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Abstract

We prove that any Borel Abelian ordered groBphaving a countable subgroup as the largest
convex subgroup, and such that the quotiBnG is order isomorphic t®, the reals, is Borel group-
order isomorphic to the produBt x G, ordered lexicographically. As a main ingredient of this proof,
we show, answering a question of D. Marker, that all Borel cocyifes> Z are Borel coboundaries.
A Borel classification theorem for Borel orderedcgroups is proved. 2001 Elsevier Science B.V.
All rights reserved.
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Introduction

A Borel Abeliangroup (or: BA group) is any Abelian grou = (G; +) such thaiG is
a Borel subset of a Polish (complete metric separable) sparbile the group operation
is a Borel function from’? to X’ (or equivalently: the sef(x, y, z): x + y =z} is a Borel
subset ofx’3). A BA ordered (BAO) group is any BA groupG = (G; +, <), endowed
with a Borel linear ordekx on G, compatible with the group operation, so that x’ and
y <y impliesx +y <x'+y'.
The notions ofgroup isomorphisn{G-isomorphism),order isomorphismo-isomor-
phism), andgroup order isomorphisrco-isomorphism) have obvious meaning. We shall
be interested in the case when the isomorphisms are Borel maps (i.e., those with Borel
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graphs). The phrases like: “grougsandG’ areG-isomorphic”, or “Borelc-isomorphic”,
or “Borel Go-isomorphic” are understood naturally.

We give [8] as a broad reference in matters of ordered groups.

Clearly g-isomorphic BA groups are not necessarily Baselsomorphic. For instance
the additive groups dR ! andC arec-isomorphic (as divisible torsion-free groups of the
same cardinality) but not Borekisomorphic. An example given by Hjorth shows that even
Go-isomorphic BAO groups are not necessarily Base-isomorphic (see below). Thus
the “Borel” classification of BAO groups should be quite different from the ordinary one.
However, some particular cases still admit reasoning which leads to Borel isomorphisms.

Theorem 1. Suppose that is a BAO groupGo-isomorphic to a group of the formR x Z,
whereR is a Borel divisible subgroup d@&. ThenA is BorelGo-isomorphic toR x Z.2

The proof (Section 1) is rather easy: in this case, any isomorphism is Borel because every
Z-interval in A contains a unique element divisible by each naturdt is an interesting
question whether one can replace the condition théd co-isomorphic toR x Z by a
weaker requirement that is order-isomorphic tR x Z as an ordered set. An example
(Section 6), based on a nonstandard model of arithmetic, shows that this can be false for
instance in the cas® = Q (the rationals). On the other hand, the c&se R admits the
following theorem, which is essentially the main result of this paper:

Theorem 2. Let B be a BAO group having a countable subgratis the largest proper
convex subgroup. Suppose ttG is o-isomorphic taR. ThenB is BorelGo-isomorphic
to R x G ordered lexicographically.

The proof of this theorem (Sections 2-5) is not so elementary. We prove, using methods
of descriptive set theory, that there is a Borel subgr®ig B which has exactly one
element in common with everg-coset in B: this quickly leads to Theorem 2. (The
first step is to find a Borel seX C B, not necessarily a subgroup, having exactly one
element in common with everg-coset inB, which is already a nontrivial fact, based on a
classification theorem for Borel equivalence relations, proved in [1].) To prove this selector
theorem, we show that all Borel cocyclesiRnx G are Borel coboundaries: this answers a
question of Marker [7].

It would be interesting to figure out whethRrcan be replaced in Theorems 1 and 2
by another BAO group. Another possible direction of generalization of Theorem 2 is to
consider uncountable Borel subgrou@s but this is bounded by a counterexample by
Hjorth, see Section 6.

The case of Boretcc groups (i.e., those which do not admit uncountable sets of
pairwise disjoint open intervaly admits a more comprehensive Borel classification,

Lin this paperR always means: the additive group of the reals.

2In this paper, all products of ordered groups are assumed to be ordered lexicographically. Subgfoaps of
assumed to be ordered by the usual order of the reals.

3 For Borel linear orders;ccis equivalent to separability, see, e.g., Corollary 4.5 in [2].
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mainly because for any such a grodiand a convex subgroup € A, the quotientd/C is
countable. The next theorem (proved in Section 7) shows that BAO divisibdegroups
can be characterized in terms of certain countable products of Borel subgroRp¥\eaf
have to give a few definitions.

