Omega : \rho_{A}(x)\}$ (all arithmetically random sequences).

One easily proves, in **ZFC**, that $\mathscr{R}_L \subseteq \mathscr{R}_A$, or, in other words, $\rho_L(x)$ implies $\rho_A(x)$. Unlike \mathscr{R}_L , the set \mathscr{R}_A is, provably in **ZFC**, a set of full measure. Clearly any Martin-Löf random sequence $x \in \Omega$ belongs to \mathscr{R}_A .

Let $\rho(x)$ be the formula saying:

• $x \in \mathcal{R}_A$, and if \mathcal{R}_L is a set of full measure then $x \in \mathcal{R}_L$.

Thus ρ defines the set \mathscr{R}_L of all Solovay random sequences over **L**—provided this is a set of full measure, while otherwise it defines simply the set \mathscr{R}_A of all arithmetically random sequences. It easily follows that ρ satisfies (1) and (3). To see that $\rho(x)$ also satisfies (2'), consider a set theoretic formula $\Psi(x)$ such that **ZFC** proves that it defines a null set. By Theorem $\ref{eq:property}$, it is consistent with **ZFC** that ρ_L satisfies (1*) and (2*) hence $\rho(x) \Leftrightarrow \rho_L(x)$. It follows that $\forall x \ (\rho(x) \Rightarrow \neg \Psi(x))$ also is consistent, so that **ZFC** does not prove that there is a random sequence x satisfying $\Psi(x)$.

5. Invariant randomness

Any reasonable notion of randomness of a sequence in Ω (including those considered above) informally amounts to the requirement that the sequence cannot include infinite regularities of some kind. What happens if we do not mind to allow "small" infinite regularities? Let is make a few steps in this direction.

Let I be an ideal on \mathbb{N} whose elements (subsets of \mathbb{N}) will be thought of as "small" infinite sets. The following examples are of interest:

Fin = all finite subsets of \mathbb{N} ;

 $\mathcal{D} = \text{all density } 0 \text{ subsets of } \mathbb{N}.$

(A set $X \subseteq \mathbb{N}$ is of density 0 iff the frequency of elements of X among first n natural numbers tends to 0 as n tends to ∞ .) Define E_I to be the associated equivalence relation on Ω , so that $x E_I y$ iff the set $\{n : x(n) \neq y(n)\}$ belongs to I: informally, x and y "differ not too much" from each other.

Note that E_{Fin} is usually denoted by E_0 .

If E is an equivalence relation on Ω then let $[x]_{\mathsf{E}} = \{y : y \, \mathsf{E} \, x\}$ (the E-class of $x \in \Omega$) and $[X]_{\mathsf{E}} = \{y : \exists \, x \in X \, (y \, \mathsf{E} \, x)\}$ and $[X]_{\mathsf{E}} = \mathsf{C}[\mathsf{C} X]_{\mathsf{E}}$ (the E-saturation and the E-kernel of $X \subseteq \Omega$; $\mathsf{C} X$ is the complement of X, as usual). Any set X satisfying $X = [X]_{\mathsf{E}}$ is called E-invariant.

⁹ A weaker notion of Σ_n randomness was proposed in [?] (the code should be in Σ_n). It can be proved that arithmetical randomness is equivalent to uncompressibility when computations are relativised to arithmetical oracles.

Let us take the *arithmetical* randomness as the basic notion, but the following definition makes sense for any other one (e.g., the Solovay randomness).

Definition 7. Let E be an equivalence relation on Ω . A sequence $x \in \Omega$ is *arithmetically* E-*invariant random* iff it avoids any set of the form $]X[_{E}$, where X is a null arithmetically coded G_{δ} set.

(It is not clear that this is equivalent to the requirement that x avoids any null E-invariant arithmetically coded G_{δ} set: note that $]X[_{E}$ may be not Borel, even assuming that E, X are Borel.) The definition makes sense formally for any equivalence relation E, but lacks motivation if E is not of the form E_{I} . ¹⁰

Then "arithmetically random" is clearly the same as "arithmetically = invariant random" (the equality can be considered as an equivalence relation). Moreover, this is the same as "arithmetically E_0 -invariant random", because the E_0 -saturation $[X]_{E_0}$ of any set X is the union of countably many simple shifts of X. On the other hand, the case of E_{\emptyset} is different!

Indeed, the set of all arithmetically $\mathsf{E}_{\mathscr{Q}}$ -invariant random sequences is clearly $\mathsf{E}_{\mathscr{Q}}$ -invariant. It follows that there is an arithmetically $\mathsf{E}_{\mathscr{Q}}$ -invariant random sequence x such that $x(2^n)=0$ for all n: note that the set $\{2^n:n\in\omega\}$ belongs to $\mathscr{Q}!$ Such an x is not arithmetically random, of course. Thus, arithmetically random sequences form a proper subclass of arithmetically $\mathsf{E}_{\mathscr{Q}}$ -invariant random ones. In fact, for any arithmetically random x there exist many arithmetically $\mathsf{E}_{\mathscr{Q}}$ -invariant random but not arithmetically random sequences $y \mathsf{E}_{\mathscr{Q}} x$. We would be interested to know if any arithmetically $\mathsf{E}_{\mathscr{Q}}$ -invariant random y satisfies $y \mathsf{E}_{\mathscr{Q}} x$ for some arithmetically random x.

Another question is how the known forms of relationship between ideals over \mathbb{N} reflect in the associated notions of invariant randomness.

References

- H. Gaifman, M. Snir, Probabilities over rich languages, randomness and testing, J. Symbolic Logic 47 (1982) 495–548.
- [2] T. Jech, Set Theory, Academic Press, New York, 1978.
- [3] V. Kanovei, M. Reeken, Mathematics in a nonstandard world, Math. Japonica 45 (2) (1997) 369-408.
- [4] A.H. Kruse, Some notions of random sequence and their set-theoretic foundations, Z. Math. L. Grundl. Math. 13 (1967) 299–322.
- [5] K. Kunen, Set Theory, an Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.
- [6] M. van Lambalgen, Independence, randomness, and the axiom of choice, J. Symbolic Logic 57 (1992) 1274–1304.
- [7] P. Martin-Löf, The definition of random sequences, Inform. and Control 9 (1966) 602-619.
- [8] An.A. Muchnik, A.L. Semenov, V.A. Uspensky, Mathematical methaphysics of randomness, Theoret. Comput. Sci. 207 (1998) 263–317.
- [9] R.M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. Math. 92 (1) (1970) 1–56.

¹⁰ In the latter case, the definition may reflect the procedure of coin tossing which allows to toss packets of infinitely many coins simultaneously, to determine the values of x(n), where $n \in X$ and $X \subseteq \mathbb{N}$ belongs to I, a given ideal.

- [10] J. Stern, Regularity properties of definable sets of reals, Ann. Pure Appl. Logic 29 (1985) 289-324.
- [11] V.A. Uspensky, A.L. Semenov, Algorithms: Main Ideas and Applications, Kluwer Academic Publishers, Dordrecht, 1993.
- [12] V.A. Uspensky, A.L. Semenov, A.Kh. Shen, Can an individual sequence of zeros and ones be random? Russian Math. Surveys 45 (1) (1990) 121–189.