For any ordered Abelian group, C2WO will be the set of all mapsy € C? such that
the non-zero domaiftw| = {g € Q: w(q) # 0} is well-ordered as a subset @f. Then
CYWO js an Abelian ordered group, with componentwise addition and lexicographical
order. In this case, a subgroip € C2WO will be calledlocal-productif for any w € W
andgo € Q, the functionw’ € C@WO_ defined byw’ (g0) = w(go) while w’(¢) = 0 for any
q # qo, belongs tow .4

Theorem 3. Assume thatl = (A; +, <) is a BAO divisibleccc group. ThenA is Borel
Go-isomorphic to one of the following
(i) a Borel local-product subgroupV of C@WO, whereC is a countable divisible
subgroup ofR, satisfying the following propertyfor any ¢ € (J,,cw lwl, the
“projectiorf {w | (—o0, ¢]: w € W} is at most countable
(i) a lexicographical product of the fori x B, where B is an uncountable Borel
divisible subgroup oR, ® while W is a countable local-product divisible subgroup
of C¥WO | ¢ being a countable divisible subgroupf

Note that any group of type (i) or (ii) is clearlyacc group. In addition, types (i) and (ii)
are disjoint: indeed, any group of type (ii) contains an uncountable Archimedean convex
subgroug0} x B, which is impossible for those of type (i). Examples for (i) are trivial. As
for (i), consider the subgroupy € Q%, which consists of thosé-sequences = {q.}.cz
satisfying the property that the set| = {z: ¢, # 0} C Z has only finitely many elements
below anyzg € Z.

1. Proof of Theorem 1

Thus letA = (A; +, <) be a BAO groupGo-isomorphic toG x Z, whereG is a Borel
divisible subgroup oR, via aco-isomorphism#. Prove thatd is BorelGo-isomorphic to
G x Z. We actually prove thaf itself must be a Borel map.

Forx,y € A, let x ~ y mean thatt — y € Z. Then~ is a Borel equivalence relation.
Note that the sef = {F(r,0): r € G} C A has exactly one point in common with each
~-class. Thus, it suffices to check thfats a Borel set.

To see this note that the elementg S are only those (among all € A) which are
divisible in A by any naturak. This yields a Borel definition fof. O

4Then, given a finite sej; < g2 < --- < g of rationals,w € W, and anyc; € W(g;) = {w(g;): w € W}, the
function w’, which differs fromw only in its valuesw’(g;) =¢;, i =1,..., k, belongs toW. Yet W is not
necessarily a product of the forﬁ']qu Wy.

5That s, a subgroup of the additive grouplf
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It would be interesting to figure out which conditions in this simple theorem are really
necessary, in particular, the requirement tias divisible.

On the other hand, the requirement, thas co-isomorphic toG x Z, apparently cannot
be weakened to the followingt is o-isomorphic toG x Z as an ordered set, even in the
caseG = Q, see Section 6.

2. Borel selector theorem and the proof of Theorem 2

Our proof of Theorem 2 is based on the following theorem (the “Borel selector theorem”
of the title).

Theorem 4. Let B and G be as in Theoren2. Then there is a Borel subgroup’ C B
which has exactly one element in common with gaetoset inB.

(A G-cosetis any set of the fornb + G, whereb € B.) Let us show how this implies
Theorem 2. We apply the following simple lemma.

Lemma 5. Any archimedean BAO group’, order isomorphic tdR, is BorelGo-isomor-
phic to (R; +) (i.e., the additive group dR).

Proof. Prove first thatB’ is divisible. Indeed, suppose that> 2 anda € B’ is, say,B’-
positive but there is n® € B’ such thatux =a in B’. Thenthe setX = {x € B": nx <a}
andY = {y € B": ny > a} form a partition of B’ such that every € X is < than any
y € Y. Since B’ is order isomorphic t®, either X has a maximal element df has a
minimal element. Consider the first case andddie the largest element df. (Clearly
x is B-positive.) Themmx < a < ny for any y > x in B’. It follows that the difference
d =a —nx > 0 in B’ satisfies the requirement that > 4 for any positivez € B’.
Now, using again the fact tha&’ is order isomorphic tdR, we present/ in the form
d=dy+---+d,, where eachi; € B’ is (strictly) B-positive. To get a contradiction, it
remains to take, ag the B-least amondl, .. ., d,.

Now fix any B-positive element € B’. Thenge € B’ is well-defined inB’ for any
rationalq. Furthermore the sef = {ge: ¢ € Q} is cofinal and coinitial inB’ since the
subgroup is Archimedean.

Prove thatE is dense inB’ (in the order sense). Indeed otherwise there are elements
0 < a < b in B’ such that the intervdla, b] does not interseck. Then the difference
d = b — a satisfiesge > d in B’ for any rationalg > 0. It follows thatmg < ¢ in B’ for
any naturaln, a contradiction sinc®’ is Archimedean.

Now defineH (q) = ge for any rationalg. If x € R is irrational then letH (x) be the
only element ofB’ such thatH (x) > ge wheneverg < x is rational andH (x) < ge
whenever; > x is rational. It follows from the above thad is a BorelGo-isomorphism

onto

R— B'. O
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The subgrouB’, given by Theorem 4, is a BAO group ordered similarlyRidVioreover
B’ is archimedean sinc® hasZ as the largest convex subgroup. It remains to apply
Lemma5. O

3. Preliminaries for Theorem 4: reduction to cocycles
Let B=(B; +) andG C B be as in Theorems 2 and 4.

Lemma 6. There is a Borel seX € B which has exactly one common element with each
G-cosetinB.

Proof. Consider a Borel equivalence relatianE b iff a — b € G, on B. It follows from
the Glimm-Effros dichotomy theorem of Harrington, Kechris, and Louveau [1], Ehat
satisfies one (and only one) of the two following requirements:
(i) E is smooth i.e., there is a Borel map': B — R such that we have Eb <
F(a)=F(@) foralla, be B.
(i) The Vitali equivalence relatiog on 2V ¢ is Borel reducible ta, so that there is a
Borel mapF :2Y¥ — B such thatx Eg y < F(x) E F ().
Note that (ii) would imply that there is a Borel linear ordering of the set oEgltlasses
(induced by the order aB), which is known to be impossibléThus we have (i). Now, as
theE-equivalence classes (i.€i;cosets) are countable, the lemma follows from a classical
theorem of descriptive set theofy. O

Let us fix such a Borel seX. Fora,b € X, leta * b be the only element oX which
belongs to the sam@-coset inB asa + 5 b. Then clearly(X; x) is a BAO group (perhaps

not a subgroup oB), order isomorphic t@/ G, hence, taR. It follows that(X; *) is Borel

GO-isomorphic to(R; +) by Lemma 5. Let : R ™" ¥ be a Borel isomorphism.

From now on let+ and— denote the real number addition and subtractionaf-ere R,
let f(x,y)=i(x)+pi(y) —pi(x +y). Thusf(x, y) € B and, moreover, it follows from
the choice of and X that in fact f(x, y) € G becausé(x) +5 i(y) andi(x + y) belong
to the samé5-coset of B. We also havef (x, y) = f(y, x) and

fax, )+ fx+y,2)=f(x,y+2)+8 f(y,2) forallx,y,zeR. (1)

Thusf is acocycleR? — G.

Given a map::R — G, the functionf, (x, y) = h(x) +p h(y) —p h(x + y) is clearly
a cocycle (i.e., it satisfies (1) anfl (x, y) = f»(y, x)). Cocycles of the forny; are called
coboundaries

6Forx, y € 2N, x Eg y means that the sét: x(n) # y(n)} is finite.

7 This fact was first observed perhaps by Siesgi [9]. We refer the reader to Kanovei [3] for a simple proof.
8 This theorem says the following. Lét be a Borel subset of the produktx Y of complete separable metric
spacesX, Y. Suppose that for any € X there is at most countably mamye Y such thatx, y) € P. ThenP can
be presented as a union of the fofm= | J,, P, where eactP, is a Borel set such that anye X there is at most
oney € Y satisfying(x, y) € P,,. See Kechris [6]. We apply it to the sBt= {(x, y): y € B andx = F(y)}.
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This vocabulary allows us to add some generality to our considerations.

Theorem 7. Suppose thaG is a countable Abelian group. Let:R? — G be a Borel
cocycle.(That is, it satisfies 1 for-g and f(x, y) = f(y,x).) Then f = f;, for a Borel
mapi:R— G.

Thus Borel cocycles are Borel-generated coboundaries. The question answered by this
theorem forG = Z (the integers) was suggested to us by Marker [7].

To show that this implies Theorem 4, letR — G be a Borel map given by Theorem 7:
so that we have

i(x)+pi(y)—pi(x+y)=h(x)+ph(y) —ph(x+y) forallx,yeR. 2

DefineH (x) =i(x) —p h(x), forx e R. Itis clear thatB’ = {H (x): x € R} is still a Borel
subset ofB having exactly one common element with ea@fcoset. Moreoverp’ is a
group becausé#l (x) + H(y) = H(x +y) by (2). O

4. Main lemmas for the proof of Theorem 7

Fix G = (G; +¢,0g) and f as in Theorem 7. Let € R effectively code the Borel
map f. Fix a countable transitive s, which containg andG and models a large finite
fragment® of ZFC.°

Let coH be the Cohen forcing, viewed as the set of all non-empty rational open intervals
(a, b) iIn R. (Smaller intervals are stronger conditions.) Fix a pair of rational inteivarsd
J of R such that’ contains only positive reals and is shorter ttfaand! x J coH?-forces,
over, that f (a, b) = g, for a fixedg € G, wherea andb are the names for generic reals
in the sense ofoH?. 10

We need some additional notation. Defifiéx, y, z) = f(x,y) +¢ f(x + v, z): thisis
invariant under any permutation with{m, y, z} by (1). Define

f(xla e a-x}’l)anrl) = f(-xla e a-xn) +G f(xl—‘f_ tte +xn»xn+l)a (3)
by induction, so thatf(x1,...,x,) is invariant under any permutation within the set
{x1, ..., x,}. The meaning of this extended versionofs quite transparent:

f(-xla""-xn) =i(x1)+p---+Bilxy) —pilx1+---+x,),
assumingf is defined byf(x,y) =i(x) +p i(y) —p i(x + y), as in Section 3. Let, in
addition, f (z1) = O¢ for any singlezs, for “arity” 1. It easily follows that

f(xl,~~~,xn,y1,~~~,)7k)

=fxa, o xn) +6 fOL 0 6 Frat -+ xn, Y1+ 4 yi). 4)

mntain first one million of the ZFC axioms and the schematafgjg formulas.
10The use of forcing notation is mainly a figure of speech here. The given description/dfas the following

meaning. If a paifa, b) € I x J does not belong to any closed nowhere dense subgekof, having a code in
M, thenf(a,b) =g.
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(Let, for brevity,x denote the stringy, ..., x, ands = x1 + - - - 4+ x,,. Argue by induction
onk. Fork =1 apply (3). To carry out the step suppose that

fe, v, oD =fX)+6 fO1 .., vk +6 f(s, 1+ + yi—0).
Adding f(s + y1+ - + yk—1, yx), We getf (x, y1, ..., yx) on the left, and

f&x)+6 fO1 - k-1 +6 fOks y1+ -+ Yk-1) +6 f(s, y1+ -+ yk)
on the right by (1), which equals the right-hand side of (4) by (1).)

Lemmas8. Letxi,...,x,, v1,...,y, € I becon-generict! reals oved, such thatvy +
et xp=y1+ -+ v Thenf(xa, ..., x0) = fOV1, -5 Yn)-

Proof. Argue by induction om. We start withn = 2. Letx, y, x’, y' € I be COH-generic
overd, andx + y = x’ +y’; prove thatf (x, y) = f (x’, ¥').

Let us suppose that < x’ < y' < y. As I is shorter, there is a real € J, COH-ge-
neric overMi[x, x’, y, y'1,12 such thatr’ = « + (x’ — x) € J. Note that each of the pairs
(x,ao'), (y,a), (x',a), (y,d), is coH?-generic oveft. Therefore

f(x,y,ot,o/)zf(x,a’) +G f(y,ot) +c f(x+a/,Y+a):2§+G f(y’ J//),
f(x/’ y/,Ol,Ol/) = f(x/, a) +c f()’/,a/) +G f(x/—}—ot, )’/‘HX/) :2§ +c f(y’ V/)

by (4), wherey =x + o' =x'+a andy’ =y +a =y +a', so thatf(x,y,a,a') =
f&', ¥, a,a’). However, on the other hand, we have

fy,a0)=f(x,y)+¢ fe, o) +¢ f(x+y,a+a’), and
&y ad)=f(x"y) +6 flad)+6 fF(X+ Yy, a+a),

so thatf (x,y) = f(x/,y’) becausa +y=x"+y'.

We carry out the step. Assume that + -+ + x, + xp01 = y1 + -+ + Yu + Ynt1.
Consider first the case when+1 = y,+1. Thenxy + -+ +x, = y1 + --- + y,, hence
f(x1,...,x0) = f(y1, ..., yn) by the assumption. On the other hand, by definition,

f(-xla"'7-xn7-xl’l+1)=f(-x17"'7'xn) +G .f('xl+"'+-xnv-xl’l+l)a

and the same fof (y1, ..., yu, Yut1), @S required.
Consider the general case. Assume thaandy; are the smallest while,11 andy, 1
the largest among respectively, y;. Let, for instanceyx; < y1. Lete > 0 be a realcon-

I Arealis coH-generic ove®t if it does not belong to any closed nowhere dense set of reals having a code in
M. To define this in a more classical way would mean to specify a complicated list of countably many relevant
nowhere dense closed sets.

2900xq, ..., xn] will denote a countable transitive model of the fragment of ZFC introduced in footnote 11,
containing the realsq, ..., xp and all sets irf)t. We do not bother here thafi[xy, ..., xz] is not uniquely
defined and may contain more ordinals tfahdoes. Note that if a real is coH-generic ovefi[xq, ..., xn]

then each paifx, x;) is COHZ—generic ovet. It is not so clear how to carry out this argument classically in
forcing-free terms.



292 J.R.P. Christensen et al. / Topology and its Applications 109 (2001) 285-299

generic ovei[x1, y1, ..., Xnt1, Yn+1], Satisfyinge < y1 —x1, and such that,, 1 + 6 still
belongs tal, wheres = y1 — x1 — ¢. Definex] andy; so that

/ / / /
X1=x1+t¢& X, 1=Xp41—& Y1=y1—98, Y, 1=Ynt1+3,

(these reals areoH-generic ove®)t by the choice ot), while x; = x; andy; = y; for
2 <k <n.Thusxz =x5 andy, = y», S0, by the particular case,

fa, .o xng) = fxg, oo x) and fOn e i) = FO0 oo Vi)
Similarly, f (1, .-, yp11) = f(x1, ..., X, 1), because; = x; by definition. O
Lemma 9. Assume that <k <n, 1<k’ <n/, and realsxs, ..., x,, y1,..., yxr € I and
Xps.oen X0 Vs -0 Vi € I are coH-generic ovedt. Suppose further that

X1+ +x=yi+--+y=s and xj+---+x, =y + - +y, =5
T/hen(n’ — K f(xa, e x0) =6 FOL -yl =0 = Bf (L. %) =6 fO s
i)l

(If g € G andm € w thenmg denotes th&-sum ofm copies ofg.)

Proof. If z is a string of reals (perhaps, containing only one term) tb@ﬁ will
denote the concatenation mfmany copies ot. Let x denote the string1, .. . Let

x', y, y' have analogous meaning. Note thate " —*1, /1=Ky — ¢(/In=K 1y [" - ) by
Lemma 8. (The strings to whicli is applied havein” — kk’ terms and the sum equal to
(n' —k')s + (n — k)s’ each.) It follows from (4) that the left-hand side and the right-hand
side of the last equality are equal respectively to

FETFNY 16 20" 46 £ (0 = KDs, (= )s)):;
FET) 46 £ 46 £ = hos', 0 = K)s);
so that
FETF) 46 () = ) 46 (D). (+)

It follows from (4), by induction onn, that f (x!"™)) = mf (x) +¢ f(s!™)) and f(y!™)) =
mf(y) +¢c f(s'™) for anym; hence

SO = FOI ) = 0 K (F @) —6 F)).
Similarly, £x'" M) —¢ F(y" M)y = — k) (F(x') —g f(¥")). We conclude, byx), that

(' =kN(f(x) = f(y)=m—=k(f(x')—c f(¥")), as required. O
5. Proof of Theorem 7

We are going to prove that = f3, i.e., f(x,y) =h(x) +¢ h(y) —¢ h(x + y), where a
Borel “shift” 2: R — G is a superposition of three more elementary Borel maps.
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There is a big enough naturalsuch that there exist realsy € I, coH-generic ovedt
and satisfyingny = (m + 1)x. By Lemma 9, the elemegt = f ("t —; f(y!") e G
(hencee M) does not depend on the choiceraf x, y, and we havef (x1,...,x,) —¢
f(1 ..., y) = (n—k)q’ whenever I k < n and the reals;, y; € I arecoH-generic
overOt and satisfyxy + -+ - +x, = y1 4+ -+ + k-

Stepl. Puthi(x) = —g ¢', Vx.Let fi(x,y) = f(x,¥) +G fi,(x, ) = f(x.¥) =G ¢'-

Corollary 10. Assume thatrealsy, ..., x,, y1, ..., yx € I are COH-generic oveflt, and
X1+ Fxp=y1+--- 4y Thenfi(xy, ..., x0) = a1, -, Yi)-

Proof. Let, for instance,k < n. Note that f4,(z1,...,zm) = —c (m — 1)¢’, hence

filxe,..ox0) =6 i ..o ) = fxn, oo x0) —6 fOL, .00 —6 (n — kg’ =
Og. O

Recall thatl = (a, b), arational interval ifR, lies to the right of 0. Definel = (na, nb).
Thereis areal > b > 0 such tha{C, +o0) C |, nl.

Letx > C. Thenx =x1 + ---+ x, for some realss, ..., x, € I, COH-generic ovefi.
We consistently define, using Corollary 18(x) = f1(x1, ..., x,). Clearly (the graph of)
F is analytic, thereforé : [C, +00) — G is a Borel function.

Step2. Putha(x) = F(x) forx > C andha(x) = Og forx < C. In particulariz(x) = Og
forx € I. Let fo(x,y) = fi(x.y) +¢ fn,(x,y). Easily fo(x1, ..., x,) = Og for all cOH-
genericrealsy, ..., x, € I suchthates +---+x, > C.

Lemma 11. fo(x,y)=0¢ forall x,y > C.

Proof. Letx =x1+---+x, andy = y1 + --- + yx, Wherex;, y; € I are COH-generic
overdN. It follows from (4) that

Sa(xa, oo Xns Y15 Y0 = f2(x, - X0) 6 2001, -4, V0D 6 fa(x, p).
But f2(X1, ..., X Y1 - o5 V&) = f2(X1, ..., X») = f2(y1. ..., yx) = Og by the above. O
Step3. LetC, = maxC, C — x}. Definehz(x) = —¢ f2(x, Cyx), S0 that
Jna(x, ) = —=¢ f2(x, Cx) —G f2(y, Cy) +G fa(x +y, Cxiy), (*)

and putfz(x, y) = fa(x,y) +6 fuz(x, y).

Lemma 12. f3(x,y)=0¢ forall x, y.

Proof. For anyz, we havefs(x, y) = fa(x,2) +¢ fa(x +z,y) —¢ fa(x +y,2). By (»),
this transforms straightforwardly to

fo(x,2) +6 falx + 2, y) —G falx + y,2) —G fa(x, Cy)
-G J2(y, Cy) +c falx +y, Cyty).
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Takez = max{Cy, Cy+y, Cy — x}. Then, in particular,

fo(x,2) =g fa(x, Cy) = fa(x +2,Cx) — fa(x + Cx,2) =0
by Lemma 11. Each of the other two pairs gives 0 analogousty.

To accomplish the proof of Theorem 7, note that the rhaps obviously Borel iy is
Borel becausé is Borel (see above), so th#t andhs are Borel, too. Howevef is equal
to — f, by Lemma 12, so thaf is a Borel-generated coboundary

6. Two counterexamples

This section presents two counterexamples which show that Theorem 1 cannot be easily
generalized in certain directions.

A counterexample order isomorphic@x 7

Proposition 13. There is an abelian ordered group, such thatZ is the only proper
convex subgroup od and A /Z Go-isomorphic toQ (henceA is o-isomorphic toQ x Z
as an ordered stbut notG-isomorphic toQ x Z.

Proof. We make use of a nhonstandard mostebf Peano arithmetic. Adding the negative
part—M appropriately, we obtain an Abelian groth= M U —M. Forx, y € G, define

x ~ yiff x — y € Z. Note that there exists ana-classX such that none of € X is divided
by 2" for all finite n. (Indeed, fix an infinitely large: € M. The~-classX of the number

x € M, closest to the fraction"?/3, is as required.) To see that= qu@qx is not group
isomorphic toQ) x Z note that the produd® x 7Z contains, in eacli-interval{g} x Z, an
elementx = (g, 0) divided inQ x Z by any number2, n € N, while on the other hand,
which is aZ-interval in A, does not contain any elementf this kind. O

A counterexample with uncountable convex subgroup

The following examplé? shows that Theorem 2 fails, generally speaking, for uncount-
able Borel convex subgrous. We consideiR? as the product of two copies of the addi-
tive group of the reals. Define prA = {x: 3y ({(x,y) € A)} and py A = {y: Ix ({x,y) €
A)} for any setA C R2.

Proposition 14. There is a Borel subgroup of R? such that
(i) pry A=R;
(ii) forany realc, A does not completely include the lipe= cx.

Proof. LetY C R be an uncountable closed set such that + - - - + ¢, y, # 0 whenever
q1, ---,qn € Q\ {0} while y1, ..., y, are pairwise different elements &f (In particular

13 Communicated by G. Hjorth in May 1998 and presented here with his permission.
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0¢Y.) Let F be aBorel 1-1 map dk ontoY. DefineA to be theQ-closure of the graph
of F, thatis, the set of all points of the form

(qrx1+ -+ quxn, q1F (x1) + -+ + g F (xn)) € R?,

whereqa, ..., g, € Q while x1, ..., x, € R. Clearly A is a Borel group satisfying (i). Let
us show that (ii) also holds. First of all does not contain any point of the forta, 0),
except for(0, 0). Now letc # 0. If A entirely includes the ling = cx then py A = R.
Then clearlyy is a Borel basis oR as a vectorspace ovér, which is impossiblet* 0

Assume thatl is such a group. TheAg = {y: (0, y) € A} is a Borel subgroup dR since
A is a group. We assert thdtis co-isomorphic toR x Ag viewed as a lexicographically
ordered Borel group: then in particulatg is the only proper convex subgroup af To
prove the assertion it suffices to define an additive map (homomorplfisi}-> R such
that(x, f(x)) € A for anyx. (Then the map sending any, y) € R x Agto (x, f(x) + y)
is an isomorphism oR x Ag onto A, as required.) To define such a mgplet us first
of all choose a seB C R which is a Hamel basis dR as aQ-vectorspace. The values
f(b) for b € B can be chosen arbitrarily. Then, ang R\ B admits a unique presentation
in the formx = r1b1 + - - - + rbm, Wherer; are rationals and; € B. In this case define
Fx)y=rifb)) +--+rmf(bn).

However,A andRR x Ag are not Borel isomorphic even as groups! Indeed, assume that
onto

F:A— R x AgisaBorel group isomorphism. Thét((x, 0)) = (f (x), g(x)) foranyx,
wheref, ¢ :R — R are Borel homomorphisms (i.ef(x +y) = f(x) + f(y) and similarly
for g), and, by (ii), there is n@ such thatg(x) = ¢f (x) for all x. In this case, there is a
realc such that the sets

X+:{x>0: f(x)>cg(x)} and sz{x>01 f(x)<cg(x)}

are non-empty. Of those at least one set is co-meager on an irfierkglwhere O< a < b.
Let this be, e.g..X™. A simple argument shows that each reak 0 has the form
z=rx +qy, wherer, ¢ are positive rationals while, y € [a, b], so thatz € X+ as well.
It follows that X~ is empty, a contradiction.

7. cccgroups

Itturns out that the difference between (i) and (ii) of Theorem 3 can be traced down to the
structure ofgalaxies—convex subgroups of, the given group, of the fortp), [—nx, nx],
wherex € A. By thecccassumptionA cannot contain a countable galaxy other tf@n
(unlessA itself is countable)—and then the type &fis (i) in the case when there is no
minimal galaxy, and (ii) otherwise. (In the “otherwise” cases just the minimal nor{0}
galaxyinA.)

141 ¥ contains a rationat then theQ-closure ofY \ {r} is a Borel selector for the Vitali equivalence relation,
which is impossible. If¥ does not contain a rational then=lg1y1 + - - - + g y» for somey; € Y and rationals
qi #0. Replaceyy by 1inY, getting the first case.
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The assumption thad is divisible cannot be dropped. Indeed, there is (Section 6) an
Abelian ordered groug, order isomorphic but not group isomorphic@ox Z. If it were
of type (i) (but non-divisible), then, as has only one proper convex subgroupyould
be a subgroup of x C for a countable groug’ C R. But this easily leads to isomorphism
betweend andQ x Z, which is a contradiction.

Another simple argument shows tl@&aic R cannot be one and the same countable group
forany A in (i) or (ii). As a counterexample, take, @s a countable divisible subgroup of
R, notGo-isomorphic to any subgroup df.

Beginning the proof of Theorem 3, let us assume that (A; +, <) is a BAO ccc
group. As A is divisible, any convex subgrould € A and the corresponding quotient
A/H are divisible (Abelian ordered) groups. Let, fira convex subgroup of, H-coset
or coset of sizé{ mean a subset of of the forma + H, wherea € A. Cosetwill mean
H -coset for some convex subgrops A.

Lemma 15. For any coselX, a representative(X) € X can be chosen so that
(@) r(X)+r(Y)=r(X+Y)forany two coset¥, Y of equal size
(b) if X’ € X andr =r(X) € X' thenr(X')=r.

Proof. A partial representative functigror PRF, is any functio# such that
(i) the domaint’ = domF consists of cosets and(X) € X for any X;
(i) if XeX, X CY,andY is acosetthew € X;
(iii) if X € X then any coset ¢ X, such thatF(X) € Y, belongs toX’, too, and
F(X)=F();
(iv) if X,Y € X have equal size angl, s are rationals then the cosgét=gX + sY
belongstoX andF(Z) =g F(X) + sF(Y).
It clearly suffices to prove that, if is a PRF andt = domF does not contain a cosét,
then we can extenél’ so that the extended domain contaiis

ChooseF (K) € K arbitrarily. LetX™ be the set of all cosets such thakither L € K
andF(K)e LorK C L.LetK =K1\ X. Note that ™ is linearly ordered by, while i
is an initial segment o™ by (ii), containingk . Now defineF (L) = F(K) forall L € K.

Let X’ (the extended domain) be the set of all cosets ¢ X + s L, where cosetX € X
andL € K have equal size. PH(Z) =g F(X) + sF(L).

We prove that the extendedsatisfies (ii) and (iii). (That (i) and (iv) hold is clear. Recall
that A, hence all convex subgroups af are divisible.)

(i) Suppose thaZ = g X + sL, whereX € X andL € K have the same size whilg
s are rationals. Assume that¢ Z’, whereZ’ is a coset; prove that’ € X”. Let X’ and
L’ be cosets of the same size &5 satisfyingX ¢ X’ andL ¢ L’; clearly X', L' exist,
are unique, belong to respectivelyand Kt (by (ii) for X), andZ’ =g¢X’ +sL’. If now
L' ¢ KthenL’' € X andZ € X by (ii) for X'. OtherwiseZ € X’ by definition.

(iii) Let againZ = g X + sL, whereX andL are as above, whilg’ ¢ Z is a coset and
F(Z) e Z'.ProvethaZ’ € X’ andF(Z’) = F(Z). By definition F(Z) = g F(X)+sF(L).
Let X’ andL’ be the cosets of the same sizeZdscontaining respectively (X) andF (L),
hence, satisfyind’ ¢ X, L' G L, X' € X/, L' e K, F(X') = F(X), and, by definition,
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F(L') = F(L). Moreover, in this case clearly(Z') = g F(X') + s F(L'), so thatZ' e X’
andF(Z'y=F(Z). O

Using the lemma, let us fix a representativé() € X for any cosetX so that (a) and
(b) are satisfied. Then, given a convex subgréfipf A, the H-coordinatecy (x) =
x —r(x + H) belongs toH for anyx € A. Note thatcy (x) =0 andr(x + H) = x for
all x in the particular casé = {0}.
Recall that ayalaxyis a convex subgroup of the form Ga= (J,,.n[—nx, nx]. The set
g of all galaxiesG C A, G # {0}, is at most countable by thecc assumption. (However
there can be continuum-many convex subgroups which are not galaxies: all of them are
increasing countable unions of galaxies.)
For any galaxyG C A, there is a largest convex subgroupAdstrictly smaller tharG:
it will be denoted byG _ (possiblyG_ = {0}), so thatG_ & G.

Lemma 16. If G € G is not C-least inG then the quotienG/G_ is Go-isomorphic to
a countable divisible subgroup &. If G is the C-least inG thenG/G_ = G is Borel
GO-isomorphic to a Borel divisible subgroup Bf

Proof. The first part is clear a&/G_ is a countable Archimedean group. Consider the
second part. Nowg_ = {0}, henceG/G_ = G is an Archimedean BAO group. Let us
prove thatG is BorelGo-isomorphic to a Borel subgroup of the reals.

Fixae G, a>0inG. Foranyx € G, let 0, ={q € Q: ga < x}. ThenQ, is a proper
(asG is Archimedean) initial segment iQ. Put F(x) = supQ.

ThenF :G — R is a Borel map. Moreover, &5 is ArchimedeanF is 1-1, hence the
image rarF is a Borel subset oR. Finally it is a routine exercise to check thatis a
Go-isomorphism. O

Orderg by inverse inclusion, so th&t < G’ iff G' ¢ G.

ConsidellT = [[;.g(G/G-), a BA product group with componentwise addition. Thus
elements of 7 are functionaw defined ong and satisfyingv(G) € G/G_ for all G € G.
For anyw € IT, let |w| = {G € G: w(G) # 0}. We shall be especially interested in the
subgroupl7WVC = {w € IT: |w| is well-ordered by<} of I7. Note that, unliker7, 17W°
is an ordered (lexicographically) coanalytic but, generally speaking, non-Borel subgroup
of IT.

For anyx € A, definew, € IT as follows:w, (G) = ¢g (x) + G — for any galaxyG € G.
Thusw,(G) € G/G_ foranyG, so thatw, € IT.

Lemma 17. The mapx — w, is a Borelco-isomorphism ofA onto a local-product sub-
group of ITWO,

Proof. It follows from (a) thatcg (x) + cg(y) = cg(x + y) for any galaxyG. Therefore
Wy (G) + wy(G) = wy1y(G) forany G € G, so thatwy + wy = wy4y.
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We prove thak — w, is 1-1. Letx # y € G. Consider the galax¢ = Gal(x —y). Then
x—yeG\G_, so that clearlyg(x) —cg(y) =x — y ¢ G_, hencew,(G) # w,(G).
The proof thatx — w, is order-preserving is similar.

We prove thatw, € ITW© for any x. Suppose on the contrary that there is a sequence
Go& G1& G2 & --- of galaxiesGy € G such thatg, (x) ¢ G, —hencecg, ., ¢ Gk, for
all k. ThenG = | J, Gy is a convex group. By definitiotg (x) =x —r(x + G) € G, thus
€ Gy for somek. It follows thatr (x + G) € x + G, henceg x + G411, sothatr (x + G) =
r(x + Giy1) by (b). Noweg, ,(x) =x —r(x + Giy1) =x —r(x + G) = ¢ (x) € Gy,
which is a contradiction.

We prove that the map is Borel. It suffices to check thet w, (G) is a Borel map for
any galaxyG # {0}. By thecccassumptiond /G is countable, hence, the map-> cg (x)
is Borel. If nowG_ = {0} thenw,(G) = cg(x). If G_ # {0} then the quotienG/G_ is
countable, so that the mag, (G) = cg(x) + G — takes only countably many values and is
easily seen to be Borel.

Finally let us show that the rang& = {w,: x € A} is a local-product group. By
definition it suffices, giverG € G and X € G/G_, to find x € A such thatw,(G) = X
while w,(H) = H_ for any galaxyH # G. Let x = r(X). Thenx + G = G, so easily
r(x + G) =0 by (a). It follows thatcg(x) =x —r(x + G) = x = r(X) andw,(G) =
x+G_=X.If HC G_ is agalaxy them(x + H) = r(X) by (b), thereforey(x) =0
andw,(H) = H_, as required. If a galaxyl satisfiesG ¢ H, thenx € H_ and easily
wy(Hy=H_. O

Now, to prove Theorem 3, we have to verify that the gratip= {w,: x € A} € [TWO
satisfies either (i) or (ii) of Theorem 3.

Casel. There is no<-maximal, hencec-minimal, galaxy inG. This leads us to (i).
Indeed, fixG € G and define, foranw € I, the restrictionw|_.; = w [ {G' € G: G’ < G}.
ThenW/_.; ={wl<g: w € W} cannot be uncountable becau&eclearly contains a set
of W[_s-many disjoint open intervals (sind# is local-product, see above). It remains
to note that, in this case, every quotighf G_ (whereG € G) is a countable divisible
subgroup ofR, by Lemma 16. Take a8 the group closure of their union iR.

Case2. H is a<-maximal, hencec-minimal, galaxy inG. ThenH/H_ = H is a Borel
divisible subgroup oR by Lemma 16. Assume thad{ is uncountable. (If it is countable
we get (i) as in case 1.) Then, identifying amye W with the pair(w|_ 5, w(H)), we get
a BorelGo-isomorphism betweeW andW’ = (W|_y) x H, which easily leads to (ii) of
Theorem 3. O

Clearly the possibility of characterization modiBorel isomorphism follows from the
cccassumption. The argument, generally speaking, does not work in the@onase.
More exactly, the only part affected in the reasoning is that the miap w, is Borel.
We should prove the following: it is a BAO divisible group andd C A a convex Borel
subgroup then there is Borel choice of a representativeéX) € X for any X € A/H,
satisfying (a). Hjorth’s counterexample in Section 6 shows that this is not always possible.
At the moment, only the case of a countablendA /H isomorphic toR admits a positive
solution (Theorem 2).
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As for non-Borel isomorphisms, our arguments easily prove that

(i) Every Abelian ordered divisible groupis Go-isomorphic to a local-product group
W € REWO for a linear order¢ of cardinalitycards < cardA.

(i) In addition, if A is Borel thené can be chosen among orde?¥, o < w;. (By a
theorem in [2], any Borel linear order is Borel order isomorphic to a Borel subset of
2%, viewed as a lexicographical order, for some: w;.)

Final remarks. The methods developed for the proof of Theorem 2 have been used in
[4,5] to prove some other results related to the additive group of the reals, in particular:
(1) Suppose that; is a countable subgroup of the additive group of the reals, and a
Baire measurable map:R — R satisfiesf(x + y) — f(x) — f(y) € G for all
x, y. Then there is a realsuch thatf (x) — cx € G for all x.
(2) Suppose thad is a Borel Abelian group operation d, such that the difference
(x ® y) — (x + y) takes only countably many values. ThéR; &) is Borel
isomorphic to(R; +).
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